- Как сделать тепловой насос своими руками из холодильника
- Принцип работы и составные части теплового насоса
- Принцип действия
- Как сделать тепловой насос своими руками
- Компрессор
- Конденсатор теплового насоса
- Из чего и как своими руками можно сделать испаритель теплового насоса
- Терморегулирующий клапан (вентиль) (ТРВ)
- Сборка системы
- Изготовление и монтаж
- Варианты внешних контуров теплового насоса
- Источник тепловой энергии – скважина
- Источник тепла – грунт на участке
- Внешний контур в воде
- Затраты и перспективы окупаемости
- Другие виды тепловых насосов
- Выбор вида теплонасоса
Как сделать тепловой насос своими руками из холодильника
Принцип работы и составные части теплового насоса
В принципе, работа теплового насоса представляет собой совместное функционирование трех замкнутых контуров, которые взаимодействуют между собой:
- Первый, по которому циркулирует теплоноситель, забирающий тепловую энергию из низкотемпературной окружающей среды (почвы, воды, воздуха);
- Второй, в котором циркулирует жидкость с низкой температурой испарения (например, фреон), забирает эту энергию, с помощью процессов испарения и конденсации увеличивает температуру и отдает тепло третьему контуру;
- Третий контур представляет собой ни что иное, как систему отопления дома (чаще всего теплые полы), он забирает тепловую энергию из конденсатора и отдает помещению.
- По такому принципу работают все тепловые насосы, но в устройствах типа «грунт, вода/вода» в первом и третьем контурах жидкий теплоноситель, в устройствах «воздух/вода» — вместо первого контура наружный воздух, а в устройствах «воздух/воздух» и вместо первого и третьего контуров воздух наружный и помещения соответственно.
Для того чтобы такая система работала необходимы такие основные элементы:
- Испаритель –в котором под воздействием тепловой энергии теплоносителя первого контура , через теплообменник, происходит нагревание и испарение жидкого хладагента (фреона);
- Компрессор, который сжимает парообразный хладагент (при этом происходит выделение тепловой энергии);
- Конденсатор, в котором теплый сжатый хладагент с помощью теплообменника отдает свою энергию теплоносителю третьего контура, а сам конденсируется (превращается в жидкость).
- Терморегулирующий вентиль или клапан (ТРВ).
Все эти элементы соединены между собой герметичным трубопроводом второго контура. Испаритель, кроме того, должен иметь возможность подсоединения к первому контуру, а конденсатор – к системе отопления дома.
Рис. 1 Основные элементы теплового насоса
Принцип действия
Создать теплонасос своими руками не так сложно, как может показаться. Прежде чем приступать к работе по созданию отопительной системы, следует разобраться с особенностями ТП:
- агрегат этого типа не может самостоятельно производить тепловую энергию, в отличие от отопительного котла;
- для работы установки необходимо электрическая энергия, которая потребляется блоком управления, компрессором, циркуляционными насосами, а также вентиляторами;
- в основе работы ТН находится цикл Карно, также применяемый в сплит-системах и кондиционерах.
Установка этого типа получила название «насос», так как способна «выкачивать» теплоэнергию из грунта, воды или воздуха. Каждое вещество, если его температура выше отметки в 273 градуса (абсолютный ноль), содержит тепло. Благодаря новейшим технологиям можно изымать теплоэнергию из воздуха при его температуре не ниже -30°С, а также воды и грунта — от 2 °C.
Рабочая жидкость цикла Карно — фреон. Этот газ закипает при отрицательной температуре. После испарения хладагент в теплообменнике конденсируется, забирая в этот момент теплоэнергию из окружающей среды, а затем доставляет ее в другое место. Принцип действия ТН напоминает схему кондиционера в режиме обогрева:
- Жидкий фреон проходит по наружному испарителю. Забирая тепло из внешней среды, хладагент закипает и испаряется.
- Перейдя в газообразное состояние, фреон достигает компрессора, предназначенного для нагнетания определенного показателя давления. В результате возрастает точка кипения жидкости, и она конденсируется при более высоких значениях температуры.
- Во внутреннем теплообменнике рабочая жидкость теплового насоса вновь переходит в жидкую форму и передает теплоэнергию воде, выполняющей роль теплоносителя.
- Затем хладагент последовательно попадает в ресивер и дроссель. Показатель давления фреона падает, и начинается новый цикл.
В бытовых ТН и кондиционерах используются различные виды терморегулирующей арматуры, необходимой для снижения давления рабочего вещества установки во время прохождения через испаритель. Если делать своими руками тепловой насос для отопления дома, то в качестве регулятора лучше использовать терморегулирующий вентиль.
Как сделать тепловой насос своими руками
Для того, чтобы сделать тепловой насос своими руками необходимо изготовить основные его элементы, речь о которых шла выше, или приспособить под них подходящие б/у агрегаты, а также соединить их в одну систему.
Компрессор
Компрессор для теплового насоса самостоятельно изготовить невозможно. Поэтому, лучше всего использовать новый или в хорошем состоянии б/у от кондиционера или сплит-системы. Найти такой компрессор можно в мастерских по ремонту кондиционеров и холодильного оборудования.
Компрессор для самодельного теплового насоса от сплит системы
Как вариант, если не найдется агрегата нужной мощности, вместо одного компрессора можно установить каскад из двух. Чтобы не ошибиться, перед покупкой, лучше всего, проконсультироваться в квалифицированного специалиста по холодильному оборудованию.
Конденсатор теплового насоса
Конденсатор теплового насоса из стального бака (нержавейка)
Конденсатор может представлять собой стальной корпус — герметический бак в котором располагается теплообменник из медной трубки. В качестве корпуса лучше всего использовать бак из нержавейки объемом 100-150 л.
Медную трубку для теплообменника конденсатора (фреоновода) можно взять диаметром ½ дюйма (12,7 мм). А так, как длина ее должна быть достаточно большой, для обеспечения достаточной площади теплообмена, то ее необходимо будет свернуть в виде спирали, используя для этого любой цилиндрический предмет подходящего диаметра. После сворачивания витки спирали, для обеспечения одинакового расстояния между ними, можно закрепить с двух сторон на алюминиевых рейках или уголках.
Для того, чтобы рассчитать площадь медного теплообменника можно использовать формулу:
S=kW/0,8(t1-t2),
- S — требуемая площадь поверхности медного теплообменника (трубки), м2;
- kW — тепловая мощность системы (с компрессором), кВт;
- t1, t2 — температура воды на выходе и входе из конденсатора (например, для теплого пола это может быть 35 и 30°С соответственно).
Зная необходимую площадь и разделив ее на диаметр трубки (в метрах), можем узнать необходимую ее длину.
Медную трубку можно использовать с толщеной стенки 0,8-1,2 мм, специальную «холодильную» или обычную сантехническую.
Медная трубка конденсатора, скрученная в спираль
Лучше если толщина стенок медной трубки для теплообменника конденсатора будет не меньше 1 мм. В этом случае при сворачивании в спираль она не будет сминаться, особенно при отсутствии навыков такой работы (для того, чтобы такая трубка не сминалась, ее предварительно можно заполнить песком, закрыв концы деревянными или резиновыми пробками, а впоследствии продуть компрессором и промыть).
Для того, чтобы вмонтировать спираль из медной трубки в стальной бак, последний необходимо разрезать на две половины и просверлить в нем отверстия для выхода концов медной трубки и подвода воды из системы отопления. В местах входа и выхода воды следует приварить патрубки с резьбой ½ дюйма. Места выхода медных трубок можно герметизировать с помощью сантехнических переходов с обжимными гайками.
После монтажа медной спирали бак сваривается по месту разреза. Если у вас нет достаточной квалификации, то сварочные работы лучше поручить опытному сварщику. Изготовленный конденсатор устанавливается вертикально: в этом случае хладагент, конденсируясь будет уходить вниз и выходить из конденсатора без пузырьков. Снаружи бак и подводящие трубы необходимо изолировать с помощью минваты и фольги или пенофольгированного материала.
Из чего и как своими руками можно сделать испаритель теплового насоса
Пластиковая бочка для испарителя
Испаритель может представлять собой емкость с циркулирующей в ней водой (поступающей из внешнего контура), в которой размещается теплообменник из медной трубки в котором будет испаряться фреон.
Вариант первый – испаритель в виде бочки. Так как температура жидкости в испарителе относительно низкая, в качестве емкости вполне можно использовать как металлическую, так и пластиковую бочку емкостью 65-125 л. В качестве теплообменника можно использовать медную трубку диаметром ¾ дюйма (19,2 мм) с толщиной стенки 1-1,2 мм, свернув ее в спираль, используя цилиндрический предмет (баллон или др. как и при изготовлении конденсатора). Но в этом случае спираль будет будет больше в диаметре и должна соответствовать диаметру и высоте выбранной бочки. Площадь теплообменной поверхности и, соответственно, длина медной трубки рассчитывается также, как и при изготовлении теплообменника для конденсатора. В корпусе бочки также необходимо сделать отверстия и закрепить сантехнические фитинги для подключения воды и прохода медных трубок.
Спираль из медной трубки для испарителя
Испаритель из пластиковой бочки — вид сверху
Второй вариант теплообменника: труба в трубе, когда трубка с хладагентом помещается в пластиковую трубу, по которой противотоком в турбулентном режиме циркулирует вода – это улучшает теплообмен . Длина такого теплообменника будет соответствовать рассчитанной длине медной трубки и будет достаточно большой (25-40 м) и поэтому он скручивается в спираль такого диаметра, чтобы его удобно было разместить.
Теплообменник «труба в трубе»
Терморегулирующий клапан (вентиль) (ТРВ)
ТРВ также как и компрессор придется покупать готовый, лучше новый, с учетом мощности будущего теплового насоса. При выборе, покупке и монтаже ТРВ лучше всего воспользоваться консультацией специалиста по холодильному оборудованию.
ТРВ — терморегулирующий вентиль (клапан, дросель)
Сборка системы
Сборка теплового насоса предполагает соединение всех его элементов в одну систему. Соединение осуществляется медными трубками, поэтому не обойтись без пайки. Для этого можно использовать кислородную горелку, а если ее нет, то как вариант – комплект для пайки Rotenberg. Лучше брать баллон Максигаз 400 (желтый). Понадобятся еще электроды без содержания серебра (не менее 3 шт.) и, минимум, один с 40% содержанием (вибростойкий) для пайки трубки возле компрессора.
Во время пайки ТРВ нельзя перегревать – нагревать выше 100°С. Можно его корпус во время этой работы завернуть в мокрую тряпку.
Для возможности заправки системы фреоном, к ней также необходимо приварить клапан Шредера, который должен иметь ниппель для подсоединения шланга. Его заблаговременно можно приобрести одновременно с покупкой ТРВ.
При пайке заправочного клапана Шредера из него предварительно необходимо вывернуть ниппель – для предотвращения выхода из строя уплотнителя. Кроме этого, на выходе конденсатора, после термобаллона ТРВ, сверху необходимо припаять трубку выравнивания давления.
После сборки и пайки в готовой системе необходимо создать вакуум, то есть выкачать из нее воздух. Сделать это можно с помощью вакуумного насоса или приспособив для этого компрессор от холодильника.
Для заправки системы фреоном понадобится сам хладагент (около 2 кг) и манометр для контроля давления, лучше всего, специальный фреоновый, но если такового не найдется можно использовать манометр для насосной станции.
Работы по сборке и особенно по заправке системы фреоном, а также ее регулированию требуют особых навыков, поэтому этот этап лучше выполнять, предварительно проконсультировавшись с опытным холодильщиком или вообще эту работу поручить специалисту.
Для запуска копрессора понадобится пусковое реле, рассчитанное на пусковой ток не менее 40 А. В электрическом щитке для теплового насоса необходимо выделить отдельный автомат мощностью 16 А.
В конденсаторе и испарителе необходимо также установить термореле, которые будут отключать систему: реле на выходе воды из конденсатора – при достижении максимального значения (обычно 35-40°С), а реле на выходе воды из испарителя – на 0°С – для предотвращения ее замерзания.
В дальнейшем, необходимо будет с помощью соответствующих фитингов и запорной арматуры подсоединить: испаритель к внешнему контуру, а конденсатор — к системе отопления дома (чаще всего — к теплым полам), заполнив при этом их водой или другой жидкостью, которая используется в них в качестве теплоносителя.
Изготовление и монтаж
Сделать тепловой насос не сложно, если есть детали — компрессор (его можно вытащить из сломанного кондиционера), медные трубки (для контура) и бак объемом в сто литров.
Изготавливают насос по такому алгоритму:
- компрессор закрепляется на стене;
- из труб делается змеевик (чтобы его сделать, нужно трубы обмотать вокруг емкости подходящей формы);
- бак режется пополам, внутрь него помещается змеевик и заваривается;
- в емкости оставляется несколько отверстий, через которые трубы змеевика выводятся наружу;
- для изготовления испарителя используют бочку из пластика, идентичного с баком размера, в нее заводят трубы внутреннего контура;
- устанавливаются трубы (монтажные схемы тёплых водяных полов в квартире) из ПВХ, транспортирующие нагретую воду;
- самостоятельно заправлять агрегат фреоном не рекомендуется, лучше доверить это действие специалисту.
Стоимость работ в различных регионах нашей страны может разительно отличаться. Кроме этого стоимость работы и насоса зависят от его типа и системы теплоснабжения.
Для того, чтобы иметь представление о порядке цифр за данную услугу, рассмотрим несколько предложений из разных регионов без учета стоимости прочего оборудования системы теплоснабжения здания.
- В г. Санкт-Петербурге монтаж теплового насоса, вне зависимости от его типа, обойдется Заказчику в сумму от 35000,00 рублей;
- В г. Москва монтажные организации, вне зависимости от типа теплового насоса, готовы выполнить работы «под ключ» за сумму свыше 45000,00 рублей;
- В г. Краснодар монтаж теплового насоса будет стоить от 40000,00 рублей.
- Если же говорить о монтаже систем отопления с использованием тепловых насосов, то средние цены на комплекс работ с учетом стоимости оборудования выглядят следующим образом:
ЧИТАТЬ ДАЛЕЕ: Вентиляция погреба: пошаговая инструкция
A) Монтаж геотермальных бытовых тепловых насосов:
- Мощностью – 4-5 кВт (50 – 100 м²) – от 130000,00 до 280000,00 рублей;
- Мощностью – 6-7 кВт (80 – 120 м²) – от 138000,00 до 300000,00 рублей;
- Мощностью – 8-9 кВт (100 – 160 м²) – от 160000,00 до 350000,00 рублей;
- Мощностью – 10-11 кВт (130 – 200 м²) – от 170000,00 до 400000,00 рублей;
- Мощностью – 12-13 кВт (150 – 230 м²) – от 180000,00 до 440000,00 рублей;
- Мощностью – 14-17 кВт (180 – 300 м²) – от 210000,00 до 520000,00 рублей.
B) Стоимость монтажа воздушных тепловых насосов:
- Мощностью до 6,0 кВт (50 – 100 м²) – от 110000,00 до 215000,00 рублей;
- Мощностью до 9,0 кВт (80 – 120 м²) – от 115000,00 до 220000,00 рублей;
- Мощностью до 12,0 кВт (100 – 160 м²) – от 120000,00 до 225000,00 рублей;
- Мощностью до 14,0 кВт (130 – 200 м²) – от 127000,00 до 245000,00 рублей;
- Мощностью до 16,0 кВт (150 – 230 м²) – от 130000,00 до 250000,00 рублей;
- Мощностью до 18,0 кВт (180 – 300 м²) – от 135000,00 до 255000,00 рублей.
Варианты внешних контуров теплового насоса
Внешний контур может представлять собой трубопровод-теплообменник, который забирает тепло из скважины, почвы или водоема. Каждый из этих вариантов имеет свои особенности, преимущества и недостатки, как при монтаже, так и при эксплуатации. Поэтому рассмотрим их подробнее.
Источник тепловой энергии – скважина
Для того, чтобы использовать такой источник тепла, необходимо пробурить скважину (одну глубокую или несколько мелких) или использовать уже имеющуюся. Считается, что из одного погонного метра скважины можно получить 50-60 Вт тепловой энергии. Поэтому для 1 кВт мощности теплового насоса потребуется около 20 м скважины.
Внешний контур теплового насоса в скважине
Преимущество: скважина не занимает много места на участке и отличается большой теплоотдачей.
Недостаток: скважину, особенно глубокую, необходимо бурить с помощью с помощью специальных механизмов или машины.
Источник тепла – грунт на участке
В этом случае трубу внешнего контура необходимо уложить на глубину, превышающую максимальную глубину промерзания в данном районе. При этом может быть два варианта укладки: вынуть весь грунт на определенной площади и уложить трубу в виде зигзагов, а потом засыпать все грунтом или можно уложить трубу в вырытые для этого траншеи.
Тепловой насос «грунт-вода»
Для 1 кВт мощности теплового насоса, в зависимости глубины укладки, плотности и обводненности грунта, может понадобится 35-50 м контура. Минимальное расстояние между трубами контура – 0, 8 м.
Недостатки такого вида внешнего контура:
- для его размещения необходима достаточно большая площадь, на которой впоследствии нельзя будет высаживать деревья или кустарники, а только газон, цветы или однолетние растения;
- большой объем земляных работ.
Внешний контур в воде
Еще один вариант внешнего контура – труба укладывается на дно ближайшего водоема, если он есть рядом с домом. При этом водоем должен быть достаточно глубоким, чтобы не промерзать до дна зимой. Из одного погонного метра такого внешнего контура можно получить максимум около 30 Вт тепловой энергии ( минимум 30 м трубы на 1 кВт мощности теплового насоса). Для того, чтобы уложенный на дно трубопровод не всплывал, на него устанавливается груз – около 5 кг на каждый погонный метр.
Внешний контур теплового насоса в водоеме
Преимущество: нет необходимости бурить скважину или выполнять земляные работы на большой площади.
Главный недостаток такого внешнего контура: не всегда рядом с домом есть подходящий водоем.
Затраты и перспективы окупаемости
Расходы на оборудование и его монтаж в процессе сооружения геотермального отопления зависят от мощности агрегата и от производителя.
Производителя каждый выбирает, руководствуясь собственными соображениями и сведениями о репутации и надежности того или иного бренда. А вот мощность зависит от площади помещения, которое предстоит обслуживать.
В этом рисунке кратко отражена вся суть выгоды, получаемой от применения геотермальной отопительной системы. Именно такое соотношение входящей и исходящей энергии позволяет система сначала быстро окупиться, а потом и экономить средства своего владельца ( )
Если брать в расчет именно мощность, то стоимость тепловых насосов колеблется в следующих диапазонах:
- на 4-5 кВт – 3000-7000 условных единиц;
- на 5-10 кВт – 4000-8000 условных единиц;
- на 10-15 кВт – 5000-10000 условных единиц.
Если к этой сумме мы прибавим затраты, которые нужны на выполнение монтажных работ (20-40%), то мы получим сумму, которая для многих покажется абсолютно нереальной.
Но все эти затраты окупятся за вполне приемлемые сроки. В дальнейшем же вам придется оплачивать лишь незначительные расходы на электричество, необходимое для работы насоса. И это всё!
Из-за недостаточной для обогрева жилых строений эффективности геотермальных систем их используют в качестве дополнения к основным отопительным сетям или сооружают комплексно с двумя и более теплообменниками
Как показывает практика, геотермальное отопление особенно выгодно для домов, общая отапливаемая площадь которых составляет 150 кв. м. За пять-восемь лет все затраты на обустройство систем отопления в этих домах полностью окупаются.
Если геотермальное отопление не особо востребовано среди собственников частных домов, то эффективность гелеосистем уже оценили жители южных регионов. Технология сооружения солнечного отопления достаточна проста, а ее экономичность и практичность подтверждена многолетним опытом использования западными странами и нашими соотечественниками.
Дополнительная информация об альтернативных источниках энергии представлена в этой статье.
Другие виды тепловых насосов
Кроме тепловых насосов, в которых используется тепловая энергия грунта и воды существуют конструкции, в которых используется энергия окружающего воздуха. В принципе, они отличаются тем, что в них отсутствует внешний контур (трубопровод), а роль теплоносителя в испарителе выполняет наружный воздух, нагнетаемый вентилятором. По такому принципу работают сплит-системы — кондиционеры, которые могут работать не только на охлаждение, но и нагрев помещения. Преимуществом таких систем является то, что нет необходимости устраивать внешний контур из трубопровода и укладывать его в грунт, скважину или водоем. Главным же недостатком является невозможность использования при температуре воздуха ниже 0ºС.
Выбор вида теплонасоса
Сделать своими руками тепловой насос воздух-вода значительно проще в сравнении с грунтовыми либо водяными. Вполне очевидно, что каждый домашний мастер хочет минимизировать затраты на производство. В самодельных теплонасосах используется минимальное количество дорогостоящих деталей. Часто домашние мастера применяют для этого комплектующие от старого холодильника или кондиционера. В такой ситуации добиться высокого показателя СОР просто невозможно, и созданный своими руками ТН будет уступать заводским агрегатам в производительности.
Таким образом, создавать воздушный насос не имеет смысла, а лучше воспользоваться сплит-системой, включив ее в режим обогрева. Для отопления жилых помещений с помощью водяных теплонасосов либо вида «воздух-вода», необходимо создать геотермальную систему. При использовании насоса первого типа показатель СОР составит 3−3,5. Применение ТН «воздух-вода» не позволит добиться СОР выше 2,2.
Если было принято решение изготовить водяной тепловий насос, то нужно следовать рекомендациям:
- колодец располагается на расстоянии в 25−50 метров от дома;
- водоем должны обладать достаточным запасом воды.
Рассчитать необходимое количество грунтовых вод для работы ТН несложно. Во время работы агрегата их температура падает примерно на 4−5 градуса. Таким образом, для производства 1 кВт теплоэнергии через теплонасос должно в протяжении 60 минут проходить порядка 170 л воды.