Теплый пол с теплораспределительными пластинами
Теплый пол в деревянном доме проще всего сделать, используя теплораспределительные пластины из алюминиевого сплава или из стали. Пластины имеют специальную конфигурацию, охватывают металлом почти 80% поверхности трубы и тем самым забирают от нее тепло, передавая его сухой стяжке. Мощность теплопередачи при этом достигает 100 Вт с м кв. Но в чем заключаются минусы этой системы…
Почему нужно применять теплораспределительные пластины
Классический водяной теплый пол предполагает закладку трубопровода именно в толстую (8 см и более) бетонную стяжку с армированием металлической сеткой. Это обеспечивает:
- равномерное распределение тепловой энергии по поверхности пола, даже при максимальном шаге укладки трубы – 30 см;
- предельную долговечность конструкции и гарантию от растрескивания при соблюдении технологии укладки;
- высокую термостабилизацию в помещении, что придает комфортности;
- низкую цену конструкции.
Вместе с тем толстая стяжка имеет большую массу, недопустимую для обычных деревянных основ, и только по этой причине не может применяться на деревянных полах. Также ей не подходят вибрирующие основы, которые повышают вероятность растрескивания и разрыва трубопровода. На деревянных полах по лагам необходимо применять варианты более легковесных конструкций, обычно до 50 кг на метр кв.
Тонкая сборная стяжка
Но тонкая стяжка сама по себе не может обеспечить распределение по ее поверхности необходимой тепловой мощности от трубы. Если просто заложить трубопровод в тонкую стяжку, то на поверхности пола появится температурная зебра – чередование теплых и холодных полос. А общая мощность теплопередачи от трубопровода к воздуху в комнате снизится весьма значительно.
- Без обеспечения теплоотведения от трубы и теплораспределения водяной теплый пол не комфортный и не эффективный.
Тонкая стяжка должна быть весьма прочной и эластичной, устойчивой к температурным расширениям.
С теплораспределительными пластинами применяют сборную стяжку из листов гипсоволокна толщиной до 12 мм или из цементностружечной плиты, уложенных в два слоя и скрепленных шурупами.
Схема укладки сухой сборной стяжки приведена на рисунках. Между торцами листов оставляется тепловой зазор 2 мм, а перехлест листов в разных слоях составляет минимум 300 мм. Расстояние между шурупами – до 300 мм.
Утеплительный слой – обязательная составляющая
Теплораспределительная пластина будет разогреваться до плюс 50 град и выше. Если слой утепления, отделяющий ее от холодного подпола, будет не достаточным, то утечки тепла окажутся просто огромными, — при включении теплого пола, котел будет работать больше, чем при радиаторном отоплении, отдавая энергию в землю…
- Обычно рекомендуется общее утеплении под разогреваемой стяжкой не менее 15 см пенополистирола.
В случае применения теплораспределительных пластин с деревянным полом по лагам, утеплительный слой может располагаться как между лаг, так и непосредственно под пластинами.
- Если речь идет об утеплении старого пола, то рациональней на старое напольное покрытие положить утеплитель из экструдированного пенополистирола толщиной от 10 см и сверху на него пластины и затем сухую стяжку. Но все это возможно в случае, если позволяет высота помещения. Подробнее – как утеплить старый деревянный пол
- Если нужно экономить высоту помещения, не переделывать дверные проемы, то лучше разместить значительный слой (от 15 см) любого подходящего утеплителя между лаг. Как утепляется пол между лаг
Как устанавливаются теплораспределительные пластины
Пластины из металла для распределения тепла от трубопровода теплого пола в среднем имеют ширину 15 см (13 – 20 см). Поэтому минимальный шаг их установки такой же – 15 см. Но чаще эти пластины устанавливаются с шагом 20 – 30 см.
Причем шаг в 20 см позволяет также отбирать максимум тепла от трубы и не получить температурную зебру.
Шаг установки в 30 см и более – для создания вспомогательного подогрева полов, с соответствующим уменьшением отдаваемой энергии, и позволяет значительно экономить при создании.
Теплораспределительные пластины устанавливаются следующим образом.
- Между досок, прибитых к старому настилу. Применяется только сухая 6 – 10% влажности доска, толщиной 20 – 22 мм, шириной обычно 80 – 200 мм (шаг установки) с расстоянием между досками 20 мм.
- Между полос экструдированного пенополистирола, положенного на клей на черновой пол, имеющие те же размеры, что и доски.
- В фигурных плитах полистирола, предназначенного специально для укладки трубопровода теплого пола.
- В пазах, вырезанных в пенополистироле высокотемпературным ножом.
Чаще для экономии применяют экструдированный пенополистирол толщиной 20 мм, который и режут на полосы, соответствующие ширине выбранного шага укладки.
Какие материалы нужно применять
- Применяется только высушенная доска указанных размеров.
- Допускается применение полистиролов плотностью не ниже, чем 30 кг в м куб.
- Желательно применять экструдированные варианты полистирола. Опыт показывает, что при сжимающих нагрузках, на протяжении многих лет они деформируется минимально, сохраняя при этом заданное сопротивление теплопередаче для слоя. Вспененные варианты сжимаются значительней.
- Теплораспределяющие пластины желательны только заводского изготовления с толщиной стали от 0,5 мм, обеспечивающие плотный обхват трубы. Желательная ширина пластин не менее 150 мм, но и не более 200 мм.
- В стяжке и напольном покрытии запрещается применять материалы, не предназначенные для теплого пола, выделяющие вещества при нагревании… Также здесь не может быть теплоизолирующих материалов. Предпочтение отдается гипсоволоконным листам, собранным в два слоя. Покрытие может быть ламинатом, тонким паркетом, линолеумом, плиткой…
Расчет теплого пола
1. Какой температуры должен быть теплоноситель в теплом полу и как можно контролировать его температуру?
Температура должна быть не выше 55 о С, а в некоторых случаях не выше 45 о С.
Если сказать еще точнее: температура должна быть в соответствии с температурой, рассчитанной в проекте, который учитывает необходимость конкретного помещения в тепле и материал, из которого сделано напольное чистовое покрытие.
Контролировать температуру можно с помощью вот такого термометра, а лучше двух.
Один термометр показывает температуру теплоносителя на подаче теплого пола (температуру смешанной воды), а другой — температуру обратки.
Если разница между показаниями двух термометров составляет 5 — 10 о С, значит система теплых полов у вас работает правильно.
2. Какой должна быть температура на поверхности теплого пола?
29 о С — в помещениях длительного нахождения людей;
35 о С — в граничных зонах;
33 о С — в санузлах, ванных комнатых.
Для укладки труб напольного отопления используют разные формы: змейку, угловую змейку, улитку, двойную змейку (меандр).
Также при укладке одного контура можно комбинировать эти формы.
К примеру, краевую зону можно расположить змейкой, а дальше основную часть пройти улиткой.
4. Какую укладку лучше всего использовать для теплого пола?
Для больших помещений квадратной, прямоугольной или круглой формы без геометрического эксклюзива лучше использовать улитку.
Для маленьких помещений, помещений со сложными формами или длинных помещений используйте змейку.
5. Какой должен быть шаг укладки?
Шаг укладки должен быть проектным в согласии с расчетами.
Для краевых зон используется шаг, равный 10 см. Для остальных зон с разностью в 5 см — 15 см, 20 см, 25 см. Но не больше 30 см.
Это ограничение связано с чувствительностью ступни человека.
При большем шаге труб нога начинает чувствовать разницу температуры участков пола.
6. Как подсчитать длину трубы?
Для этого можно воспользоваться очень простой формулой: L = S / N * 1,1, где
S — площадь помещения или контура, для которого рассчитывается длина трубы (м 2 );
N — шаг укладки;
1,1 — запас трубы в 10% на повороты.
К полученному результату не забудьте добавить длину трубы от коллектора до теплого пола, включая подачу и обратку.
Для примера рассмотрим задачу, в которой нужно подсчитать длину трубы для комнаты, в которой пол занимает полезную площадь 12 м 2 . Расстояние от коллектора до теплого пола — 7 м. Шаг укладки трубы 15 см (не забудьте перевести в м).
Решение: 12 / 0,15 * 1,1 + (7 * 2) = 102 м.
7. Какова максимальная длина одного контура?
Все зависит от гидравлического сопротивления или потерь давления в конкретном контуре, которые, в свою очередь, напрямую зависят как от диаметра используемых труб, так и от объема теплоносителя, который подается через сечение этих труб в единицу времени.
В случае с теплым полом, (если не учитывать вышеизложенные факторы) можно получить эффект так называемой запертой петли. Ситуация, при которой сколь мощный бы по напору насос вы не ставили, циркуляция через эту петлю будет невозможна.
На практике установлено, что потери давления, равные 20 кПа или 0,2 бара как раз приводят к такому эффекту.
Для того, чтобы не вдаваться в расчеты, приведем некоторые рекомендации, используемые нами на практике.
Для металлопластиковой трубы диаметром 16 мм мы делаем контур не больше 100 м. Обычно придерживаемся 80 м.
То же самое касается и труб из полиэтилена. Для 18 трубы из сшитого полиэтилена максимальная длина контура 120 м. На практике придерживаемся 80 — 100 м. Для 20 металлопластиковой трубы максимальная длина контура составляет 120 — 125 м.
8. Могут ли быть контура теплого пола разной длины?
Идеальная ситуация, когда все петли одинаковой длины. Не нужно ничего балансировать, настраивать.
На практике это достичь можно, но чаще всего не целесообразно.
К примеру, на объекте есть группа помещений, где нужно сделать теплый пол. Среди них также есть санузел, полезная площадь теплого пола в котором 4 м 2 . Соответственно длина трубопровода этого контура вместе с длиной труб до коллектора составляет всего лишь 40 м.
Неужели все помещения нужно обязательно подстраивать под эту длину, дробя полезную площадь оставшихся помещений по 4 м 2 ?
Конечно же нет. Это не целесообразно. И потом для чего балансировочная арматура, которая как раз и призвана для того, чтобы помочь уравнять потерю давления по контурам?
Опять же можно воспользоваться расчетами, через которые можно увидеть, до какого максимального предела можно допустить разброс длин труб отдельных контуров на конкретном объекте при данном оборудовании.
Но опять же, не погружая вас в сложные скучные расчеты, скажем, что мы на своих объектах допускаем разброс по длинам труб отдельных контуров в 30 — 40%. Также, при необходимости можно «играть» диаметрами труб, шагом укладки и «резать» площади больших помещений не на мелкие или крупные, а на средние куски.
9. Сколько контуров можно подключить к одному узлу смешения с одним насосом?
Этот вопрос по физическому смыслу похож на вопрос: «Сколько груза можно увезти на машине?»
Что вы еще хотели бы узнать, если бы кто-то задал вам этот вопрос?
Абсолютно правильно. Вы спросили бы: «О какой машине идет речь?»
Поэтому в вопросе: «Сколько петель можно подключать к коллектору теплого пола?», нужно учитывать диаметр коллектора и какой объем теплоносителя способен пропускать через себя узел смешения за единицу времени (принято считать м 3 /час). Или, что также равноценно, какую тепловую нагрузку способен нести выбранный вами узел смешения?
Как это узнать? Очень просто.
Для наглядности покажем на примере.
Предположим, в качестве узла смешения вы взяли Combimix компании Valtec. На какую тепловую нагрузку он рассчитан? Берем его паспорт. Смотри вырезку из паспорта.
Его максимальный коэффициент пропускной способности составляет 2,38 м 3 /час. Если ставим насос Grundfos UPS 25 60, то на третьей скорости при данном коэффициенте этот узел способен «утащить» нагрузку в 17000 Вт или 17 кВт.
Что это означает на практике? 17 кВт это сколько контуров?
Представим, что у нас есть дом, в котором есть сколько-то (неизвестно) помещений по 12 м 2 полезной площади теплого пола в каждом помещении. Трубы у нас уложены с шагом 20 см, что приводит к длине каждого контура, учитывая длину труб от самого теплого пола до коллектора, 86 м. В согласии с проектными расчетами мы также получили, что теплосъем с каждого м 2 этого теплого пола дает 80 Вт, что приводит нас соответственно к тепловой нагрузке каждого контура
Какое кол-во помещений или подобных контуров способен обеспечить теплом наш узел смешения?
17000 / 960 = 17,7 подобных контуров или помещений.
Но это максимально!
На практике же в большинстве случаев не нужно делать расчет на максимальные показатели. Поэтому остановимся на цифре 15.
У самой же компании Valtec к этому узлу есть коллектор с максимальным количеством выходов — 12.
10. Нужно ли делать несколько контуров теплого пола в больших помещениях?
В больших помещениях конструкцию теплого пола нужно делить на меньшие площади и делать несколько контуров.
Эта необходимость возникает как минимум по двум причинам:
ограничение длины трубы контура необходимо, чтобы не получить эффект «запертой петли», при котором через нее не будет циркуляции теплоносителя;
правильная работа самой цементной заливной плиты, площадь которой не должна превышать 30 м 2 . С оотношение длин ее сторон должно быть 1/2 и длина одного из краев не должна превышать 8 м.
11. Как узнать, сколько контуров теплого пола понадобится для моего дома?
Для того чтобы понять какое количество петель теплого пола понадобится и на основании этого подобрать подходящий коллектор с таким же количеством выходов, нужно отталкиваться от площади самих помещений, в которых планируется эта система.
После этого вы вычисляете полезную площадь теплого пола. Как это сделать описано в 12 вопросе «Как подсчитать полезную площадь теплого пола?«.
Затем, воспользуйтесь следующим способом: отталкиваясь от шага теплого пола, разбейте полезную площадь теплого пола в каждом помещении на следующие размеры:
- шаг 15 см — не более 12 м 2 ;
- шаг 20 см — не более 16 м 2 ;
- шаг 25 см — не более 20 м 2 ;
- шаг 30 см — не более 24 м 2 .
Если площадь пола в помещении меньше указанных размеров, то ее разбивать не нужно.
Рекомендуем уменьшить эти значения на 2 м 2 , если длина присоединения труб от теплого пола до коллектора превышает 15 м.
Разбивая полезную площадь пола в помещениях, старайтесь также достичь того, чтобы длина труб в этих контурах была либо одинаковой, либо разница между отдельными контурами не превышала 30 — 40 %. Как узнать длину труб в каждом контуре, читайте в 6 вопросе «Как подсчитать длину трубы?«.
12. Как подсчитать полезную площадь теплого пола?
Чтобы подсчитать полезную площадь будущего теплого пола, нужно начертить план помещения, где он будет располагаться. План лучше сделать в масштабе.
От каждой из стен помещения отступите по 30 см. Заштрихуйте получившееся пространство. Отметьте на плане участки, где будет постоянно стоять мебель: холодильник, мебельная стенка, диван, большой шкаф и т.д. Эти участки также заштрихуйте. Незаштрихованная часть плана помещения и будет той полезной площадью теплого пола, которую вы ищете.
Для наглядности давайте подсчитаем полезную площадь столовой, где будет теплый пол. Общая площадь столовой 20 м 2 , длина стен соответственно 4 м и 5 м. На кухне будет стоять кухонный гарнитур, холодильник и диван, которые отметим на плане. Не забудем отступить от стен по 30 см. Заштрихуем занятые участки. Смотрите рисунок.
А теперь подсчитаем полезную площадь теплого пола.
13. Какой общей толщины получается пирог теплого пола?
Все зависит от толщины утеплителя, так как остальные величины известны.
При следующей толщине утеплителя у вас получатся такие значения (толщина отделочного покрытия не учитывается):
14. Чем пользуетесь вы для расчета системы водяного теплого пола?
Для расчета как систем радиаторного отопления, так и для систем теплого пола мы используем программу Audytor CO компании .
Ниже мы выкладываем скриншот модуля этой программы по предварительному расчету теплого пола и скриншот модуля по расчету слоев пирога теплого пола.
При внимательном рассмотрении этих скриншотов можно понять насколько серьезным является правильный расчет теплого пола.
Также можно увидеть работу самой программы, которая делает возможным проведение визуального контроля над такими важными параметрами как длина трубы, потери давления, температура на поверхности пола, тепло, уходящее бесполезно вниз, полезный тепловой поток и т.д.
15. Как определить габариты коллекторного шкафа, чтобы разместить в нем все необходимые узлы?
Линейные размеры коллекторного шкафа
(ШРН — наружный; ШРВ — внутренний)
Модель | Длина, мм | Глубина, мм | Высота, мм |
---|---|---|---|
ШРВ1 | 670 | 125 | 494 |
ШРВ2 | 670 | 125 | 594 |
ШРВ3 | 670 | 125 | 744 |
ШРВ4 | 670 | 125 | 894 |
ШРВ5 | 670 | 125 | 1044 |
ШРВ6 | 670 | 125 | 1150 |
ШРВ7 | 670 | 125 | 1344 |
ШРН1 | 651 | 120 | 453 |
ШРН2 | 651 | 120 | 553 |
ШРН3 | 651 | 120 | 703 |
ШРН4 | 651 | 120 | 853 |
ШРН5 | 651 | 120 | 1003 |
ШРН7 | 658 | 121 | 1309 |
Подбор коллекторного шкафа
Коллекторные группы 1
(VT.594, VT59)
Модель шкафа
ШРН/ШРВ +
Combimix +
шаровый кран
ШРН/ШРВ +
Dualmix +
шаровый кран
ШРН/ШРВ + кран
16. На какой высоте нужно устанавливать коллекторный шкаф?
С одной стороны, понятно, что монтируя коллекторный шкаф, нужно учитывать высоту будущей стяжки и отделки, чтобы не получилась ситуация, когда невозможно будет открыть даже дверцу шкафа.
С другой стороны, нужно учитывать удобство обслуживания и необходимость возможной замены отдельных элементов системы с вероятностью отсоединения трубопровода.
Чем короче отрезок трубы, тем больше его жесткость и наоборот.
Учитывая этот фактор, можно сделать подъем коллекторного шкафа на 20 — 25 см от уровня чистого пола.
Однако, нельзя забывать об очень важном дизайнерском элементе. Если подъем шкафа приводит к недопустимому нарушению дизайна и невозможно решить эту задачу другим способом, опускайте шкаф к уровню пола, но с тем расчетом, чтобы он мог открываться.