Панельно лучистое отопление здания

Панельно-лучистые системы отопления и охлаждения зданий

В настоящее время все больший интерес специалистов вызывают энергоэффективные системы климатизации, в которых может использоваться низкотемпературный теплоноситель в режиме отопления и высокотемпературный холодоноситель в режиме охлаждения. Этому в том числе способствует развитие систем климатизации на базе теплонасосных установок. К таким системам относятся, в частности, системы панельно-лучистого отопления и охлаждения, которым был посвящен очередной вебинар АВОК. Полную запись вебинара можно скачать на сайте webinar.abok.ru в разделе «Прошедшие вебинары». Лектор Ольга Дмитриевна Третьякова, руководитель направления «Потолочное отопление и охлаждение» представительства «Цендер Груп Дойчланд ГмбХ», рассказала о самых популярных в России продуктах данного направления и новых разработках. В ходе вебинара было получено большое количество вопросов, ответы на некоторые из них читатели найдут в предлагаемом материале.

Каково основное применение панельно-лучистых систем (по статистике российских объектов)?

В России все начиналось с отопления производственных помещений, причем нам доставались сложные случаи (как из-за особенностей технологии, так и из-за особенностей самих систем отопления, например слишком низкой для обычных систем рабочей температуры теплоносителя).

Затем эти системы стали более известны и интересны, в первую очередь за счет их энергосберегающего потенциала. Потом данной технологией заинтересовались архитекторы, поскольку она дает им определенную свободу, среди объектов появились автосалоны. Затем была волна спортивных объектов по всей стране.

Сейчас примерно равные доли занимают производственные, складские, спортивные и общественные здания, разнообразные сервисные центры и ангары. В последнее время появляются также торговые центры, выставочные залы, оранжереи, конюшни, гаражи, кафе и рестораны, так что область применения постоянно расширяется.

Интересно, что и специалисты, и конечный потребитель видят преимущества данного типа систем и выбирают их снова и снова. Именно поэтому у нас много постоянных клиентов.

В чем отличия панельно-лучистых систем от лучистых систем, совмещенных с конструкциями здания?

Основное отличие, наверное, это низкая инерционность подвесных систем, возможность более быстрого реагирования на изменения температуры в помещении и наружной температуры, более быстрый переход системы из дежурного режима в рабочий.

Кроме того, использовать подвесные панельно-лучистые системы рекомендуется, если реконструкция системы отопления происходит без остановки производства – у нас было много таких случаев. Такие системы можно устанавливать на самой поздней стадии готовности объекта, причем их монтаж происходит значительно быстрее и проще.

Также подвесные потолочные отопительные панели можно использовать в системах с более высоким рабочим давлением и более высокой рабочей температурой, когда в этом есть необходимость (до 12 атм и +140 °С соответственно).

Какова минимальная и максимальная высота помещения при использовании потолочной панельно-лучистой системы отопления (в т. ч. в помещениях с постоянным пребыванием людей)?

Максимальная высота установки водяной панельно-лучистой системы зависит от теплопотерь помещения, параметров теплоносителя и свободной площади потолка, на которой можно разместить панели, которые при заданном температурном напоре обеспечат необходимую теплоотдачу. Поскольку воздух прозрачен для теплового излучения, панели эффективны на очень большой высоте. У нас есть объекты, где панели установлены на высоте более 20, 30 и даже 40 м.

Что касается минимальной высоты установки таких систем, необходимо помнить, что чем ниже вы устанавливаете панели и чем большую площадь потолка они занимают, тем более низкие параметры теплоносителя нужно принимать. Например, для высоты подвеса 2,5–3,0 м это примерно +35/+30. +45/+35 °С. Более подробную информацию об определении максимально допустимой температуры поверхности панелей в помещениях с постоянным пребыванием людей можно найти в разделе «Требования к комфортности тепловой обстановки в помещении при отоплении панелями» в рекомендациях АВОК «Системы отопления с потолочными подвесными излучающими панелями». Для практических нужд проектирования ограничения по максимальной температуре поверхности панели в зависимости от высоты установки панельно-лучистой системы представлены в нашей технической документации для каждой модели панелей.

Какие требования предъявляются к теплоносителю?

Параметры теплоносителя должны удовлетворять требованиям в отношении допустимых показателей pH (оптимальный 7–8), а также требованиям, приведенным в «Правилах технической эксплуатации электрических станций и сетей Российской Федерации», в том числе и в отношении содержания кислорода (не более 20 мкг/дм 3 ), жесткости и содержания железа.

Какое давление теплоносителя/холодоносителя выдерживают панели?

Это зависит от конкретной модели панелей, материалов и технологии производства, а также от выбранной техники соединения панелей и присоединительной арматуры. Диапазон по максимальной рабочей температуре от +50 до +140 °С, по максимальному рабочему давлению – от 4 до 12 атм. В любом случае можно выбрать подходящее решение.

Как осуществляется регулирование теплоотдачи панельных систем?

Поскольку теплоносителем является вода или водно-гликолевая смесь, регулирование теплоотдачи осуществляется точно так же, как и систем водяных радиаторов, – качественно и количественно.

Возможно ли применение панельно-лучистой потолочной системы отопления в качестве единственной системы отопления? К примеру, в загородном доме для круглогодичного проживания, в климатических условиях Московской области.

В основном водяные панельно-лучистые системы как раз и применяют в качестве единственной системы отопления. Для отопления загородного дома мы все-таки рекомендуем использовать радиаторы или систему «теплый пол», если систему планируют использовать только в режиме отопления. Применение потолочных панельно-лучистых систем в частных домах экономически оправданно только при использовании системы и в режиме охлаждения.

Какие параметры холодоносителя следует принимать для панельно-лучистой системы охлаждения?

«Холодные потолки» – это так называемая высокотемпературная – и, соответственно, энергоэффективная – система охлаждения. В Европе уже выработана методика проектирования таких систем. Она отличается от стандартной методики воздушного охлаждения. Температуру подающей магистрали принимают обычно +15. +16 °С, обратной +18. +19 °С, поэтому такие системы эффективны в комбинации с тепловыми насосами в режиме пассивного охлаждения, а также в системах с использованием грунтовых вод без доохлаждения. Расчетная температура также отличается от той, к которой мы привыкли, и составляет +25. +26 °С, а не +20. +22 °С. Лучистый теплообмен происходит более интенсивно, чем конвективный, и эффект отвода тепла от людей более сильный, поэтому при температуре +22 °С люди уже чувствуют дискомфорт, проще говоря, мерзнут.

Как решается вопрос предотвращения образования конденсата на охлажденных поверхностях?

Методика проектирования панельно-лучистого охлаждения всегда предусматривает предотвращение образования конденсата с помощью установки датчика точки росы на подающем трубопроводе. Когда датчик срабатывает, температура поверхности панелей увеличивается либо за счет снижения расхода холодоносителя, либо путем повышения его температуры за счет подмеса из обратного трубопровода.

Читайте также:  Конвектор с 2 выходами для триколора

Кроме того, когда проектируется система панельно-лучистого охлаждения, необходимо предусмотреть систему вентиляции с возможностью осушения воздуха. Тогда система будет работать более эффективно, а уровень комфорта будет выше.

Можно ли в качестве теплоносителя применять водно-гликолевые смеси?

Можно. Допустимо содержание гликоля до 50 %. Необходимо также скорректировать площадь панельно-лучистой системы с учетом уменьшения мощности системы. Соответственно, несколько отличаться будут и потери давления.

Системы панельно-лучистого отопления (схемы систем, устройство, достоинства и недостатки, область применения).

Лучистым, как уже известно, называют способ отоп­ления, при котором радиационная температура помещения превышает температуру воздуха. Для получения лучистого отопления применяют греющие панели — отопительные приборы со сплошной гладкой нагревательной поверхно­стью. Греющие панели совместно с теплопроводами обра­зуют систему панельно-лучистого отопления. При исполь­зовании такой системы в помещениях создается темпера­турная обстановка, характерная для лучистого способа отопления.

Итак, условиями, определяющими получение лучистого отопления в помещении, служат применение панелей и выполнение неравенства

где tR— радиационная температура (осредненная температура поверхности всех ограждений — наружных и внутренних — и отопительных панелей, обращенных в помещение); tB — темпера­тура воздуха помещения.

При панельно-лучистом отоплении помещение обогре­вается главным образом за счет лучистого теплообмена между отопительными панелями и поверхностью ограж­дений. Излучение от нагретых панелей, попадая на поверх­ность ограждений и предметов, частично поглощается, частично отражается. При этом возникает так называемое вторичное излучение, также в конце концов поглощаемое предметами и ограждениями помещения.

Рис.11.1 Схема размещения отопительных элементов в ограждающих конструкциях здания.

1 – в полу, 2- в наружной стене, 3 – в перегородке, 4 – в перекрытии

Особенности систем панельно-лучистого отопления

В системах панельно-лучистого отопления в качест­ве нагревательной поверхности используют искусствен­но обогреваемые стены, потолок, пол или специально изготовленные панели приставного и подвесного типа.

Для получения таких поверхностей теплоотдачи в указанных конструкциях заделывают трубы небольшого диаметра (рис. 11.1), прокладывают электрический ка­бель или устраивают воздуховоды и каналы.

Принципиальное отличие панельно-лучистого отоп­ления от обычного водяного и парового с отопительны­ми приборами, размещаемыми под окнами, заключает­ся в том, что помещения обогреваются главным образом теплотой, излучаемой нагретыми поверхностями ограж­дающих конструкций или специальных панелей. При нагревании потолка только 20—25 % теплоты отдается помещению путем конвекции.

Критерием эффективности любой системы панельно-лучистого отопления в гигиеническом отношении слу­жит средняя поверхностная (средневзвешенная) темпе­ратура всех ограждений помещения, определяемая по следующей упрощенной формуле:

tR=

где tпт, *н.с, *ок, *в.с, *пл — средняя температура потолка, наружных стен со стороны помещения, окон, внутренних стен и пола, °С; F— соответствующие поверхности ограждений, м 2 ,

Для нормального теплового ощущения в зимнее вре­мя средневзвешенная температура в жилом помещении должна составлять

Кроме того, должно выполняться второе условие комфортности. Под системой панельно-лучистого отоп­ления следует понимать такую систему, при которой средневзвешенная температура выше температуры воз­духа, в то время как при конвективной системе отопле­ния (посредством конвекторов или радиаторов) средне­взвешенная температура ограждений всегда ниже тем­пературы воздуха, так как ограждения обогреваются в основном этим же воздухом.

В качестве теплоносителя в системах панельно-лучи­стого отопления СНиП 2.04.05—86 рекомендуется вода, при которой коррозия стальных труб меньше, чем при теплоносителе — паре. Системы панельно-лучистого отопления кроме очевидных гигиенических преимуществ перед другими системами имеют следующие технико-экономические достоинства: совмещение

нагревательных элементов со строительными конструкциями; сни­жение расхода металла и трудовых затрат на монтаж; улучшение интерьера помещения.

К специфическим недостаткам панельно-лучистого отопления относятся следующие: непосредственное об­лучение мебели и других предметов, находящихся в по­мещении, что сопряжено с возможностью их порчи; большая тепловая инерция систем, осложняющая регу­лирование теплоотдачи панелей; опасность засоров труб и сложность их ликвидации.

По конструктивному признаку системы панельно-лу­чистого отопления подразделяют на следующие основ­ные виды: панельные стеновые системы отопления; системы отопления нагретым полом; системы лучистого потолочного отопления; системы отопления с подвесными излучающими панелями. Допустимая средняя температура поверхности подоконных панелей – до 95 0 С, стеновых панелей в зоне выше 1 м над уровнем пола – 45 0 С, потолка при высоте помещений до 3 м – 30 0 С, пола – 25-28 0 С.

  1. Нагревательные приборы систем панельно-лучистого отопления.

Дата добавления: 2015-04-15 ; просмотров: 2679 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Системы лучистого отопления и охлаждения

В последнее время в связи со строительством офисов больших площадей со свободной планировкой рабочих пространств появилась необходимость в применении систем отопления и охлаждения помещений, позволяющих трансформировать системы обеспечения микроклимата так же свободно, как и изменять планировку офиса. Появление современных стеклопакетов с высоким сопротивлением теплопередаче позволило убрать отопительные приборы из-под оконных проемов; требования к качеству микроклимата помещения и к энергосбережению возросли. Системы лучистого отопления и охлаждения получили новый виток развития. Теплые полы и излучающие панели, охлаждающие потолки и «балки» – все это не только современная альтернатива традиционным системам отопления, охлаждения и кондиционирования воздуха, но и оборудование, имеющее в своей основе иной принцип обеспечения комфорта в помещении, когда нагрев или охлаждение воздуха происходит за счет не только конвекции, но и излучения.

Достаточно распространенные в странах Северной Европы системы лучистого отопления и охлаждения обозначили отход от традиционных водяных и воздушных систем и сегодня представляют оригинальную европейскую методику. Хотя у данных систем тоже есть свои недостатки, они обеспечивают комфорт, в большей степени соответствующий характеру теплообмена человека.

Имеющиеся сегодня инженерные решения на основе систем лучистого отопления и охлаждения позволяют более рационально, по сравнению с традиционными, выстраивать архитектурный облик здания и интерьеры помещений. Теплоноситель (как правило, вода), используемый в таких системах, имеет умеренную температуру как для отопления, так и для охлаждения, отсюда оптимальные условия для работы конденсационных котлов и тепловых насосов, солнечных коллекторов, высокий уровень энергетической эффективности и экологической безопасности.

Часть 1. Отопление излучающими панелями

При использовании систем лучистого отопления средняя температура в помещении обычно выше, чем температура воздуха, т. к. передача тепла осуществляется нагретыми поверхностями пола, потолка, стен большой площади либо их сочетанием.

Вследствие большой площади теплоотдающих поверхностей их температура близка к требуемой температуре в помещении и нет необходимости использовать воздух в качестве дополнительного способа нагрева помещения. Равные условия комфорта в помещении можно обеспечить при более низкой температуре воздуха, сократив расход тепла на подогрев вентиляционного воздуха. Основное отличие между традиционным и лучистым отоплением как раз и состоит в температуре воздуха. В жилом помещении с лучистым отоплением она всегда ниже в среднем на 2 °C: понижение температуры всего на 1 °C позволяет снизить потребление энергоресурсов в среднем до 7 %. При этом должно быть понятно, что величина экономии растет пропорционально отапливаемым объемам. То есть в помещениях очень большой площади – соборах, музеях и пр. – экономия энергии достигает 40–50 %. Если к тому же системы лучистого отопления использовать в комбинации с современными генераторами тепла, результаты по параметрам сезонной производительности просто потрясающие.

Читайте также:  Расчет объема здания для расчета нагрузки по отоплению

Что касается материалов, применяемых для изготовления излучающих панелей, на первом месте стоит медь – по показателям теплопроводности, меньшей высоте прокладки, высокой термостойкости и отсутствию проблем с осмосом. Пластмассовые материалы (полиэтилен, полибутилен и др.), в свою очередь, очень технологичны при монтаже, что позволяет значительно снизить его стоимость.

Рисунок 1.

Вертикальное распределение температуры от теплого пола близко к идеальному

Отопление теплыми полами

Отопление теплым полом обеспечивает практически безградиентное распределение температуры по высоте человека, при этом к ногам поступает тепла чуть больше, чем к голове.

Основным параметром при проектировании систем с теплым полом является температура его поверхности: известно, что при превышении определенных значений вероятно возникновение проблем физиологического характера, касающихся кровообращения нижних конечностей. По этой причине международными стандартами установлена максимальная температура теплого пола 29 °C при температуре внутреннего воздуха 20 °C. Для участков пола, где нахождение людей маловероятно, допускается максимальная температура поверхности пола 35 °C, в туалетных и ванных комнатах эта температура не может превышать 33 °C при температуре внутреннего воздуха 24 °C.

Рисунок 2.

Теплоотдача теплого пола. В целях предотвращения проблем с кровообращением нижних конечностей человека температура поверхности теплого пола не может превышать 29 °C

Теплоотдача пола с постоянной равномерной температурой рассчитывается по следующей формуле:

где q – тепловой поток поверхности пола, Вт/м 2 ;

tп – средняя температура поверхности пола, °C;

tв – средняя температура воздуха, °C.

Если tп = 29 °C и tв = 20 °C, тепловой поток составит:

q = 8,92 х (29 – 20) 1,1 = 100 Вт/м 2 .

Схема регулирования температуры воды на подаче в контур излучающей панели. Рекомендуется для систем малой и средней площади

Одной из причин, по которым в 1950-е и 1960-е годы отопление теплым полом было признано недостаточно надежным, были проблемы с регулированием, обусловленные, главным образом, высокой тепловой инерцией системы, что плохо подходило для обеспечения регулирования температуры воздуха.

Рисунок 4.

Теплоотдача излучающей панели в стене. Поскольку пользователи здесь непосредственно не контактируют с излучающей поверхностью панели, допускается более высокий уровень температуры поверхности, чем у теплого пола

Сегодня в результате улучшения теплозащиты зданий, оптимизации геометрической раскладки труб и практически повсеместного наличия теплоизоляции под цементной стяжкой обогревающие полы могут давать очень неплохие результаты по обеспечению регулирования температуры воздуха, вполне сопоставимые с параметрами других систем отопления.

Рисунок 5.

Модульная панель, выполненная из меди, для установки под штукатурку.

Система практична и монтируется в кратчайшие сроки

Для организации эффективного регулирования обогревающих полов необходим грамотный расчет циркуляционных колец, при котором в каждую излучающую панель (циркуляционное кольцо) должен поступать расчетный расход теплоносителя. Как правило, регулирование температуры теплого пола состоит в регулировании температуры воды на подаче в контур в зависимости от температуры наружного воздуха. Такое регулирование далеко не всегда может обеспечить комфортные условия в отдельных помещениях, поскольку центральное регулирование по датчику температуры наружного воздуха не позволяет учесть внутренние тепловыделения в отдельных помещениях. Более эффективно сочетание центрального регулирования с местными термоэлектрическими клапанами, устанавливаемыми на каждую панель и получающими сигнал от комнатного термостата. В этом случае центральное регулирование обеспечивает подачу теплоносителя с оптимальной, в соответствии с погодными условиями, температурой, а комнатные термостаты обеспечивают комфортные условия в каждом помещении с учетом внутренних тепловыделений.

Рисунок 6.

Теплоотдача потолочных излучающих панелей. Для жилых помещений рекомендуется перепад 10 °C между поверхностью активных элементов и температурой воздуха в помещении. Рабочие параметры и ограничения аналогичны параметрам теплых полов

Излучающие панели в стенах

Излучающие панели в стенах применяются, как правило, дополнительно к другим системам отопления, но могут использоваться и в качестве самостоятельной системы.

Поскольку пользователи не имеют непосредственного контакта с нагретой поверхностью панели, действующие европейские нормативы допускают температуру поверхности более 30 °C. Теплоотдача панелей выше, чем у обогревающих полов, и варьируется от 160 до 200 Вт/м 2 .

Монтаж панелей

Монтаж под штукатурку

Модульные блоки змеевика панелей монтируются непосредственно на стену обычным крепежом и покрывают штукатуркой слоем толщиной около 3,5 см.

Монтаж под облицовочные панели

Модульные блоки змеевика панелей монтируются на стену и закрываются гипсокартоном либо иной жесткой облицовкой.

Блоки змеевика крепятся посредством вертикальных либо горизонтальных осевых опорных штанг на слой теплоизолирующего материала, покрытого, как правило, алюминиевым листом.

Заделка в армированные бетонные панели

Модульные блоки змеевика крепятся к металлической арматуре, затем заливаются бетоном по традиционному методу. Готовая панель оставляется открытой либо штукатурится.

Температурная динамика в помещениях, оборудованных обогревающими панелями в стенах, достаточно плавная. Установлено, что при средней температуре 40 °C подаваемой в змеевик воды и температуре воздуха в помещении в пределах 19–20 °C доля излучения в теплоотдаче панелей составляет 80–85 %, доля конвекции – 15–20 %.

Другая особенность панелей в стенах – низкая тепловая инерция, которая (будучи обусловленной особенностями установки) в любом случае оказывается ниже, чем у теплых полов. Это обстоятельство приобретает особое значение для объектов, где теплоснабжение работает в переменном режиме. Следует, однако, признать, что в этом вопросе есть одна немаловажная особенность, которая оказывает влияние на выбор в пользу того или иного решения – в жилых помещениях, обставленных мебелью, эффективность обогревающих панелей в стенах существенно снижается.

Потолочные излучающие панели

Первые излучающие панели, которые появились на рынке отопительных систем, были потолочными.

В силу отсутствия прямого контакта излучающих панелей с человеком для них (как и для обогревающих панелей в стенах) допустимы более высокие значения температуры поверхности, нежели для теплых полов, что позволяет обеспечить достаточно высокую теплоотдачу, не создавая особого дискомфорта для пользователей.

Очевидно, что допустимые максимальные значения температуры поверхности для потолочных панелей в значительной степени обусловлены высотой потолков. Для жилых помещений со стандартной высотой потолков рекомендуется перепад 10 °C между температурой поверхности панели и температурой воздуха в помещении.

Высокая тепловая инерция самых первых отопительных систем этого типа была вызвана тем обстоятельством, что панели встраивались в бетонные междуэтажные перекрытия. Подвесные излучающие потолки модульного типа отличаются низкой тепловой инерцией, простотой установки и – что немаловажно – чрезвычайной легкостью и безопасностью доступа для обслуживания.

Распределение температуры по вертикали в режиме отопления показывает, что излучающие потолки подходят скорее для охлаждения помещений в летний период. Как бы там ни было, системы такого рода представляют собой добротный функциональный компромисс между летним охлаждением и зимним отоплением и особенно подходят для предприятий сферы услуг, где модульность подвесных потолочных конструкций обеспечивает:

— неплохую гибкость, поскольку используемые соединения позволяют без труда реконструировать систему в случае перепланировки помещений;

— возможность интеграции других типов систем (освещения, противопожарной системы и пр.) без изменения внешнего вида и нарушения функциональности установленных панелей.

Заключение

В прошлом негативное влияние определенных факторов, а точнее поверхностный подход к решению функциональных проблем, свойственным излучающим панелям, приводило к известному скептицизму в отношении систем лучистого отопления. Однако сегодня – в связи с улучшением теплоизоляции зданий и системы регулирования температуры воздуха – системы лучистого отопления переживают второе рождение.

Большие поверхности систем лучистого отопления, нагреваемые до невысоких температур, обладают целым рядом преимуществ, среди которых выделяются:

— высокий тепловой комфорт;

— лучшее качество воздуха;

— практически полное отсутствие воздействия на окружающую среду;

То обстоятельство, что монтаж таких систем осуществляется, как правило, специализированными организациями, которые гарантируют функциональные проектные параметры, является залогом непрерывного роста числа излучающих панелей в сдаваемых объектах жилищного строительства.

В статье использованы материалы:

1. G. Redondi. Il riscaldamento a pannelli radianti // Costruire Impianti. 2003. № 1.

2. Ф. А. Миссенар. Лучистое отопление и охлаждение. М.: ГСИ, 1961.

3. В. Н. Богословский. Строительная теплофизика. М.: ВШ, 1970.

Системой обогрева – охлаждения в помещении должна быть создана благоприятная для человека тепловая обстановка. Самочувствие и работоспособность человека зависят от состояния физиологической системы терморегуляции организма, которая нормально функционирует при температуре около 36,6 °C. Для поддержания постоянной температуры организм человека непрерывно вырабатывает тепло, которое отдается окружающей среде. В зависимости от физиологического и эмоционального состояния человека, его одежды, возраста, вида выполняемой работы и индивидуальных особенностей организма количество тепла, выделяемого в окружающую среду, может быть различным.

Тепловой комфорт и энергетический баланс человека

Общий тепловой (энергетический) баланс человека (Вт) характеризуется следующим уравнением:

где D Qч – избыток (накопление) или недостаток тепла в организме;

Qч – теплопродукция организма (общее количество энергии, вырабатываемой организмом);

Q p ч – расход тепла (энергии) на механическую работу;

Q к ч – составляющая теплообмена человека конвекцией;

Q л ч – составляющая теплообмена человека излучением;

Q т ч – тепловая энергия, обусловленная теплообменом со средой посредством теплопроводности;

Q и ч – составляющая теплообмена человека за счет затрат тепла на испарение влаги;

Q ф ч – тепло, затрачиваемое на физиологические процессы (нагрев вдыхаемого воздуха, естественный обмен веществ и пр.).

Основным способом передачи тепла является теплообмен между кожными покровами человека и окружающей средой посредством теплопроводности, конвекции, излучения и потоотделения (поскольку впоследствии пот испаряется).

Посредством теплопроводности тепла передается настолько мало, что в общем расчете теплового баланса его можно не учитывать, поскольку такие поверхности тела человека, как ладони рук или ступни ног, чрезвычайно малы по сравнению с общей площадью тела, а в тех случаях, когда температура поверхности в точке контакта существенно отличается от температуры тела человека, как правило, используются защитные предметы одежды.

Общая теплопродукция организма Qч в основном зависит от степени тяжести выполняемой человеком работы.

Расход тепла на механическую работу Q p ч обычно составляет от 5 до 35 % от дополнительных тепловыделений, связанных с выполнением физической или умственной работы. Например, для работы средней тяжести, выполняемой стоя (Qч = 300 Вт), этот процент равен 20 и Q p ч = 0,2 (Qч – 100) = 40, где 100 Вт – тепловыделение в покое. Тепло, затрачиваемое на физиологические процессы, Q ф ч не превосходит 11,6 Вт, и в расчетах его можно не учитывать.

Если теплопродукция организма и потери тепла не сбалансированы, то в организме может наблюдаться накопление тепла D Qч, связанное с повышением температуры, или его дефицит, приводящий к переохлаждению организма. Система терморегуляции организма позволяет в определенных пределах обеспечивать баланс продуцируемого и теряемого теплом тела. Однако возможности терморегуляции весьма ограничены.

Значения коэффициента А в зависимости от скорости движения воздуха
Скорость воздуха, м/с А
≤ 0,2 0,5
0,2 – 0,6 0,6
0,6 – 1,0 0,7

В пределах значений температуры среды, соответствующих комфортным условиям, теплообмен происходит главным образом конвекцией и излучением. В условиях теплового комфорта теплообмен человека происходит посредством:

— скрытого тепла (потоотделения и дыхания) – 21 %;

Таким образом, основными параметрами среды в определении тепловлажностного комфорта являются: температура, влажность, подвижность воздуха и средняя температура окружающих поверхностей помещения.

Человек ощущает не столько температуру воздуха, сколько совокупность температур воздуха Тв и радиационную температуру помещения TR, что иначе называется «температура помещения» Tп.

В умеренной тепловой среде или при температуре (TR – Tв) j в воздуха в помещении, температурами поверхностей Тi, обращенных в помещение, расположение (относительно человека) и размеры которых определяют радиационную температуру помещений TR. Комфортное сочетание этих показателей соответствует таким оптимальным метеорологическим условиям, при которых сохраняется равновесие, отсутствует напряжение в процессе терморегуляции; в подавляющем большинстве случаев комфортное сочетание этих показателей положительно оценивается находящимися в помещении людьми. Допустимыми считаются такие метеорологические условия, при которых возникает некоторая напряженность процесса терморегуляции и может иметь место небольшая дискомфортность тепловой обстановки.

Первое условие комфортности

Комфортной будет такая общая температурная обстановка в помещении, при которой человек, находясь в середине помещения, будет отдавать все явное тепло, не испытывая перегрева или переохлаждения. На теплоощущения человека в определенной мере влияют радиационная температура, температура воздуха.

Второе условие комфортности

Это условие ограничивает интенсивность теплообмена при положении человека около нагретых и охлажденных поверхностей. Определяющей величиной в этом случае является интенсивность лучистого теплообмена (радиационный баланс на наиболее невыгодно расположенной и наиболее чувствительной к излучению части поверхности тела человека). К радиационному нагреву наиболее чувствительной оказывается поверхность головы. Радиационный баланс должен быть таким, чтобы каждая часть поверхности головы отдавала излучением окружающим поверхностям не менее 11,6 Вт/м 2 . При расположении излучающей панели в потолке наиболее невыгодным (а поэтому расчетным) будет положение человека непосредственно под центром панели. При расположении панели в стенах за расчетное принимают положение человека на расстоянии 1 м от нагретой поверхности.

Поделиться статьей в социальных сетях:

Читайте также:  Шумит батарея отопления или стояк
Оцените статью