- СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ 3.1. Классификация систем теплоснабжения
- Системы отопления и теплоснабжения
- Потребление тепловой энергии в России и главные факторы, оказывающие влияние на данный показатель. Классификация и виды систем теплоснабжения, схемы присоединения систем отопления к сети. Выбор системы отопления в зависимости от назначения помещения.
- Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ 3.1. Классификация систем теплоснабжения
Система теплоснабжения — совокупность технических устройств, агрегатов и подсистем, обеспечивающих приготовление теплоносителя, его транспортировку и распределение в соответствии со спросом на теплоту по отдельным потребителям. Последними являются системы отопления, вентиляции, горячего водоснабжения, а также технологические установки промышленных предприятий.
В городах и населенных пунктах средства обеспечения тепловой энергией коммунально-бытовых и производственных потребителей непосредственно влияют на санитарное состояние территории, чистоту воздушного бассейна, экономику, а также на степень благоустройства зданий и сооружений.
Все системы теплоснабжения можно объединить в группы по следующим признакам: по степени централизации, по режиму работы (круглогодичные и сезонные), по виду вырабатываемого и отпускаемого теплоносителя, по способу подачи воды на горячее водоснабжение, по количеству трубопроводов тепловой сети.
В зависимости от типа и мощности источника теплоснабжение бывает:
— централизованное от тепловых и атомных электростанций (ТЭЦ и
АТЭЦ) — теплофикация;
— централизованное от районных или квартальных котельных (приме
няется как в больших жилых массивах, так и в отдельных жилых кварталах
и поселках);
— местное от групповых котельных (применяется для теплоснабжения
одного или группы зданий);
— автономное от теплогенераторов, устанавливаемых непосредственно
в отапливаемых зданиях (предназначено для отопления, а иногда и горячего
водоснабжения отдельных домов и помещений).
Централизованное теплоснабжение потребителей осуществляется по протяженным и разветвленным тепловым сетям от теплоэлектроцентралей на базе комбинированной выработки тепловой и электрической энергии (теплофикация), а также от крупных районных и других источников теплоснабжения.
Для автономных систем теплоснабжения характерна малая протяженность или даже полное отсутствие тепловых сетей от источника теплоснабжения к потребителям тепловой энергии. Автономное теплоснабжение осуществляется от источников теплоснабжения малой мощности, автономных квартирных теплогенераторов и печей. Автономная (децентрализованная) система теплоснабжения состоит из источника теплоты, который совмещен с нагревательным прибором потребителя или соединен с ним внутренними тепловыми сетями. Большие здания имеют развитые внутренние тепловые сети, которые называются системами отопления. Так как система теплоснабжения небольшой группы зданий мало отличается от системы отопления одного здания, в энергетике к децентрализованным относят системы мощностью менее 58 МВт [24].
Автономные системы делятся на две группы:
— системы, у которых источник теплоснабжения соединен с приемни
ками (нагревательными приборами, калориферами, водоразборной армату
рой и пр.), внутренними тепловыми сетями (системы отопления, вентиля
ции, местные системы горячего водоснабжения);
— системы, у которых источник теплоснабжения и нагревательные по
верхности объединены в одном агрегате (отопительные печи, теплогенера
торы).
Автономные (децентрализованные) системы первого типа находят применение в городах и сельской местности, второго типа — в малых населенных пунктах.
Существуют также поквартирные системы отопления и системы, обеспечивающие отопление и горячее водоснабжение квартиры.
Перечисленные системы теплоснабжения характеризуются различными показателями качества, надежности работы и экономичности. При строительстве новых городов и населенных пунктов целесообразную систему теплоснабжения выбирают на основании технико-экономических расчетов, главными критериями при этом являются величина и концентрация тепловой нагрузки.
Решение по выбору типа системы теплоснабжения — централизованной или децентрализованной — зависит от величины и пространственной структуры населенного пункта, плотности тепловых нагрузок и размещения абонентов, вида поставляемого топлива, а также от уровня социальных и санитарно-гигиенических требований, предъявляемых к условиям эксплуатации и функционирования системы.
К преимуществам централизованных систем теплоснабжения часто относят меньшие расходы топлива при выработке теплоты в котельных.
Приведенный тезис не вызывает сомнения; однако, при сравнении энергетической эффективности систем теплоснабжения он не должен рассматриваться как отвлеченный, так как в централизованной системе неизбежны затраты на собственные нужды котельной, на перекачку теплоносителя, потери теплоты с утечками в тепловых сетях и на охлаждение теплоносителя, т.е. сравнение теплотехнической эффективности должно проводиться не по источнику теплоснабжения, а по системе в целом.
В табл. 3.1 на основе анализа данных по ряду проектов с учетом регламентируемых величин приведены результаты сравнения энергетической эффективности систем теплоснабжения.
Проведенное сравнение показывает, что теплотехнические характеристики автономного теплоснабжения превышают в целом показатели централизованных систем.
Автономные системы, несмотря на ряд присущих им недостатков (значительные затраты времени и труда на обслуживание, более низкие санитарные условия в помещении, низкий КПД теплоемких отопительных печей и теплогенераторов, выпускаемых отечественной промышленностью, трудности обеспечения теплотой многоквартирных зданий), имеют и определенные достоинства:
— меньшие, чем при централизованных системах, единовременные ка
питальные вложения;
— возможность поэтапного ввода в работу оборудования, по мере за
вершения строительных работ;
— независимое обеспечение тепловой нагрузки объектов и возможность
местного регулирования работы системы;
— возможность разработки полностью автономных систем, не требую
щих электропривода отдельных устройств системы (системы с естествен
ной циркуляцией теплоносителя и теплогенераторы на естественной тяге);
— в случае применения крышных котельных достигается снижение за
нимаемой площади территории населенного пункта;
— привлечение средств населения (возможно, частичное) для сооруже
ния системы.
Необходимо отметить, что на сегодняшний день автономные теплогенераторы, предлагаемые на рынке теплотехнического оборудования целым рядом зарубежных фирм, имеют очень высокие показатели коэффициента полезного действия, санитарно-гигиенические характеристики эксплуатации, малые (а иногда вовсе отсутствующие) затраты времени и труда на обслуживание. Однако такие теплогенераторы имеют достаточно высокую стоимость.
Как уже говорилось выше, в городах к децентрализованным системам относят системы с мощностью до 58 МВт. Для малых населенных пунктов под децентрализованным теплоснабжением должно пониматься обеспечение теплотой группы потребителей от одной системы, включающей тепло-генерирующую установку, единую тепловую сеть к потребителям, местные системы теплопотребления внутри зданий. К системе могут быть подключены часть или все здания жилой зоны поселков, а также производственные объекты.
Под децентрализованным теплоснабжением понимается обеспечение потребителей теплотой от местных (автономных) теплогенераторов по внут-ридомовым или внутриквартальным сетям теплоснабжения (см. п. 3.2.). Внешние тепловые сети при этом отсутствуют, а теплогенератор (один или несколько) устанавливается непосредственно в здании или квартире.
Результаты сравнения энергетической эффективности систем теплоснабжения
Показатели | Тип системы | Централизованная, закрытая, двухтрубная | Децентрализованная от автономного теплогенератора | твердое топливо | природный газ | твердое топливо | природный газ |
Эксплуатационный КПД котла (теплогенератора), брутто, %* | 75-81,5 | 85-90,5 | 63-75 | 78-90 |
Эксплуатационный КПД котельной, нетто, %** | 65-75 | 80-85 | 60-70 | 75-85 |
Расход электроэнергии: | ||||
— на собственные нужды котельной (с учетом сетевых насосов), кВт/МВт; — в пересчете на эквивалентную тепловую энергию, кВт/МВт*** — в пересчете на эквивалентную тепловую энергию, % — принято в расчете, % | 15-25 42,8-71,4 4,3-7,1 5 | 6-8 17,1-22,9 1,7-2,3 2 | — | — |
Потери теплоты: — в тепловых сетях с утечками теплоносителя — в окружающую среду, %**** | 3 7 | — | — | |
Теоретический КПД системы, % | 50-60 | 68-73 | 63-75 | 78-90 |
* Меньшее значение — при установке в котельной чугунных секционных котлов, большее — стальных водогрейных котлов серии КВ.
** Для автономных теплогенераторов КПД увеличен на значения тепловых потерь от внешнего охлаждения q5 = 3-5%,так как теплогенератор устанавливается в пределах общей площади помещения.
*** КПД отпуска электроэнергии по теплоте принят 35%. **** Принято как среднее для систем 5-9% [55].
Существующая структура расселения и архитектурно-планировочная организация малых населенных пунктов характеризуется рядом специфических особенностей: малые значения тепловых нагрузок как в целом по населенным пунктам (2-15 МВт), так и по отдельным абонентам (11-35 кВт); низкая плотность жилого фонда с дальнейшей тенденцией ее снижения в связи с увеличением предельных размеров приусадебных участков; низкая плотность тепловых нагрузок (90-140 кВт/га); дефицит квалифицированного эксплуатационного и обслуживающего персонала; трудности снабжения топливом и оборудованием из-за удаленности от магистралей и промышленных центров; выборочный характер нового строительства.
По технико-экономическим показателям централизованные системы в малых населенных пунктах рациональны в застройке зоны общественных центров и примыкающих к ним жилых зданий. Децентрализованными системами теплоснабжения следует оборудовать одно- и двухэтажные здания селитебной зоны. Тем не менее, во всех случаях для окончательного выбора той или иной системы теплоснабжения (степени ее централизации) для каждого конкретного случая необходимым является проведение технико-экономических расчетов.
По виду энергоносителя системы теплоснабжения делятся на паровые и водяные.
Водяные системы используются для обеспечения тепловой энергией объектов жилищно-коммунального хозяйства (отопление, вентиляция, кондиционирование воздуха, горячее водоснабжение), а также с целью снабжения промышленных предприятий горячей водой на технологические нужды. В ряде случаев тепловые сети системы теплоснабжения могут включать, кроме трубопроводов жилищно-коммунального назначения, и трубопроводы пароснабжения технологических потребителей паром низкого давления (до 1,4 МПа).
Расположение России в северной климатической зоне и стремление защитить автономные сети от размораживания при аварийных отключениях электроэнергии или при периодической работе инженерных систем часто являются причиной замены воды, используемой в качестве теплоносителя, на «незамерзающий» теплоноситель [60].
В качестве «незамерзающего» теплоносителя часто используется широкий спектр водных смесей на основе моноэтиленгликоля с комплексными присадками, обеспечивающими стабильность свойств, низкую коррозионную активность, антивспенивание, антиокислительные свойства и безна-кипный режим работы системы.
Необходимо, однако, отметить, что в ряде случаев возможность применения этого теплоносителя ограничена, а в случае использования необходима его регулярная замена — не реже одного раза в два года — в связи со «старением» и снижением активности присадок.
Паровые системы теплоснабжения распространены на промышленных предприятиях, где пар используется в качестве энергоносителя в технологических процессах, а также для нужд санитарно-технических систем в пределах этих предприятий.
По способу подачи воды на горячее водоснабжение водяные системы теплоснабжения подразделяются на закрытые и открытые.
В закрытых системах воду из тепловых сетей используют только в качестве энергоносителя в теплообменниках для подогрева холодной водопроводной воды, поступающей в местную систему горячего водоснабжения.
В открытых системах вода непосредственно из тепловой сети забирается для приготовления и подачи ее в систему горячего водоснабжения потребителя.
По количеству трубопроводов тепловой сети тепловые сети делятся на одно-, двух-, трех и четырехтрубные.
Наибольшее распространение получили двух- и четырехтрубные тепловые сети, однако, возможно применение одно- и трехтрубных тепловых сетей. Системы теплоснабжения большой и средней мощности с точки зрения экономичности предпочтительно выполнять двухтрубными — с общим подающим трубопроводом горячей воды для отопления, вентиляции и горячего водоснабжения и общим обратным трубопроводом.
Использование четырехтрубных тепловых сетей упрощает процессы подготовки теплоносителя для потребителей теплоты, так как сети включают два подающих трубопровода для подачи горячей воды на нужды отопления, вентиляции и горячего водоснабжения и два обратных трубопровода от потребителей (из систем отопления, вентиляции и циркуляционного трубопровода горячего водоснабжения).
Тепловые потребители могут присоединяться непосредственно к тепловым сетям через центральные тепловые пункты (ДТП) или индивидуальные тепловые пункты (ИТП, абонентские вводы), в которых осуществляется приготовление и подача горячей воды нужных параметров для отопления, вентиляции и горячего водоснабжения потребителей. ЦТП и ИТП в общем случае включают подогреватели, элеваторы, насосы, запорно-регулирующую арматуру и средства автоматического регулирования расхода и параметров теплоносителей и т.д.
Дата добавления: 2016-04-11 ; просмотров: 9107 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Системы отопления и теплоснабжения
Потребление тепловой энергии в России и главные факторы, оказывающие влияние на данный показатель. Классификация и виды систем теплоснабжения, схемы присоединения систем отопления к сети. Выбор системы отопления в зависимости от назначения помещения.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 17.12.2013 |
Размер файла | 32,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
1. Потребление тепловой энергии в России
теплоснабжение отопление энергия
В топливно-энергетическом балансе приводятся следующие данные о потреблении населением тепла для отопления и горячего водоснабжения (ГВС) от централизованных источников. На протяжении 1990-х годов потребление тепла населением сокращалось, в начале 2000-х годов оно возросло. Последние годы суммарное потребление тепла от централизованных источников составляет около 510 млн. Гкал в год и не имеет выраженной тенденции изменения.
Рост потребления тепла в 2000-е годы связан с увеличением жилищной площади, снабжаемой теплом от СЦТ (Системы Центрального Теплоснабжения). Структурные изменения в экономике 1990-х годов привели к сокращению спроса на централизованное тепло со стороны промышленных потребителей. Из-за этого ухудшилась экономика централизованного теплоснабжения — увеличились удельные расходы топлива и денежные затраты. Это компенсировалось ростом тарифов, завышенной подачей тепла населению и списанием части потерь на потребителей. В то же время сокращение численности населения ограничивает рост потребления тепла на бытовые нужды.
Потребление тепла от СЦТ за период 1990-2007 гг. возросло всего на 5%. При этом за тот же период рост производства и потребления тепла в сфере децентрализованного теплоснабжения (ДТ) составил более 60% и продолжает динамично увеличиваться. Доля ДТ в общем объеме теплоснабжения населения достигла в 2007 г. 41%. Как показывают данные табл. 3, роль ДТ возрастает, и рост потребления тепла в этом сегменте достаточно устойчив.
Рациональное использование тепловой энергии напрямую зависит от систем теплоснабжения и отопления. В данной работе мы рассмотрим различные виды таких систем, а так же их выбор в зависимости от назначения здания.
2. Понятие о теплоснабжении и отоплении
Виды систем теплоснабжения
Под теплоснабжением понимают систему обеспечения теплом зданий и сооружений.
Теплоснабжение населения России технически осуществляется от централизованных источников, которые представлены ТЭЦ и котельными мощностью свыше 20 Гкал/ч, и децентрализованных источников тепла, к которым относятся малые котельные и различные индивидуальные теплогенераторы.
Система теплоснабжения состоит из следующих функциональных частей:
1. Источник производства тепловой энергии (котельная, ТЭЦ);
2. Транспортирующие устройства тепловой энергии к помещениям (тепловые сети);
3. Теплопотребляющие приборы, которые передают тепловую энергию потребителю (радиаторы отопления, калориферы).
Классификация систем теплоснабжения
По месту выработки теплоты системы теплоснабжения делятся на:
— централизованные (источник производства тепловой энергии работает на теплоснабжение группы зданий и связан транспортными устройствами с приборами потребления тепла);
— местные (потребитель и источник теплоснабжения находятся в одном помещении или в непосредственной близости).
По роду теплоносителя в системе:
По способу подключения системы отопления к системе теплоснабжения:
— зависимые (теплоноситель, нагреваемый в теплогенераторе и транспортируемый потепловым сетям, поступает непосредственно в теплопотребляющие приборы);
— независимые (теплоноситель, циркулирующий по тепловым сетям, в теплообменнике нагревает теплоноситель, циркулирующий в системе отопления).
По способу присоединения системы горячего водоснабжения к системе теплоснабжения:
— закрытая (вода на горячее водоснабжение забирается из водопровода и нагревается в теплообменнике сетевой водой);
— открытая (вода на горячее водоснабжение забирается непосредственно из тепловой сети).
Централизованные системы теплоснабжения, обеспечивающие наиболее экономное использование топлива, имеют наиболее высокие экономические показатели и характеризуется пониженными удельными расходами топлива на выработку тепловой энергии.
Централизованные системы теплоснабжения обеспечивают потребителей теплом низкого и среднего потенциала (до 350), на выработку которого затрачивается около 25% всего добываемого в стране топлива. Тепло, как известно, является одним из видов энергии, поэтому при решении основных вопросов энергоснабжения отдельных объектов и территориальных районов теплоснабжение должно рассматриваться совместно с другими энергообеспечивающими системами — электроснабжением и газоснабжением.
Источниками тепла в централизованных системах теплоснабжения служат или теплоэлектроцентрали (ТЭЦ), производящие одновременно и электроэнергию, и тепло, или крупные котельные, именуемые иногда районными тепловыми станциями. Системы теплоснабжения на базе ТЭЦ называются «теплофикационными».
В зависимости от организации движения теплоносителя системы теплоснабжения могут быть замкнутыми, полузамкнутыми и разомкнутыми.
В замкнутых системах потребитель использует только часть тепла, содержащегося в теплоносителе, а сам теплоноситель вместе с оставшимся количеством тепла возвращается к источнику, где снова пополняется теплом (двухтрубные закрытые системы). В полузамкнутых системах у потребителя используется и часть поступающего к нему тепла, и часть самого теплоносителя, а оставшиеся количества теплоносителя и тепла возвращаются к источнику (двухтрубные открытые системы). В разомкнутых системах, как сам теплоноситель, так и содержащееся в нем тепло полностью используется у потребителя (однотрубные системы).
Полученное в источнике тепло передают тому или иному теплоносителю (вода, пар), который транспортируют по тепловым сетям к абонентским вводам потребителей.
На абонентских вводах происходит переход тепла (а в некоторых случаях и самого теплоносителя) из тепловых сетей в местные системы теплопотребления. При этом в большинстве случаев осуществляется утилизация неиспользованного в местных системах отопления и вентиляции тепла для приготовления воды систем горячего водоснабжения.
На вводах происходит также местное (абонентское) регулирование количества и потенциала тепла, передаваемого в местные системы, и осуществляется контроль за работой этих систем.
В зависимости от принятой схемы ввода, т.е. в зависимости от принятой технологии перехода тепла из тепловых сетей в местные системы, расчетные расходы теплоносителя в системе теплоснабжения могут изменяться в 1,5-2 раза, что свидетельствует о весьма существенном влиянии абонентских вводов на экономику всей системы теплоснабжения.
В централизованных системах теплоснабжения в качестве теплоносителя используется вода и водяной пар, в связи, с чем различают водяные и паровые системы теплоснабжения.
Вода как теплоноситель имеет ряд преимуществ перед паром; некоторые из этих преимуществ приобретают особо важное значение при отпуске тепла с ТЭЦ. К последним относится возможность транспортирования воды на большие расстояния без существенной потери её энергетического потенциала, т.е. её температуры понижение температуры воды в крупных системах составляет менее 1°С на 1 км пути). Энергетический потенциал пара — его давление — уменьшается при транспортировании более значительно, составляя в среднем 0,1 — 015 МПа на 1 км пути. Таким образом, в водяных системах давление пара в отборах турбин может быть очень низким (от 0,06 до 0,2 МПа), тогда как в паровых системах оно должно составлять до 1-1,5 МПа. Повышение же давления пара в отборах турбин приводит к увеличению расхода топлива на ТЭЦ и уменьшению выработки электроэнергии на тепловом потреблении.
Кроме того, водяные системы позволяют сохранить на ТЭЦ в чистоте конденсат греющего воду пара без устройства дорогих и сложных паропреобразователей. При паровых же системах конденсат возвращается от потребителей нередко загрязненным и далеко не полностью (40-50%), что требует значительных затрат на его очистку и приготовление добавочной питательной воды котлов.
К другим достоинствам воды как теплоносителя относятся: меньшая стоимость присоединений к тепловым сетям местных водяных систем отопления, а при открытых системах еще и местных систем горячего водоснабжения; возможность центрального (у источника тепла) регулирования отпуска тепла потребителям изменением температуры воды; простота эксплуатации — отсутствие у потребителей неизбежных при паре конденсатоотводчиков и насосных установок по возврату конденсата.
Пар как теплоноситель в свою очередь имеет определенные достоинства по сравнению с водой:
а) большую универсальность, заключающуюся в возможности удовлетворения всех видов теплопотребления, включая технологические процессы;
б) меньший расход электроэнергии на перемещение теплоносителя (расход электроэнергии на возврат конденсата в паровых системах весьма невелик по сравнению с затратами электроэнергии на перемещение воды в водяных системах);
в) незначительность создаваемого гидростатического давления вследствие малой удельной плотности пара по сравнению с плотностью воды.
Неуклонно проводимая в нашей стране ориентация на более экономичные теплофикационные системы теплоснабжения и указанные положительные свойства водяных систем способствуют их широкому применению в жилищно-коммунальном хозяйстве городов и посёлков. В меньшей степени водяные системы применяются в промышленности, где более 2/3 всей потребности в тепле удовлетворяются паром. Так как промышленное теплопотребление составляет около 2/3 всего теплопотребления страны, доля пара в покрытии общего расхода тепла остаётся еще очень значительной.
Автономные системы теплоснабжения
Автономные системы теплоснабжения предназначены для отопления и горячего водоснабжения одноквартирных и блокированных жилых домов. К автономной системе отопления и горячего водоснабжения относятся: источник теплоснабжения (котел) и сеть трубопроводов с нагревательными приборами и водоразборной арматурой.
Преимущества автономных систем теплоснабжения заключаются в следующем:
· отсутствие дорогостоящих наружных тепловых сетей;
· возможность быстрой реализации монтажа и запуска в работу систем отопления и горячего водоснабжения;
· низкие первоначальные затраты;
· упрощение решения всех вопросов, связанных со строительством, так как они сосредоточены в руках владельца;
· сокращение расхода топлива за счет местного регулирования отпуска тепла и отсутствие потерь в тепловых сетях.
Схемы присоединения систем отопления к тепловой сети
Теплопотребители подключаются к тепловым сетям двумя принципиально отличными способами — по зависимой и независимой схемам (Рис.2)
— зависимое присоединение предполагает подачу горячей воды в отопительные приборы непосредственно из наружных тепловых сетей
— независимое присоединение предполагает подачу горячей воды из наружных тепловых сетей в теплообменники. В этом случае нагрев отопительных приборов осуществляется с помощью воды, циркулирующей по внутреннему контуру теплообменников и дополнительно подогреваемой в них.
В соответствии с нормативами системы отопления, вентиляции и кондиционирования воздуха должны присоединяться к двухтрубным водяным тепловым сетям, как правило, по зависимой схеме.
Виды систем отопления. Классификация
Отопление — это искусственное поддержание температуры воздуха в помещении на уровне более высоком, чем температура наружного воздуха.
Отопление помещений, зданий и сооружений осуществляется для поддержания в них заданного уровня температур, определяемых условиями теплового комфорта или требованиями происходящих в них тепловых процессов.
Система отопления — комплекс устройств, выполняющих функцию отопления — котлы отопительные, сетевые насосы, устройства автоматического поддержания температуры в помещениях, радиаторы отопления и другие.
Отопительный прибор — устройство, предназначенное для передачи тепла от теплоносителя к воздуху и ограждающим конструкциям отапливаемого помещения.
Системы отопления можно разделить на 2 основных вида — конвективные и лучистые, а так же:
1. По радиусу действия — местные и центральные;
2. По типу источника нагрева — газовые, мазутные, электрические, пеллетные, дровяные, угольные, дизельные, торфяные, солнечные, геотермальные.
3. По виду циркуляции теплоносителя — с естественной и искусственной (механической, с использованием насосов);
4. По типу теплоносителя — воздушные, водяные, паровые, комбинированные;
5. По способу разводки — с верхней, нижней, комбинированной, горизонтальной, вертикальной;
6. По способу присоединения приборов — однотрубные, двухтрубные, трёхтрубные, четырёхтрубные, комбинированные;
Однотрубная. Устроена следующим образом: отопительные приборы одного стояка подключены последовательно, то есть теплоноситель, постепенно охлаждаясь, проходит стояк из прибора в прибор. При этом, логично, в последний из них он попадёт значительно менее горячим, чем в первый. Эта разница компенсируется разной поверхностью теплоотдачи приборов (например, различное количество секций для чугунных радиаторов) — меньшей в начале и большей в конце. Также может быть предусмотрен обвязка отопительного прибора с использованием байпаса, или короткозамыкающего участка.
Двухтрубная. В этом случае отопительные приборы подключены к стояку параллельно, что позволяет сохранять одинаковую температуру теплоносителя на каждом. Такие системы более металлоёмки и требуют балансировки каждого прибора отдельно.
7. По типу применяемых приборов — конвективные, лучистые, конвективно-лучистые;
8. По ходу движения теплоносителя в магистральных трубопроводах — тупиковые и попутные;
9. По гидравлическим режимам — с постоянным и изменяемым режимом;
10. По режиму работы — постоянно работающие на протяжении отопительного периода и периодические (в том числе и аккумуляционные) системы отопления.
Все эти признаки системы в реальности, как правило, смешиваются — например, водяная система с нижней разводкой, тупиковая, с изменяемой гидравликой, с нагревательными приборами — конвекторами, электрическая — прямого действия и воздушная или водяная системы отопления.
Центральные системы предназначены для отопления нескольких помещений единого теплового центра. Теплоисточник (теплообменник) и отопительные приборы разделены расстоянием друг от друга: теплоноситель нагревается в теплообменнике теплового центра (котельной), далее перемещается к теплопроводам в отдельные помещения и, передав тепло через отопительные приборы в них, возвращается в тепловой центр.
Центральные системы бывают водяные, паровые, воздушные и электрические. Характерным примером центральной системы отопления является система водяного отопления здания с собственной котельной. Центральная система может быть и районной, когда группа зданий отапливается без центральной тепловой станции (районная котельная, центральный тепловой пункт — ЦТП, теплоэлектроцентраль — ТЭЦ).
В нашей стране самым распространенным видом отопления является водяное. Водяным его можно называть весьма условно, т. к. в системе в качестве теплоносителя можно использовать не только воду, но и любую жидкость с высокими значениями теплоемкости. Чаще всего такое отопление называют традиционным.
В системах центрального водяного отопления теплопроводная жидкость (вода) нагревается в тепло-генераторе (котле), затем теплоноситель поступает по теплопроводу в приборы нагревания (калориферы и радиаторы), после чего накопленная в них тепловая энергия через стенки передается воздуху помещений, вследствие чего происходит остывание теплоносителя. Охлажденный теплоноситель вновь возвращается в котел, в котором он восстанавливает свою температуру и вновь направляется в нагревательные приборы. То есть происходит непрерывная круговая циркуляция (движение) жидкости: тепло — генератор — приборы для нагревания — тепло — генератор. Традиционные системы отопления обладают невысокой стоимостью и минимальным расходом материалов. В данном случае применяются трубы намного меньшего диаметра, чем при воздушном отоплении; жидкий теплоноситель обладает высокой теплоемкостью, т. е. единица объема воды содержит большее количество тепла, чем другие теплоносители; за меньшее время создается комфортная температура в отапливаемом помещении.
Но, помимо плюсов, традиционная система отопления имеет и минусы. Например, на установку такой системы затрачивается гораздо больше времени и сил, а также иногда возникают сложности при ее эксплуатации. То есть монтаж водяного трубопровода можно выполнить только при строительстве или капитальном ремонте жилого помещения, т. к. это предусматривает множество строительных операций. И еще, для того чтобы отопительная система работала постоянно, нужен бесперебойный нагрев теплоносителя, что означает постоянный присмотр за работой источника тепла. Кроме этого, в холодное время года такой тип отопительной системы нельзя оставлять надолго без присмотра: если требуется уехать на долгий срок, нужно из системы слить воду, иначе вода замерзнет, и трубы могут лопнуть. Долгое отсутствие воды в системе также отрицательно влияет на трубопровод (в нем появляется ржавчина).
Конструктивно системы водяного отопления (как с естественным, так и с искусственным побуждением) подразделяют:
1.По месту прокладки подающей магистрали — на системы с верхней и нижней разводкой;
2.По способу присоединения нагревательных приборов к подающим стоякам — на однотрубные и двухтрубные;
3.По расположению стояков — на системы с вертикальными и горизонтальными стояками;
4.По схеме прокладки магистрали — на системы с тупиковой схемой и с попутным движением воды в магистралях.
Системы отопления с верхней и нижней разводкой
При верхней разводке горячая вода в чердачном помещении направляется в различные стояки, по ним же поступает к нагревательным приборам-радиаторам. При нижней разводке горячая вода из котла поступает в стояки снизу (из подвала). Независимо от типа разводки расширительный бак всегда располагается в наиболее высокой точке системы, т. е. в чердачном помещении.
Однотрубные и двухтрубные системы отопления
Однотрубные системы водяного отопления не имеют обратных стояков, и вода, охлажденная в нагревательных приборах, возвращается в подающие стояки. В однотрубных системах в нижние нагревательные приборы поступает смесь горячей воды и воды, охлажденной в верхних приборах. Так как температура этой смеси ниже температуры воды в приборах верхних этажей, то поверхность нагрева нижних приборов должна быть несколько увеличена.
В однотрубных системах вода циркулирует в нагревательных приборах и стояках, которые их питают, вследствие разности температур воды в тех и других. Однотрубные системы можно устраивать по двум схемам. При схеме, приведенной па рис. 4а, в верхние радиаторы поступает из стояка только часть воды, остальная вода направляется по стояку к нижерасположенным радиаторам. Количество воды для каждого нагревательного прибора можно регулировать кранами, установленными у приборов.
Другая проточная система показана на рис. 4б. Здесь вся вода из стояка проходит последовательно через все нагревательные приборы, начиная с верхней. В отличии от простой однотрубной системы, в проточной системе в нижележащие радиаторы поступает не смесь горячей и охлажденной в верхних приборах воды, а только охлажденная вода. В проточных системах нельзя ставить у нагревательных приборов обычные краны двойной регулировки. Если бы были установлены такие краны, то, перекрыв у того или иного прибора кран, уменьшили бы подачу воды во все приборы, присоединенные к стояку, а полностью закрыв один из кранов, можно прекратить циркуляцию воды через все приборы данного стояка. Между тем установка нагревательных приборов без кранов влечет за собой большие неудобства, так как тогда становится невозможным регулировать температуру воздуха в помещениях.
Однотрубные системы отопления могут выполняться только с верхней разводкой, поэтому их применяют в зданиях, где имеются чердаки и где можно располагать подающие магистрали в верхних этажах. Поэтажный пуск данных систем в действие невозможен, и в этом их недостаток. Однако по сравнению с двухтрубными системами отопления однотрубные проще в монтаже и, кроме того, имеют более красивый внешний вид. Достоинство их в том, что на устройство однотрубной системы требуется меньше труб, чем на устройство двухтрубной. Все эти положительные особенности однотрубных систем весьма существенны и вполне оправдывают их широкое применение.
Системы отопления с вертикальными и горизонтальными стояками
Если нагревательные приборы разных этажей подключаются к единому стояку, то такая система является системой с вертикальными стояками (рис. 4а и 4б). Если нагревательные приборы одного этажа подключаются к единому стояку — это система с горизонтальными стояками. Преимуществом системы с горизонтальным расположением стояка является меньшая стоимость монтажа и экономия труб. Недостатком является сложность эксплуатации и возможность скопления воздуха в нагревательных приборах с образованием воздушных пробок.
Системы отопления тупиковые и с попутным движением воды в магистралях
Показанные на рис. 4(а, б) системы отопления относятся к так называемым тупиковым системам, в которых циркуляционные кольца не равны по длине, причем самое короткое кольцо проходит через стояк, ближайший к котлу, а самое длинное — через стояк, наиболее отдаленный от котла.
Такие системы называют системами с попутным движением воды, причем их обычно устанавливают только в системах с насосной циркуляцией. В этих системах все стояки и нагревательные приборы находятся почти в равных условиях, что значительно облегчает регулировку. Недостаток систем с попутным движением воды состоит в том, что для их устройства требуется большее количество труб, чем для тупиковых систем.
Паровое отопление — одна из разновидностей систем отопления зданий. В отличие от водяного или воздушного отопления, теплоносителем является водяной пар. Иногда в быту водяное отопление зданий неправильно называют «паровым», хотя в жилых и общественных зданиях применение парового отопления сейчас запрещено строительными нормами и правилами.
Особенностью парового отопления является комбинированная отдача тепла рабочим телом (паром), которое не только снижает свою температуру, но и конденсируется на внутренних стенках отопительных приборов. Удельная теплота парообразования (конденсации), которая выделяется при этом, составляет около 2300 кДж/кг, тогда как остывание пара на 50 °C дает только 100 кДж/кг.
Источником тепла в системе парового отопления может служить отопительный паровой котёл, отбор пара из паровой турбины или редукционно-охладительная установка (РОУ), снижающая давление и температуру пара энергетических котлов до безопасных для потребителя параметров. Отопительными приборами являются радиаторы отопления, конвекторы, оребрённые или гладкие трубы. Образовавшийся в отопительных приборах конденсат возвращается к источнику тепла самотёком (в замкнутых системах) или подаётся насосом (в разомкнутых системах). Давление пара в системе может быть ниже атмосферного (т. н. вакуум-паровые системы) или выше атмосферного (до 6 атм). Температура пара не должна превышать 130 °С. Изменение температуры в помещениях производится регулированием расхода пара, а, если это невозможно, периодическим прекращением подачи пара. В преддверии морозов иногда приходится заранее прогревать здание, чтобы использовать его тепловую инерцию (т. н. «перетоп»).
Преимуществами парового отопления являются:
-небольшие размеры и меньшая стоимость отопительных приборов
-малая инерционность и быстрый прогрев системы
-отсутствие потерь тепла в теплообменниках.
Недостатками парового отопления являются:
-высокая температура на поверхности отопительных приборов
-невозможность плавного регулирования температуры помещений
-шум при заполнении системы паром
-сложности монтажа отводов к работающей системе.
Из-за невысокой стоимости паровое отопление широко применялось в первой половине XX века. В настоящее время паровое отопление может применяться как при централизованном, так и при автономном теплоснабжении в производственных помещениях, в лестничных клетках и вестибюлях, в тепловых пунктах и пешеходных переходах. Целесообразно использовать такие системы на предприятиях, где пар так или иначе применяется для производственных нужд.
Системы парового отопления классифицируют по следующим признакам:
— по начальному давлению пара — системы низкого давления (ризб