- ПАНЕЛЬНО-ЛУЧИСТОЕ ОТОПЛЕНИЕ
- Системы лучистого отопления и охлаждения
- Часть 1. Отопление излучающими панелями
- Отопление теплыми полами
- Излучающие панели в стенах
- Монтаж панелей
- Монтаж под штукатурку
- Монтаж под облицовочные панели
- Заделка в армированные бетонные панели
- Потолочные излучающие панели
- Заключение
- В статье использованы материалы:
- Первое условие комфортности
- Второе условие комфортности
ПАНЕЛЬНО-ЛУЧИСТОЕ ОТОПЛЕНИЕ
1. Чем отличается панельно-лучистое отопление от конвективного?
Конвективное отопление характерно тем, что температура внутреннего воздуха выше, чем температура окружающих конструкций (средняя радиационная температура ).
>
,
При лучистом отоплении температура ограждающих конструкций выше, чем температура внутреннего воздуха
Термин «лучистое отопление» обычно используют, когда применяются плоские горизонтальные или вертикальные греющие панели.
2. Как подразделяются системы панельно-лучистого отопления?
Системы панельно-лучистого отопления подразделяются:
а) по температуре поверхности панели:
— низкотемпературные – до 70 о С;
— среднетемпературные – до 250 о С;
— высокотемпературные – до 900 о С.
б) по виду теплоснабжения
Местные системы имеют панели или отражательные экраны со средней и высокой температурой. Энергоносителями для них являются электрический ток и дымовые газы.
Центральные системы пользуются панелями и отражательными экранами со средней и низкой температурой. Они имеют централизованное теплоснабжение с теплоносителями водой и воздухом (в редких случаях – паром).
3. Где размещаются греющие панели?
Панели располагаются в полу, потолке, наружных стенах и перегородках (рисунок 16).
1 – потолочное; 2 – стеновое; 3 – перегородочное контурное; 4 – напольное;
5 – подоконное; 6 – плинтусное; 7 – перегородочный регистр
Рисунок 16 — Размещение греющих панелей в помещении
4. Какие преимущества и недостатки у панельно-лучистого отопления?
Достоинства:
— Этот вид отопления по сравнению с другими создает в помещении более благоприятный микроклимат. Комфортное состояние наступает при температуре примерно на 2 о С ниже, чем при конвективном отоплении. Это дает экономию тепловой энергии;
— Кроме того, при снижении температуры несколько повышается относительная влажность и это благоприятно сказывается на самочувствии людей;
— Встроенный панели гигиеничны, на них нет осаждения пыли и ослаблен ее разнос;
— Низкий расход металла;
— При заводском изготовлении панелей уменьшаются затраты труда на монтаж системы отопления.
Недостатки:
— Неремонтопригодность. При засорении труб зачастую прочистка их невозможна и приходится замоноличенные трубы обрезать, создавая новую систему отопления;
— Сложность регулирования теплоотдачи;
— Некоторое увеличение капитальных затрат (по сравнению с конвективным отоплением) в связи с пониженной температурой теплоносителя.
5. Почему заложенная в панель труба дает больше теплоты, чем открытая?
Тепловой поток с поверхности отопительного прибора возрастает при устройстве оребрения (за счет увеличения поверхности нагрева). Такой прием называется эффектом оребрения.
В случае нанесения на поверхность трубы слоя другого материала, например, бетона, возникает аналогичный эффект оребрения. Поэтому, труба, замоноличенная в панель будет отдавать больше теплоты, чем открыто проложенная.
Однако, если заглубление трубы в бетон будет значительным, то бетон начнет выполнять роль изоляции и эффект оребрения уничто- жится. На рисунке 17 изображена труба с наложенным слоем другого материала
.
1 – стенка трубы; 2 – слой оребрения
Рисунок 17 – Схема оребренной трубы
Значение d3, при котором тепловой поток будет максимальным называется критическим диаметром. Его величина зависит от теплопро-
водности. Для железобетона он равен 0,24 м, для шлакобетона — 0,03 м.
Отсюда вывод: для панельных систем отопления нужно применять тяжелый бетон, у которого высокая теплопроводность.
Рисунок 18 – Плоская панель с замоноличенными трубами
На рисунке 18 изображена панель с замоноличенными трубами, по которым протекает теплоноситель. Тонкими линиями обозначен критический диаметр. И, как видно из рисунка, эффект оребрения зависит от расстояния между трубами, обозначенным буквой «а».
Отсюда вывод: при малом расстоянии между трубами снижается эффект оребрения.
6. Каково оптимальное расстояние между трубами?
Расстояние между трубами в панели называется шагом труб. Шаг зависит от вида помещения и его теплопотерь. Диапазон шага колеблется в пределах от 50 до 600 мм. Чаще всего применяется шаг 150, 200 и 300 мм.
В случае напольных панелей при малых теплопотерях, составляющих не более 50 Вт/м 2 , допускается шаг 300 мм. В помещениях с большими теплопотерями (при тепловой нагрузке более 80 Вт/м 2 ) и помещениях с повышенными требованиями к равномерности температуры поверхности пола шаг принимается равным 150 мм. В промежуточных случаях часто применяется переменный шаг укладки – вдоль наружных стен он меньше, чем вдоль внутренних (см.рисунок 26 ).
Количество рядов труб с уменьшенным шагом определяется в процессе проектирования.
Шаг в 200 мм характерен для аквапарков, бассейнов и крупных промышленных помещений [6].
7. Где рекомендуется устраивать панельно-лучистое отопление?
Панельно-лучистое отопление применяют:
— в жилых зданиях;
— в помещениях детских дошкольных учреждений;
— в операционных, родовых, наркозных и тому подобных помещениях лечебно-профилактических учреждений;
— в помещениях и вестибюлях (теплые полы) общественных зданий;
— для обоrревания основных помещений вокзалов, аэропортов, aнrapoв, высоких цехов производственных зданий;
— помещений катеrорий Г и Д (кроме помещений со значительным влаrовыделением);
— в производственных помещениях с особыми требованиями к чистоте (производство пищевых продуктов, сборка точных приборов и т.п.).
8. Как распределяется лучистый поток между ограждениями помещения?
Распределение лучистого потока показано в таблице .
Если излучение попадает на какое-либо из ограждений, то оно частично поглощается, частично отражается. Поверхность, поглотившая лучистый поток создает вторичное излучение. Таким образом, все ограждения повышают свою температуру и становятся своеобразными отопительными приборами.
Таблица 1 – Распределение лучистого потока от отопительной
панели между ограждениями помещения (в долях единицы)
Системы лучистого отопления и охлаждения
В последнее время в связи со строительством офисов больших площадей со свободной планировкой рабочих пространств появилась необходимость в применении систем отопления и охлаждения помещений, позволяющих трансформировать системы обеспечения микроклимата так же свободно, как и изменять планировку офиса. Появление современных стеклопакетов с высоким сопротивлением теплопередаче позволило убрать отопительные приборы из-под оконных проемов; требования к качеству микроклимата помещения и к энергосбережению возросли. Системы лучистого отопления и охлаждения получили новый виток развития. Теплые полы и излучающие панели, охлаждающие потолки и «балки» – все это не только современная альтернатива традиционным системам отопления, охлаждения и кондиционирования воздуха, но и оборудование, имеющее в своей основе иной принцип обеспечения комфорта в помещении, когда нагрев или охлаждение воздуха происходит за счет не только конвекции, но и излучения.
Достаточно распространенные в странах Северной Европы системы лучистого отопления и охлаждения обозначили отход от традиционных водяных и воздушных систем и сегодня представляют оригинальную европейскую методику. Хотя у данных систем тоже есть свои недостатки, они обеспечивают комфорт, в большей степени соответствующий характеру теплообмена человека.
Имеющиеся сегодня инженерные решения на основе систем лучистого отопления и охлаждения позволяют более рационально, по сравнению с традиционными, выстраивать архитектурный облик здания и интерьеры помещений. Теплоноситель (как правило, вода), используемый в таких системах, имеет умеренную температуру как для отопления, так и для охлаждения, отсюда оптимальные условия для работы конденсационных котлов и тепловых насосов, солнечных коллекторов, высокий уровень энергетической эффективности и экологической безопасности.
Часть 1. Отопление излучающими панелями
При использовании систем лучистого отопления средняя температура в помещении обычно выше, чем температура воздуха, т. к. передача тепла осуществляется нагретыми поверхностями пола, потолка, стен большой площади либо их сочетанием.
Вследствие большой площади теплоотдающих поверхностей их температура близка к требуемой температуре в помещении и нет необходимости использовать воздух в качестве дополнительного способа нагрева помещения. Равные условия комфорта в помещении можно обеспечить при более низкой температуре воздуха, сократив расход тепла на подогрев вентиляционного воздуха. Основное отличие между традиционным и лучистым отоплением как раз и состоит в температуре воздуха. В жилом помещении с лучистым отоплением она всегда ниже в среднем на 2 °C: понижение температуры всего на 1 °C позволяет снизить потребление энергоресурсов в среднем до 7 %. При этом должно быть понятно, что величина экономии растет пропорционально отапливаемым объемам. То есть в помещениях очень большой площади – соборах, музеях и пр. – экономия энергии достигает 40–50 %. Если к тому же системы лучистого отопления использовать в комбинации с современными генераторами тепла, результаты по параметрам сезонной производительности просто потрясающие.
Что касается материалов, применяемых для изготовления излучающих панелей, на первом месте стоит медь – по показателям теплопроводности, меньшей высоте прокладки, высокой термостойкости и отсутствию проблем с осмосом. Пластмассовые материалы (полиэтилен, полибутилен и др.), в свою очередь, очень технологичны при монтаже, что позволяет значительно снизить его стоимость.
| ||||||||||||||||
Тепловой комфорт и энергетический баланс человека | ||||||||||||
Значения коэффициента А в зависимости от скорости движения воздуха | ||||||||
|
В пределах значений температуры среды, соответствующих комфортным условиям, теплообмен происходит главным образом конвекцией и излучением. В условиях теплового комфорта теплообмен человека происходит посредством:
— скрытого тепла (потоотделения и дыхания) – 21 %;
Таким образом, основными параметрами среды в определении тепловлажностного комфорта являются: температура, влажность, подвижность воздуха и средняя температура окружающих поверхностей помещения.
Человек ощущает не столько температуру воздуха, сколько совокупность температур воздуха Тв и радиационную температуру помещения TR, что иначе называется «температура помещения» Tп.
В умеренной тепловой среде или при температуре (TR – Tв) j в воздуха в помещении, температурами поверхностей Тi, обращенных в помещение, расположение (относительно человека) и размеры которых определяют радиационную температуру помещений TR. Комфортное сочетание этих показателей соответствует таким оптимальным метеорологическим условиям, при которых сохраняется равновесие, отсутствует напряжение в процессе терморегуляции; в подавляющем большинстве случаев комфортное сочетание этих показателей положительно оценивается находящимися в помещении людьми. Допустимыми считаются такие метеорологические условия, при которых возникает некоторая напряженность процесса терморегуляции и может иметь место небольшая дискомфортность тепловой обстановки.
Первое условие комфортности
Комфортной будет такая общая температурная обстановка в помещении, при которой человек, находясь в середине помещения, будет отдавать все явное тепло, не испытывая перегрева или переохлаждения. На теплоощущения человека в определенной мере влияют радиационная температура, температура воздуха.
Второе условие комфортности
Это условие ограничивает интенсивность теплообмена при положении человека около нагретых и охлажденных поверхностей. Определяющей величиной в этом случае является интенсивность лучистого теплообмена (радиационный баланс на наиболее невыгодно расположенной и наиболее чувствительной к излучению части поверхности тела человека). К радиационному нагреву наиболее чувствительной оказывается поверхность головы. Радиационный баланс должен быть таким, чтобы каждая часть поверхности головы отдавала излучением окружающим поверхностям не менее 11,6 Вт/м 2 . При расположении излучающей панели в потолке наиболее невыгодным (а поэтому расчетным) будет положение человека непосредственно под центром панели. При расположении панели в стенах за расчетное принимают положение человека на расстоянии 1 м от нагретой поверхности.
Поделиться статьей в социальных сетях: