Пид регулирование теплые полы

Способы регулировки температуры теплых полов, RTL-регулировка и другие методы

Сделать схему теплого пола проще и дешевле помогут регуляторы обратного потока – RTL-краны. Самые известные фирмы, выпускающие оборудование для отопления, предлагают потребителям свои термостатические RTL-краны, — ограничители потока для теплого пола. В чем особенности такой регулировки температуры, — рассмотрим далее. Также, — как обычно регулируется температура теплого пола и какая она нужна….

Какая температура должна быть

Наибольшей комфортной температурой теплого пола считается 28 градусов. Комфортная температура для длительного применения настраивается индивидуально по предпочтениям. Но обычно она ниже, — 22- 26 градусов, чтобы покрытие полов «стало незаметным».

В отдельных помещениях, где не присутствуют постоянно, обычно неплохо, если температура будет несколько больше, – до 32 градусов. Это прихожая (веранда), туалет, ванная.

Чтобы поддержать температуру на заданном уровне применяются два разных способа.

Первый способ основан на стабильной высокой скорости движения теплоносителя.
Чтобы температура теплого пола была стабильной в него нужно подавать определенное количество тепловой энергии с помощью теплоносителя. Теплоноситель подготавливается с заданной температурой и в значительном объеме проходит по контуру.

Объем должен быть таким (скорость движения должна быть такой), чтобы на выходе из контура температура жидкости не уменьшилась больше чем на 10 градусов. Тогда в пределах контура разница температур будет незначительной и малозаметной. Например, в контур подается 45 градусов, на исходящей будет 35 градусов. А температура поверхности может быть 28 градусов.

Второй способ заключается в том, чтобы подавать жидкость большой температуры, но прерывисто, порциями. Порция горячей жидкости довольно быстро (за несколько минут) заполняет контур, после чего ее движение останавливается.

Жидкость остывает и отдает энергию стяжке. Теплоемкая стяжка постепенно поглощает и рассеивает энергию, не перегреваясь в месте нахождения трубопровода. Как только теплоноситель остывает до заданного значения, в контур снова подается порция горячей воды.

Например, в контур может подаваться жидкость 75 град, а ее замена будет производиться после остывания до 30 градусов. Вследствие распределения тепла в массивной стяжке на поверхности пола будет все время поддерживаться около 28 градусов.

Схема регулировки температуры смесительным узлом

Чтобы регулировать температуру по первому способу, поддерживая значительную скорость движения жидкости, нужно установить смесительный узел, в котором вода подготавливается до заданной температуры.

Теплоноситель с котла поступает 65 – 80 градусов. Чтобы уменьшить температуру до требуемых 40 -50 градусов, устанавливают узел смещения, который часть обратки с теплого пола с температурой 30 — 35 градусов подает на вход в контура. В результате на входе термостатической головкой, регулирующей соотношение входящих потоков, поддерживается заданная температура, например, 45 градусов.

Такую схему не сложно собрать самостоятельно, что будет дешевле. Основа – трехходовой клапан, шток которого регулируется термоголовкой. Управляющий элемент термоголовки целесообразней установить на другой ветви. Место установки насоса и трехходового клапана (подача/обратка) значения не имеет. Но насос обязательно должен устанавливаться в контуре коллектора теплого пола (за трехходовым клапаном по подаче), иначе трехходовой клапан работать не будет.

Настраивая термоголовку на определенную температуру обратки, мы можем задавать температуру теплых полов в широком диапазоне.Но для получения более холодных контуров остается только уменьшать скорость движения в них теплоносителя с помощью регулировочных кранов на коллекторе.

Схема регулировки температуры теплых полов ограничителями потока

Второй способ порционной подачи горячей жидкости в контуры теплого пола осуществляется с помощью термостатических кранов RTL (регуляторов потока). Смесительный узел не применяется – в контур подается теплоноситель высокой температуры, которая нужна для радиаторной сети.

На обратке каждого контура устанавливается кран RTL с термоголовкой RTL, который открывается при остывании жидкости до заданной температуры. Как только температура проходящей жидкости повышается больше заданного значения (контур наполнился горячей водой), кран почти полностью перекрывает ее движения до ее остывания.

Эти краны устанавливаются только на обратку, чтобы оперативно реагировать на изменение температуры в контурах. Фактически краны RTL регулируют поток, – количество в единицу времени (литр/минуту). Они работают в зависимости от теплопотерь каждой комнаты (контура, участка стяжки ограниченного температурными швами), в зависимости от того насколько быстро остывает стяжка.

Особенность конструкции кранов RTL и унибоксов RTL

В кране RTL имеется латунный или медный сердечник, который плотно соприкасается с таким же сердечником устанавливаемой термоголовки RTL, поэтому температура весьма быстро передается на ее рабочее тело.

Термоголовка RTL реагирует только на температуру жидкости. Если она превышает заданный регулировкой уровень, кран перекрывает поток.

Термоголовка RTL с виду весьма похожа на обычные термоголовки, которые устанавливаются на радиаторы, и которые измеряют температуру воздуха. Поэтому зачастую возникает недоумение – как головка на коллекторе «по воздуху» регулирует теплый пол в спальне….

Унибокс RTL представляет из себя кран и термоголовку объединенную в одном корпусе, который отдельно можно вмонтировать в стену так, что сверху будет одна крышка с термоголовкой, или без нее. Их предназначение – регулировка одного контура теплого пола, например, на этаже имеется теплый пол только в санузле. Применение унибоксов экономически выгодно, так как нет необходимости устанавливать смесительный узел только для одного контура.

Читайте также:  Технология укладки теплого пола под кафель

Но конструкция может включать в себя не только RTL-головку, но и воздушную термоголовку, чтобы заодно контролировать и температуру воздуха в маленьком отдаленном помещении, где теплый пол может быть единственным отопительным прибором.

Где выгодно применять RTL-регулировку потока в отопительных системах

Конструкция RTL-коллектора весьма компактна. Отсутствуют насос и смесительный узел, а сам коллектор обратки может быть собран из тройников, на входах которых установлены краны RTL с головками. Поэтому эта система целесообразна или незаменима там, где нет места на монтаж объемных конструкций. Например, такое может быть в квартире.

Также система с регулировкой обратного потока весьма выгодна в случае если контуров мало или контур вовсе один. Устанавливать в таком случае целый смесительный узел с насосом просто не выгодно. Применяются унибоксы, о чем сказано выше.

Как применяется RTL-регулировка, в чем ограничения

Контуры теплого пола подключаются к главной подающей магистрали просто параллельно, как ветвь радиаторов или один радиатор. Подача в контур теплого пола осуществляется ответвлением от подающей магистрали. А на обратке из контура устанавливается кран RTL на коллекторе или отдельно стоящий (унибокс), который затем подключается к общей обратке.

Количество контуров с регулировкой обратного потока может ограничивать производительность насоса в котле (в системе).

Следующее ограничение – теплоемкость стяжки. Данная система предназначена для работы с массивной бетонной стяжкой в качестве отопительного прибора, которая может рассеивать высокую температуру от порции воды, не перегреваясь фрагментами поверхностью.
Как сделать стяжку с отопительными контурами

Общее ограничение для применения регулировки обратного потока – длина контуров. Длина контура влияет как на соотношение «временая заполнения/время остывания», так и на общее гидравлическое сопротивление данного ответвления от общей сети. Опыт показывает, что при контурах с трубой 16мм система регулировки RTL отлично работает при длине контуров до 50 метров. Если контура были сделаны длиннее – то нужно устанавливать смесительный узел и пользоваться первым способом.

В спорных случаях может выручить применение 20-й трубы у которой сопротивление будет меньше.
Таким образом для RTL-системы регулировки обратно потока теплого пола стяжку нужно фрагментировать заранее температурными швами, на небольшую длину контуров 35 – 45 м.

Автоматическое регулирование напольного отопления. Часть 2

Если рассмотреть классическую схему простого автоматического управления комбинированной системой отопления (рис. 1), в которой комнатные термостаты управляют сервоприводами термостатических клапанов коллекторных блоков, то возникает вопрос: что случится, когда все клапаны окажутся закрытыми?


Рис. 1. Регулирование комбинированной системы отопления с помощью комнатных термостатов и сервоприводов

Очевидно, что в этой ситуации откроются перепускные клапаны на контурах и теплоноситель будет циркулировать по малым циркуляционным кольцам через байпасы. При этом насосы будут расходовать электроэнергию впустую. Если же контуры не оборудованы байпасами с перепускными клапанами, то циркуляционные насосы будут работать «на закрытую задвижку», тратя энергию только на нагрев самих себя и теплоносителя в ограниченном пространстве. Циркуляционные насосы VT.RS оборудованы встроенными датчиками перегрева, которые отключат насос при нагреве обмотки статора свыше 150 °С, однако это является аварийным режимом, и его регулярное повторение всё-таки приведёт к межвитковому замыканию обмоток.

В насосно-смесительном узле VT.DUAL на этот случай предусмотрен предохранительный термостат, который отключает насос при достижении заданной пользователем температуры (от 30 до 90 °С), но у остальных узлов такого термостата нет.

Для предотвращения работы насоса «вхолостую» и «на закрытую задвижку», а также для удобной увязки работы сервоприводов с остальным оборудованием системы отопления разработан зональный коммуникатор VT.ZC8 (рис. 2).


Рис. 2. Зональный коммуникатор VT.ZC8

К коммуникатору подводятся провода от каждого комнатного термостата, и он передаёт принимаемые сигналы на соответствующий сервопривод или группу сервоприводов. При отсутствии запроса на отопление (все термостатические клапаны коллектора находятся в закрытом положении), коммуникатор отключает циркуляционный насос или теплогенератор (в зависимости от тепломеханической схемы системы).

Коммуникаторы выпускаются двух типов: для сервоприводов с питающим напряжением 24 и 220 В.


Рис. 3. Пример схемы подключения коммуникатора VT.ZC8

Назначение клеммных пар, переключателей и светодиодов в коммуникаторе следующее (рис. 3):
К1 – подача электропитания (220 В или 24 В в зависимости от модификации коммуникатора;
К2–K9 – подключение комнатных термостатов. К одному коммуникатору можно подключить восемь термостатов;
J1–J8 – переключатели передачи сигнала. В положении OFF управляющий сигнал передаётся на клеммную пару управления сервоприводами, расположенную напротив (K2–K13–C1; K3–K14–C2 и т.д.). В положении ON сигнал на клеммную пару управления сервоприводами передаётся от соседнего (расположенного cлева) термостата. Это позволяет одним термостатом управлять сразу несколькими сервоприводами. Например, на рисунке 3 сервоприводами С2, С3 и С4 управляет один термостат Т2 через клеммную пару К3, а сервоприводами С5, С6 и С7 управляет термостат Т3 через клеммную пару К6;
К10 – передаёт питание на соседний коммуникатор при объединении их в группы (рис. 4);
К11 – при объединении нескольких коммуникаторов принимает информацию о состоянии сервоприводов от соседнего коммуникатора для управления циркуляционным насосом;
К12 – управление циркуляционным насосом. При подаче команды закрытия сервоприводов на всех клеммных парах насос отключается;
К13–K20 – подключение сервоприводов термостатических клапанов коллектора;
J9–J16 – переключатели типа сервопривода. В положении OFF подключаются нормально закрытые приводы, в положении ON – нормально открытые;
К21 – передача информации о состоянии сервоприводов на соседний коммуникатор при объединении их в группы (рис. 4);
G1 – переключатель принудительного отключения насоса (ON – насос включён для управления коммуникатором; OFF – насос принудительно выключен);
S1–S8 – индикаторы горят при подаче питания на привод;
S9 – индикатор горит при подаче питания на клеммную пару K1;
S10 – индикатор горит при включённом циркуляционном насосе.

Читайте также:  Пленочные теплые полы его монтаж под ламинат


Рис. 4. Схема соединения двух коммуникаторов

Регулирование температуры в системах напольного отопления

Конструирование комфортных систем обогрева помещений является достаточно сложной задачей. Требования к этим системам возрастают. Сегодня от системы отопления потребители хотят получать не просто абстрактную «нормативную температуру воздуха в помещении», а стремятся к тому, чтобы комфортные условия поддерживались вне зависимости от внешних и внутренних факторов. В этом случае не обойтись без использования водяных «теплых полов».

Системы обогрева помещений с помощью водяных «теплых полов» перестали быть диковинкой и широко применяются при строительстве как многоэтажных домов, так и коттеджей. Для обычного потребителя комфортность нахождения в помещении, обогреваемого с помощью водяного «теплого пола», обеспечивается, в первую очередь, за счет того, что имеющееся тепло равномерно распределяется по всей поверхности пола, и сама система «теплый пол» обладает свойством «саморегулирования».

Для понимания сути термина «саморегулирование», рассмотрим абстрактную систему водяных «теплых полов» и проанализируем, как ведет себя эта система при изменении наружного и внутреннего воздуха (рис. 1, а–г).

Однако из-за инерционности системы поверхностного обогрева процесс изменения температуры воздуха в помещении достаточно продолжителен. Повысить оперативность реакции водяных «теплых полов» можно с помощью грамотного применения средств автоматики и управления.

Системы обогрева помещений водяными «теплыми полами» перестали быть диковинкой и широко применяются при строительстве как многоэтажных домов, так и коттеджей.

При использовании напольного водяного отопления в качестве основной системы отопления, вопрос регулирования решается установкой теплогенератора с погодозависимой автоматикой в связке с комнатными термостатами и сервоприводами на каждой петле. Однако в климатических условиях России «теплый пол» не всегда способен обеспечить компенсацию всех теплопотерь помещениями. Поэтому в большинстве случаев система отопления проектируется комбинированной, например, система водяных «теплых полов» дополняется системой радиаторного отопления.

При таком подходе система отопления условно делится на два температурных контура — первичный (или высокотемпературный радиаторный) и вторичный (или низкотемпературный, «теплый пол»). Это требует более сложной системы управления отоплением, но в результате получается гибкая, оперативная и надежная схема.

Примером технического совмещения контура радиаторного отопления и водяных «теплых полов» может служить схема с использованием насосно-смесительного узла Valtec Combi.

Работа комбинированной системы отопления основана на базе готового смесительного узла Combi (рис. 2, артикул VT.Combi) в сочетании с коллекторными блоками VT.594 и VT.596.

Узел предназначен для поддержания заданной температуры и расхода теплоносителя во вторичном контуре системы отопления, гидравлическую увязку первичного и вторичного контуров. Он оснащен всей необходимой запорнорегулировочной арматурой и сервисными элементами и обеспечивает стабильную работу вторичного контура и предохраняет насос от работы «на закрытую задвижку», что увеличивает срок его безаварийной службы.

Ключевым вопросом в данном узле, является реализация управления смесительным клапаном теплого пола. Вариантов управления клапаном можно предложить несколько.

Термостатический клапан с чувствительным элементом (термостатической головкой) — рис. 3.

Приведенная на рис. 3 схема является наиболее простой в реализации и, соответственно, самой дешевой.

Данная схема содержит следующие элементы:

— коллекторный блок VT.594, обслуживающий высокотемпературный контур (радиаторный или конвекторный);

— насосно-смесительный узел VT.Combi, обеспечивающий поддержания расчетной температуры и циркуляции теплоносителя в низкотемпературном контуре — «теплого пола»;

— коллекторный блок VT.596 оборудованный ручными регулировочными расходомерами для балансировки контуров «теплого пола».

Температура теплоносителя в подающем коллекторе «теплого пола» поддерживается термостатической головкой (диапазон настройки температуры — 20–60 °C), которая выставляется на расчетное значение заложенное проектом системы, соответствующее максимально отрицательной температуре наружного воздуха в отопительный период. В таком случае во всех помещениях будет поддерживаться постоянно максимально-расчетная температура.

Аварийное ограничение превышения температуры во вторичном контуре обеспечивается термостатом VT.AC616 I (рис. 4) с выносным датчиком. Этот термостат включается в цепь питания циркуляционного насоса, и отключает его при превышении настроечного значения температуры теплоносителя.

Однако температура наружного воздуха претерпевает постоянные изменения, что влияет на тепловой режим помещений. Для того, чтобы соответствующим образом изменить температуру в каком-либо отдельном помещении, потребителю необходимо с помощью ручного регулировочного клапана, установленного на обратном коллекторе «теплого пола», откорректировать количество проходящего теплоносителя.

При такой схеме получается, что при каждом существенном изменении внешней температуры потребитель вынужден «бегать» к узлу для корректировки настроек. Выходит, что отопление есть, а комфорта нет.

Термостатический клапан с чувствительным элементом (термостатической головкой) и сервоприводы на петлях, работающие по команде комнатных термостатов — рис. 5.

Избавиться от ручного регулирования контурами «теплого пола» можно с помощью комнатных термостатов, расположенных в отапливаемых помещениях. Каждый термостат управляет электротермическим сервоприводом, установленном на соответствующем термостатическом клапане обратного коллектора «теплого пола».

Читайте также:  Какие трубы лучше использовать для отопления частного дома теплые полы

В предложенной схеме используются импульсные нормально-закрытые сервоприводы VT.TE3040 или VT.TE3042 (рис. 6). Нормально-закрытый привод — это привод, который находится в закрытом положении при отсутствии питания на нем, а в момент подачи питания, он переходит в положение «открыто». Отличие приводов заключается только в дизайне, при одинаковых эксплуатационных характеристиках.

Избавиться от ручного регулирования контурами «теплого пола» можно с помощью комнатных термостатов, расположенных в отапливаемых помещениях. Каждый термостат управляет электротермическим сервоприводом.

В качестве комнатных термостатов практически могут использоваться следующие приборы:

— термостат VT.AC601 (рис. 7), работающий от встроенного датчика температуры окружающего воздуха — при снижении температуры воздуха в помещении термостат подает питание на привод, который открывает клапан;

— термостат VT.AC602 (рис. 8), оснащенный выносным датчиком температуры пола и выключателем, полностью прекращающим работу термостата, этот прибор может работать в трех режимах — а) по датчику температуры воздуха (диапазон настройки 5–40 °C); б) по датчику температуры пола; в) по двум датчикам одновременно, в качестве основного датчика выступает датчик температуры воздуха, а датчик пола работает в качестве ограничителя, с заводской настройкой 30 °C, термостат также имеет возможность подключения через внешний таймер, который позволяет управлять включением и отключением термостата по заданному времени;

— хронотермостат VT.AC709 (рис. 9) работает по алгоритму аналогичному работе термостата VT.AC602 — в отличие от двух предыдущих термостатов, он обладает функцией недельного программирования, что позволяет пользователю задавать различные температурные режимы в определенное время суток и в определенные дни недели.

Автоматизация с помощью комнатных термостатов и электротермических сервоприводов избавляет потребителя от ручного управления системой, но весь контур «теплого пола» по-прежнему будет работать на полную тепловую мощность, с постоянной температурой теплоносителя, не зависящей от колебаний температуры наружного воздуха.

Термостатический клапан с чувствительным элементом (термический сервопривод с аналоговым управлением), сервоприводы на петлях, работающие по команде комнатных термостатов и контроллер с погодозависимой автоматикой, управляющий сервоприводом термостатического клапана смесительного узла — рис. 10.

Адаптация теплопроизводительности системы напольного отопления к наружной температуре воздуха возможна при использовании «погодозависимой» автоматики, такой, например, как контроллер Valtec VT.K200 (рис. 11).

Данный контроллер позволяет не только обеспечить энергоэффективную работу системы напольного отопления, но и продлить рабочий ресурс всей системы в целом.

Контроллер Valtec VT.K200 позволяет по заданному графику корректировать температуру теплоносителя в соответствии с температурой наружного воздуха. Температура теплоносителя в подающем коллекторе «теплого пола» регулируется с помощью аналогового сервопривода VT.TE3061, посредством управляющего сигнала от контроллера.

Управляющий сигнал контроллера непосредственно рассчитывается по пропорционально-интегрально дифференциальному (ПИД) закону регулирования. Величина управляющего сигнала определяется по формуле:

Пропорциональная составляющая Р прямо пропорциональна «невязке», которая определяется выражением:

где Tус — температура уставки; T — текущее значение температуры.

При пропорциональном регулировании фактическое отклонение температуры вызывает пропорциональное изменение управляющего сигнала.

Однако при таком регулировании значение температуры никогда не стабилизируется на уставке, и процесс превращается в колебательный с постоянными перегревами и охлаждениями. Величина этих отклонений от уставки называется «статической ошибкой». Для устранения данной ошибки контроллером учитывается интегральная составляющая I, которая равна интегралу «невязок». Именно она и позволяет контроллеру учитывать данную статическую ошибку.

Если система работает в стабильном режиме, то через некоторое время температура теплоносителя устанавливается на заданном значении. Однако время, за которое система достигает заданного уровня температуры достаточно велико.

Для сокращения времени выхода на уставку используется дифференциальная составляющая. Она пропорциональна темпу (скорости) изменения отклонения температуры от уставки.

Применяемое компанией Valtec ПИДрегулирование дает возможность контроллеру оперативно устанавливать в системе требуемый уровень температуры теплоносителя при малейших колебаниях температуры наружного воздуха.

Коэффициенты Kp, Ki и Kd определяются в процессе автонастройки, предусмотренной в приборе, но так же могут быть заданы или скорректированы вручную в ходе эксплуатации.

Необходимая температура теплоносителя определяется контроллером по пользовательскому температурному графику (рис. 12). Данный график устанавливается на стадии наладки системы отопления и определяется заданными пользователем точками (от двух до десяти). Крайняя левая точка графика (рис. 12, точка А или С) задает максимальную температуру теплоносителя в системе «теплого пола», которой соответствует расчетная отрицательная температура наружного воздуха. Максимальная температура теплоносителя «теплого пола» определяется проектом системы отопления. Крайняя правая точка (рис. 12, точка В или D) определяется по личностным теплоощущениям конкретного потребителя и далее корректируется на основании опыта эксплуатации.

На рис. 12 приведен пример для двух разных температурных режимов.

ПИД-регулирование дает возможность контроллеру оперативно устанавливать в системе требуемый уровень температуры теплоносителя при малейших колебаниях температуры наружного воздуха.

Встроенная функция ограничения температуры в контуре «теплого пола» позволяет отказаться от использования внешнего предохранительного термостата. В этом случае питание насоса подается через контроллер, как показано на рис. 13.

Контроллер обладает функцией адаптивности, которая позволяет в процессе эксплуатации вырабатывать наиболее эффективный алгоритм работы, соответствующий конкретной системе, объекту и динамике изменения теплового режима. Настройка контроллера проста и занимает у пользователя не более 10–15 минут. Благодаря наличию встроенного цифрового интерфейса RS-485 контроллер может быть внедрен в сеть диспетчеризации и контроля данных.

Оцените статью