- Теплообменник ГВС, горячее водоснабжение
- Применение пластинчатого теплообменника для ГВС
- Типы теплообменников для систем ГВС
- Преимущество паяный теплообменников в сравнении с разборными
- Схемы подключения теплообменника ГВС
- Стандартная
- Двухступенчатая
- Расчет теплообменника для ГВС
- Пластинчатые теплообменные аппараты: типы, устройство и принцип работы
- Введение
- Типы, устройство и принцип работы пластинчатых теплообменников
- Пластинчатые разборные теплообменные аппараты
- Паяные теплообменные аппараты
- Полусварные теплообменники
- Сварные теплообменники
- Применение пластинчатых теплообменников
- Технические характеристики пластинчатых теплообменников
Теплообменник ГВС, горячее водоснабжение
Вы можете позвонить нам:
Специалисты компании с радостью ответят на ваши вопросы, произведут расчет стоимости услуг и подготовят для вас индивидуальное коммерческое предложение.
Организация горячего водоснабжения является одним из основных условий комфортной жизни. Существует множество различных установок и систем для подогрева воды в домашней сети ГВС, однако одним из наиболее эффективных и экономичных считается метод нагрева воды от сети отопления.
Теплообменник для горячей воды подбирается индивидуально, исходя из запросов владельца и возможностей отопительного оборудования. Правильный расчет и грамотный монтаж системы позволят вам навсегда забыть про перебои в горячем водоснабжении.
Применение пластинчатого теплообменника для ГВС
Нагрев воды от теплосети полностью обоснован с экономической точки зрения – в отличие от классических водонагревательных котлов, использующих газ или электроэнергию, теплообменник работает исключительно на отопительную систему. В результате конечная стоимость каждого литра горячей воды оказывается для домовладельца на порядок ниже.
Пластинчатый теплообменник для горячего водоснабжения использует тепловую энергию теплосети для нагрева обычной водопроводной воды. Нагреваясь от пластин теплообменника, горячая вода поступает к точкам водоразбора – кранам, смесителям, душевую в ванной комнате и пр.
Важно учитывать, что вода-теплоноситель и нагреваемая вода никак не контактируют в теплообменнике: две среды разделены пластинами теплообменного аппарата, через которые осуществляется теплообмен.
Использовать воду из системы отопления в бытовых нуждах напрямую нельзя – это нерационально и зачастую даже вредно:
- Процесс водоподготовки для котельного оборудования – достаточно сложная и дорогая процедура.
- Для умягчения воды часто используются химические реагенты, которые негативно сказываются на здоровье.
- В трубах отопления с годами скапливается колоссальный объем вредных отложений.
Однако использовать воду отопительной системы косвенно никто не запрещал – теплообменник ГВС обладает достаточно высоким КПД и полностью обеспечит вашу потребность в горячей воде.
Типы теплообменников для систем ГВС
Среди множества типов различных теплообменников в бытовых условиях используются только два – пластинчатые и кожухотрубные. Последние практически исчезли с рынка вследствие больших габаритов и низкого КПД.
Пластинчатый теплообменник ГВС представляет собой ряд гофрированных пластин на жесткой станине. Все пластины идентичны по размерам и конструкции, но следуют в зеркальном отражении друг к другу и разделяются специальными прокладками – резиновыми и стальными. В результате строгого чередования между парными пластинами образуются полости, которые заполняются теплоносителем или нагреваемой жидкостью – смешение сред полностью исключено. Через направляющие каналы две жидкости движутся навстречу друг другу, заполняя каждую вторую полость, и так же, по направляющим, выходят из теплообменника отдав/получив тепловую энергию.
Чем выше количество или размер пластин в теплообменнике – тем больше площадь полезного теплообмена и выше производительность теплообменника. У многих моделей на направляющей балке между станиной и запорной (крайней) плитой остается достаточно пространства, чтобы установить несколько плит аналогичного типоразмера. В этом случае дополнительные плиты всегда устанавливаются парами, иначе потребуется менять направление «вход-выход» на запорной плите.
Схема и принцип работы пластинчатого теплообменника ГВС
Все пластинчатые теплообменники можно разделить на:
- Разборные (состоят из отдельных плит)
- Паяные (герметичный корпус, не разборные)
Преимущество разборных теплообменников заключается в возможности их доработки (добавление или удаление пластин) – в паяных моделях эта функция не предусмотрена. В регионах с низким качеством водопроводной воды такие теплообменники можно разбирать и очищать от мусора и отложений вручную.
Более высокой популярностью пользуются паяные пластинчатые теплообменники – из-за отсутствия зажимной конструкции они имеют более компактные размеры, чем разборная модель аналогичной производительности. Компания «МСК-Холод» производит подбор и продажу паяных пластинчатых теплообменников ведущих мировых брендов — Alfa Laval, SWEP, Danfoss, ONDA, KAORI, GEA, WTT, Kelvion (Кельвион Машимпэкс), Ридан. У нас вы можете купить теплообменник ГВС любой производительности для частного дома и квартиры.
Преимущество паяный теплообменников в сравнении с разборными
- Небольшие габариты и вес
- Более строгий контроль качества
- Продолжительный срок службы
- Устойчивость к высоким давлениям и температурам
Очистка паяных теплообменников выполняется безразборным методом. Если по истечении определенного периода эксплуатации начали снижаться теплотехнические характеристики, то в аппарат на несколько часов заливается раствор реагента, удаляющего все отложения. Перерыв в работе оборудования составит не более 2-3 часов.
Схемы подключения теплообменника ГВС
Теплообменник вода-вода имеет несколько вариантов подключения. Первичный контур всегда подключается к распределительной трубе теплосети (городской или частной), а вторичный – к трубам водоснабжения. В зависимости от проектного решения можно использовать параллельную одноступенчатую схему ГВС (стандартная), двухступенчатую смешанную или двухступенчатую последовательную схему ГВС.
Схема подключения определяется согласно нормам «Проектирования тепловых пунктов» СП41-101-95. В случае, когда соотношение максимального потока тепла на ГВС к максимальному потоку тепла на отопление (QГВСmax/QТЕПЛmax) определяется в границах ≤0,2 и ≥1 за основу принимается одноступенчатая схема подключения, если же соотношение определяется в пределах 0,2≤ QГВСmax/QТЕПЛmax ≤1, то в проекте используется двухступенчатая схема подключения.
Стандартная
Параллельная схема подключения считается наиболее простой и экономичной в реализации. Теплообменник устанавливается последовательно относительно регулирующей арматуры (запорного клапана) и параллельно теплосети. Для достижения высокого теплообмена системе требуется большой расход теплоносителя.
Двухступенчатая
При использовании двухступенчатой схемы подключения теплообменника нагрев воды для ГВС осуществляется либо в двух независимых аппаратах, либо в установке-моноблок. Вне зависимости от конфигурации сети схема монтажа значительно усложняется, но значительно повышается КПД системы и снижается расход теплоносителя (до 40%).
Подготовка воды выполняется в два этапа: на первом используется тепловая энергия обратного потока, которая нагревает воду примерно до 40°С. На втором этапе вода подогревается до нормированных показателей 60°С.
Двухступенчатая смешанная система подключения выглядит следующим образом:
Двухступенчатая последовательная схема подключения:
Последовательную схему подключения можно реализовать в одном теплообменном аппарате ГВС. Этот тип теплообменника более сложное устройство в сравнение со стандартными и стоимость его порядком выше.
Расчет теплообменника для ГВС
При расчете теплообменника ГВС учитываются следующие параметры:
- Количество жильцов (пользователей)
- Нормативный суточный расход воды на одного потребителя
- Максимальная температура теплоносителя в интересующий период
- Температура водопроводной воды в указанный период
- Допустимые теплопотери (нормативно – до 5%)
- Количество точек водозабора (краны, душ, смесители)
- Режим эксплуатации оборудования (постоянный/периодический)
Производительность теплообменника в городских квартирах (подключение к муниципальной теплосети) зачастую рассчитывается исключительно по данным зимнего периода. В это время температура теплоносителя достигает 120/80°С. Однако в весенне-осенний период показатели могут упасть до 70/40°С, в то время, как температура воды в водопроводе остается критично низкой. Поэтому расчет теплообменника желательно проводить параллельно для зимнего и весенне-осеннего периодов, при этом никто не может дать гарантии, что расчеты окажутся на 100% верны – ЖКХ нередко «пренебрегают» общепринятыми стандартами обслуживания потребителей.
В частном секторе, при монтаже теплообменника к собственной системы отопления, точность расчета на ступень выше: вы всегда уверены в работе своего котла и можете указать точную температуру теплоносителя.
Наши специалисты помогут вам выполнить правильный расчет теплообменника для ГВС и подобрать наиболее подходящую модель. Расчет выполняется бесплатно и занимает не более 20 минут – укажите свои данные и мы вышлем вам результат.
Пластинчатые теплообменные аппараты: типы, устройство и принцип работы
Введение
Пластинчатый теплообменник – один из видов рекуперативных теплообменных аппаратов, в основе работы которого лежит теплообмен между двумя средами через контактную пластину без смешения.
Типы, устройство и принцип работы пластинчатых теплообменников
Принцип работы всех пластинчатых теплообменных аппаратов одинаков:
- На входы ТО подаются теплоносители.
- Теплоносители движутся по внутреннему контуру теплообменного агрегата, который сформирован пакетом пластин.
- В процессе движения, контактируя с поверхностью пластины, более горячий теплоноситель отдает часть тепла нагреваемой среде.
- С выходов теплоносители, с изменившейся температурой, поступают в систему отопления, водоснабжения или вентиляции.
- Входные и выходные отверстия теплообменных аппаратов могут иметь различное сечение (у агрегатов Ридан диаметр достигает 500 мм), и с помощью патрубков подключаются к трубопроводу основной системы.
Данный принцип действия и устройство пластинчатого ТО хорошо продемонстрированы в следующем видео:
Принцип работы пластинчатого теплообменника
Виды пластинчатых теплообменников в зависимости от конструкции:
Пластинчатые разборные теплообменные аппараты
Пластинчатый разборный теплообменник – устройство, в котором основную функцию теплопередачи между теплоносителями выполняет пакет пластин. Среды не смешиваются между собой благодаря чередованию пластин с плотными резиновыми прокладками, которые образуют два контура движения.
Свое название «разборные» подобный тип агрегатов получил за то, что пакет пластин не только собирается, но и разбирается во время регулярного обслуживания (промывки) или ремонта.
Конструкционная схема разборного теплообменника
Разборный теплообменник состоит из следующих элементов:
- Неподвижная прижимная плита – основной элемент.
- Пластины теплообменного аппарата, выполнены из нержавеющей стали или титана, прижимаются друг к другу с использованием уплотнительных прокладок. Количество пластин зависит от технических параметров и требований к оборудованию.
- Пакет пластин – главный функциональный элемент, который образует внутренний контур устройства и осуществляет теплообмен.
- Несущая база – направляющая балка, на которую надеваются пластины во время сборки агрегата.
- Подвижная прижимная плита – прижимает весь пакет к неподвижной прижимной плите с помощью элементов крепления: стяжных болтов, подшипников, стопорных шайб.
- Опорная станина – вертикальный элемент, к которому прикрепляются направляющие балки (верхняя и нижняя несущие балки).
Благодаря высокой скорости рабочих сред внутри разборных теплообменных аппаратов отложения и засоры скапливаются на его внутренних поверхностях медленнее, чем на поверхностях кожухотрубных агрегатов.
Несомненное достоинство данного вида ТО – возможность полной разборки аппарата, что позволяет производить не только промывку пластин, но и их механическую очистку.
Также стоит отметить, что возможность полной разборки агрегата позволяет не заменять его целиком в случаях протечек, а быстро выявить нерабочие элементы, поменять их и вновь запустить теплообменник в эксплуатацию. При наличии необходимых запасных частей «под рукой» вся процедура займет от нескольких часов до 1 часа.
Паяные теплообменные аппараты
Паяные теплообменники также в своей основе содержат пакет пластин, но отличие от разборных заключается в том, что они спаяны между собой, поэтому сборка/разборка такого пакета – невозможна.
Пайка производится с помощью никеля или меди, поэтому обозначают два основных вида паяных пластинчатых теплообменников: никельпаяный и меднопаяный. Никелевый припой используется для аппаратов, которые будут работать с более агрессивными средами.
Паяный пластинчатый теплообменник в разрезе
Паяные теплообменные аппараты применяются в основном в бытовом сегменте благодаря своей низкой стоимости, простоте и небольшим габаритам. Чаще всего подобный тип устройств можно встретить в системах отопления частных домов, где теплообменник подключается к водонагревательному котлу.
Полусварные теплообменники
Полусварные теплообменные аппараты – агрегаты, в которых пакет пластин сделан комбинированным способом:
- пластины попарно свариваются между собой;
- с внешней стороны такого сдвоенного мини-пакета прикрепляются уплотнения;
- далее прикрепляется следующий сваренный мини-пакет.
Места попарной сварки пластин
Подобный тип конструкции позволяет использовать полусварные теплообменные аппараты в работе с агрессивными средами или в охлаждении, поскольку сварка пластин исключает возможность утечки фреона в охлаждающем контуре.
Сварные теплообменники
Сварные теплообменные аппараты – устройства, в которых пластины сварены между собой без использования уплотнителей.
Внешний вид сварного теплообменника
Один из потоков теплоносителей движется по гофрированным каналам, второй по трубчатым. Принцип работы пластинчатого сварного теплообменника показан в этом видео:
Принцип работы сварного теплообменника
Сварные теплообменные аппараты применяются в технических процессах с предельными параметрами: высокими температурами (до 900 градусов Цельсия), давлением (до 100 бар) и крайне агрессивными средами, поскольку отсутствие резиновых уплотнителей и сварной метод сцепления исключают возможность протечки и смешения сред.
Основные недостатки подобного типа агрегатов: высокая стоимость и габариты.
Применение пластинчатых теплообменников
Пластинчатые теплообменные аппараты используются в:
- энергетике;
- отоплении;
- вентиляции и кондиционировании;
- судоходстве;
- пищевой промышленности;
- машиностроении;
- автомобилестроении;
- металлургии.
Технические характеристики пластинчатых теплообменников
Пластинчатый теплообменник имеет различные технические характеристики в зависимости от типа конструкции: