Площадь теплообменника для отопления

Содержание
  1. Расчет площади теплообменника
  2. Определение количества теплоты
  3. Определение коэффициента теплопередачи
  4. Методика расчета теплообменника (площади поверхности)
  5. Как осуществляют расчет теплообменного аппарата
  6. Что такое теплообменник
  7. Расчет теплообменника для ГВС
  8. Виды теплообмена
  9. Что нужно для расчета теплообменника?
  10. Что нужно знать для правильного расчета теплообменного оборудования?
  11. Как рассчитать мощность теплообменника?
  12. Тепловой расчет теплообменника
  13. Где взять данные для расчета?
  14. Как рассчитать теплообменник пластинчатый?
  15. Остались вопросы?
  16. Типы теплообменников
  17. Коэффициент теплоотдачи в расчете теплообменников
  18. Тепловой и конструктивный расчет
  19. Гидравлический расчет
  20. Поверочный расчет
  21. Типы теплообменников для систем ГВС
  22. Исследовательские расчеты
  23. Другие расчеты
  24. Как сделать?
  25. Теплообменники «труба в трубе»
  26. Кожухотрубные теплообменники
  27. Теплообменник для воды
  28. Принцип работы теплообменника для ГВС
  29. Типы теплообменников для ГВС
  30. Преимущества пластинчатого теплообменника для ГВС:
  31. Подключение теплообменника для ГВС
  32. Расчет теплообменника для ГВС (горячей воды)
  33. Пример расчета теплообменника для горячего водоснабжения многоквартирного дома
  34. Остались вопросы?
  35. Воздушные теплообменники
  36. Применение пластинчатого теплообменника для ГВС
  37. Пластинчатые теплообменники
  38. Пластинчатый теплообменник для ГВС. На что обратить внимание при выборе.

Расчет площади теплообменника

Главное условие стабильной, эффективной работы системы теплообмена — это подбор теплообменных агрегатов с учетом точного соответствия конкретным эксплуатационным и техническим требованиям. Ключевым фактором для такого подбора является расчет площади теплообменника.

Конечно, существуют определенные стандарты, с универсальными параметрами, по которым можно подобрать оборудование для своего объекта. Тем не менее, часто в этой сфере индивидуальный подход более чем оправдывает себя. Проведение измерений и расчетов по конкретным данным позволяет получить максимальную отдачу от системы теплообмена. Кроме того, подобные вычисления попросту необходимы, если речь идет о работе по техническому заданию со строго обозначенными параметрами.

Методика расчета теплообменника предполагает несколько этапов.

Определение количества теплоты

Уравнение передачи тепла, используемое для установившихся единиц времени и процессов выглядит следующим образом:

В данном уравнении:

  • К — значение коэффициента теплопередачи (выражается в Вт/(м2/К));
  • tср — средняя разность температурных показателей между разными теплоносителями (величина может даваться как в градусах по Цельсию (0С), так и в кельвинах (К));
  • F — значение площади поверхности, для которой происходит теплообмен (значение дается в м2).

Уравнение позволяет описать процесс, в ходе которого происходит передача теплоты между теплоносителями (от горячего — к холодному). Уравнение учитывает:

  • отдачу тепла от теплоносителя (горячего) к стенке;
  • параметры теплопроводности стенки;
  • отдачу тепла от стенки к теплоносителю (холодному).

Определение коэффициента теплопередачи

Для предварительных расчетов теплообменного оборудования и разного рода проверок применяют ориентировочные значения коэффициентов, стандартизированные для определенных категорий:

  • коэффициенты теплопередачи для процесса конденсации паров воды — от 4000 до 15000 Вт/(м2К);
  • коэффициенты теплопередачи для воды, движущейся по трубам — от 1200 до 5800 Вт/(м2К);
  • коэффициенты теплопередачи от парообразного конденсата к воде — от 800 до 3500 Вт/(м2К).

Точный расчет коэффициента теплопередачи (К) производится по следующей формуле:

В данной формуле:

  • α1 — коэффициент теплоотдачи для греющего теплоносителя (выражается в Вт/(м2К));
  • α2 — коэффициент теплоотдачи для нагреваемого теплоносителя (выражается в Вт/(м2К));
  • δст — параметр толщины стенок трубы (выражается в метрах);
  • λст — коэффициент теплопроводности материала, использованного для трубы (выражается в Вт/(м*К)).

Такая формула дает «идеальный» результат, обычно несоответствующий на 100% реальному положению дел. Поэтому в формулу добавляется еще один параметр — Rзаг.

Это показатель термического сопротивления различных загрязнений, формирующихся на нагревающихся поверхностях трубы (т.е. обычной накипи и др.)

Формула для показателя загрязнения выглядит так:

В данной формуле:

  • δ1 — толщина слоя отложений на внутренней стороне трубы (в метрах);
  • δ2 — толщина слоя отложений на внешней стороне трубы (в метрах);
  • λ1 и λ2 — значения коэффициентов теплопроводности для соответствующих слоев загрязнений (выражаются в Вт/(м*К)).

Методика расчета теплообменника (площади поверхности)

Итак, мы рассчитали такие параметры, как количество теплоты (Q) и коэффициент теплопередачи (K). Для окончательного вычисления дополнительно потребуется разность температур (tср) и коэффициент теплоотдачи.

Итоговая формула расчета теплообменника пластинчатого (площади теплопередающей поверхности) выглядит так:

В данной формуле:

  • значения Q и K описаны выше;
  • значение tср (средняя разность температур) получают по формуле (среднеарифметической либо среднелогарифмической);
  • коэффициенты теплоотдачи получают двумя способами: либо с помощью эмпирических формул, либо через число Нуссельта (Nu) с использованием уравнений подобия.

Как осуществляют расчет теплообменного аппарата

Расчет теплообменника в настоящее время занимает не более пяти минут. Любая организация, производящая и продающая такое оборудование, как правило, предоставляет всем желающим свою собственную программу подбора. Ее можно бесплатно скачать с сайта компании, либо их технический специалист приедет к вам в офис и бесплатно её установит. Однако насколько корректен результат таких расчетов, можно ли ему доверять и не лукавит ли производитель, сражаясь в тендере со своими конкурентами? Проверка электронного калькулятора требует наличия знаний или как минимум понимания методики расчета современных теплообменников. Попробуем разобраться в деталях.

Что такое теплообменник

Прежде чем выполнять расчет теплообменника, давайте вспомним, а что же это за устройство такое? Тепломассообменный аппарат (он же теплообменник, он же теплообменный аппарат, или ТОА) — это устройство для передачи теплоты от одного теплоносителя другому. В процессе изменения температур теплоносителей меняются также их плотности и, соответственно, массовые показатели веществ. Именно поэтому такие процессы называют тепломассообменными.


Расчет теплообменника для ГВС

При расчете учитываются следующие параметры:

  • Количество жильцов (пользователей)
  • Нормативный суточный расход воды на одного потребителя
  • Максимальная температура теплоносителя в интересующий период
  • Температура водопроводной воды в указанный период
  • Допустимые теплопотери (нормативно – до 5%)
  • Количество точек водозабора (краны, душ, смесители)
  • Режим эксплуатации оборудования (постоянный/периодический)

Производительность теплообменника в городских квартирах (подключение к муниципальной теплосети) зачастую рассчитывается исключительно по данным зимнего периода. В это время температура теплоносителя достигает 120/80°С. Однако в весенне-осенний период показатели могут упасть до 70/40°С, в то время, как температура воды в водопроводе остается критично низкой.

Производительность теплообменника в городских квартирах (подключение к муниципальной теплосети) зачастую рассчитывается исключительно по данным зимнего периода. В это время температура теплоносителя достигает 120/80°С. Однако в весенне-осенний период показатели могут упасть до 70/40°С, в то время, как температура воды в водопроводе остается критично низкой.

В частном секторе, при монтаже теплообменника к собственной системы отопления, точность расчета на ступень выше: вы всегда уверены в работе своего котла и можете указать точную температуру теплоносителя.

Предлагаем ознакомиться: Уклон водосточного желоба, СНиП на минимальный и нормативный уклон

Наши специалисты помогут вам выполнить правильный расчет теплообменника для ГВС и подобрать наиболее подходящую модель. Расчет выполняется бесплатно и занимает не более 20 минут – укажите свои данные и мы вышлем вам результат.

Виды теплообмена

Теперь поговорим о видах теплообмена — их всего три. Радиационный — передача теплоты за счет излучения. Как пример, можно вспомнить принятие солнечных ванн на пляже в теплый летний день. И такие теплообменники даже можно встретить на рынке (ламповые нагреватели воздуха). Однако чаще всего для обогрева жилых помещений, комнат в квартире мы покупаем масляные или электрические радиаторы. Это пример другого типа теплообмена — конвекционного. Конвекция бывает естественной, вынужденной (вытяжка, а в коробе стоит рекуператор) или с механическим побуждением (с вентилятором, например). Последний тип намного эффективнее.

Однако самый эффективный способ передачи теплоты — это теплопроводность, или, как её ещё называют, кондукция (от англ. conduction — «проводимость»). Любой инженер, собирающийся провести тепловой расчет теплообменника, прежде всего задумывается о том, чтобы выбрать эффективное оборудование в минимальных габаритах. И достичь этого удаётся именно за счет теплопроводности. Примером тому служат самые эффективные на сегодняшний день ТОА — пластинчатые теплообменники. Пластинчатый ТОА, согласно определению, — это теплообменный аппарат, передающий теплоту от одного теплоносителя другому через разделяющую их стенку. Максимально возможная площадь контакта между двумя средами в совокупности с верно подобранными материалами, профилем пластин и их толщиной позволяет минимизировать размеры выбираемого оборудования при сохранении исходных технических характеристик, необходимых в технологическом процессе.

Что нужно для расчета теплообменника?

Что нужно знать для правильного расчета теплообменного оборудования?

При выборе и монтаже теплообменного оборудования следует учитывать индивидуальные особенности и условия конкретного объекта. По этой причине перед покупкой теплообменника важно провести расчет теплообменника и узнать основные характеристики системы, в которую он будет вмонтирован. Опираясь на полученные данные, можно подобрать самое подходящее устройство.

Чтобы купить подходящий теплообменник, технические характеристики которого подойдут под конкретную систему, нужно знать:

1. В каком месте будет стоять прибор, и где он будет использоваться. Это может быть вентиляционная система, горячее водоснабжение, отопление или технологические процессы.

2. Мощность теплообменника и его тепловую нагрузку. Если нет информации по тепловой нагрузке, нужно знать расход воды в теплообменнике

3. Производя расчет теплообменника пластинчатого вода-вода, масло-вода и пар-вода, следует учесть тип среды, в которой будет функционировать прибор. Также теплообменное оборудование используют в пищевой промышленности и в сложных технологических процессах.

Читайте также:  Опель астра система вентиляции отопления

4. Немаловажное значение при выборе теплообменного устройства имеет температура рабочей среды.

Благодаря этой информации можно узнать, как рассчитать теплообменник и определиться с материалом изготовления пластин и уплотнительных элементов. Также эти данные помогут подобрать компоновку, габариты рамы, число пластин и их толщину.

Как рассчитать мощность теплообменника?

Расчет мощности пластинчатого теплообменника начинается с того, что нужно знать знать объём подогреваемой среды и разницу температур между жидкостями. Мощность теплообменника высчитывается по формуле: P = 1,16 х ∆Т / (t x V), где Р – необходимая мощность теплообменника; 1,16 – специально подобранная константа; ∆Т – разница температур; t – время; V – объем.

Тепловой расчет теплообменника

Для расчета важен расход воды через теплообменник, мощность теплообменника, средняя разность температур сред и коэффициент передачи тепла. Подсчет этих характеристик совершается посредством уравнения теплового баланса:

Q = Q1 = Q2 Q — объём теплоты передаваемое или принимаемое теплоносителем(Вт). Из этого выходит: Q1 = G1c1·(t1н – t1к) и Q2 = G2c2·(t2к – t2н) где G1,2 – расход воды в теплообменнике [кг/ч]; с1,2 – теплоемкости горячего и холодного теплоносителей [Дж/кг·град]; t1,2 н – начальная температура горячего и холодного теплоносителей [°C]; t1,2 к – конечная температура горячего и холодного теплоносителей [°C];

Где взять данные для расчета?

• в ТУ предприятия, которое занимается теплоснабжением; • в техзадании, которое составляется инженером и главным технологом; • в проекте теплообменной системы или в пункте, где находится устройство; • в договоре с компанией, которая отвечает за теплоснабжение.

Как рассчитать теплообменник пластинчатый?

Расчет теплообменного оборудования – это сложный и длительный процесс, в котором легко допустить ошибку. Поэтому расчет теплообменника должен проводить исключительно специалист с опытом. В большинстве случаев этим занимается официальный дилер или специалист от завода-производителя теплообменного оборудования. Для того, чтобы свести к минимуму возможные ошибки в расчетах, профессионалы используют специальные программы и формулы.

В таких программах имеются специальные таблицы, куда вводятся исходные данные, после чего в автоматическом режиме выдается несколько правильных вариантов расчета.

Официальные дилеры производят расчеты намного быстрее, чем специалисты завода-изготовителя. Кроме теплообменного оборудования выдается лист расчета устройства. По нему можно будет легко определить, соответствуют ли параметры выбранного прибора техническим условиям конкретной системы, в которой монтируется теплообменник. Важно понимать, что самостоятельно провести расчет теплообменника практически невозможно, так как необходимые для этого данные скрыты, и получить их может не каждый человек.

Закажите расчёт сейчасОсуществляем подбор за 1 час

Остались вопросы?

Вы всегда можете получить консультацию по расчету

пластинчатого, паяного, кожухотрубного теплообменника, а также специального теплообменного оборудования у наших инженеров совершенно бесплатно.

определится какой именно вариант больше подходит для
Вашего объекта
, учитывая технические характеристики и пожелания. Обращайтесь по номеру
8-804-333-71-04 (звонок бесплатный)
, или же напишите
на электронную почту С наиболее полной информацией о теплообменном оборудовании Вы всегда можете ознакомиться на нашем сайте

Типы теплообменников

Прежде чем проводить расчет теплообменника, определяются с его типом. Все ТОА можно разделить на две большие группы: рекуперативные и регенеративные теплообменники. Основное отличие между ними заключается в следующем: в рекуперативных ТОА теплообмен происходит через разделяющую два теплоносителя стенку, а в регенеративных две среды имеют непосредственный контакт между собой, часто смешиваясь и требуя последующего разделения в специальных сепараторах. Регенеративные теплообменники подразделяются на смесительные и на теплообменники с насадкой (стационарной, падающей или промежуточной). Грубо говоря, ведро с горячей водой, выставленное на мороз, или стакан с горячим чаем, поставленный остужаться в холодильник (никогда так не делайте!) — это и есть пример такого смесительного ТОА. А наливая чай в блюдце и остужая его таким образом, мы получаем пример регенеративного теплообменника с насадкой (блюдце в этом примере играет роль насадки), которая сначала контактирует с окружающим воздухом и принимает его температуру, а потом отбирает часть теплоты от налитого в него горячего чая, стремясь привести обе среды в режим теплового равновесия. Однако, как мы уже выяснили ранее, эффективнее использовать теплопроводность для передачи теплоты от одной среды к другой, поэтому более полезные в плане теплопередачи (и широко используемые) ТОА на сегодняшний день – конечно же, рекуперативные.

Коэффициент теплоотдачи в расчете теплообменников

В химической технологии часто можно встретить случаи обмена теплом между 2-мя текучими средами через разделяющую стенку. Процесс теплообмена проходит в три этапа. Поток теплоэнергии для установившегося процесса характеризуется неизменностью.

Сначала рассчитывается тепловой поток, проходящий от одной среды к стенке, затем через стенку поверхности, передающей тепло, а после этого от стенки к другой рабочей среде.

Таким образом, расчеты проводятся с помощью трех формул

Результатом решения уравнений является формула

Тепловой и конструктивный расчет

Любой расчет рекуперативного теплообменника можно провести на основе результатов теплового, гидравлического и прочностного вычислений. Они являются основополагающими, обязательны при проектировании нового оборудования и ложатся в основу методики расчета последующих моделей линейки однотипных аппаратов. Главной задачей теплового расчета ТОА является определение необходимой площади теплообменной поверхности для устойчивой работы теплообменника и поддержания необходимых параметров сред на выходе. Довольно часто при таких расчетах инженеры задаются произвольными значениями массогабаритных характеристик будущего оборудования (материал, диаметр труб, размеры пластин, геометрия пучка, тип и материал оребрения и др.), поэтому после теплового обычно проводят конструктивный расчет теплообменника. Ведь если на первой стадии инженер посчитал необходимую площадь поверхности при заданном диаметре трубы, например, 60 мм, и длина теплообменника при этом получилась порядка шестидесяти метров, то логичнее предположить переход к многоходовому теплообменнику, либо к кожухотрубному типу, либо увеличить диаметр трубок.

Гидравлический расчет

Гидравлические или гидромеханические, а также аэродинамические расчеты проводят с целью определить и оптимизировать гидравлические (аэродинамические) потери давления в теплообменнике, а также подсчитать энергетические затраты на их преодоление. Расчет любого тракта, канала или трубы для прохода теплоносителя ставит перед человеком первостепенную задачу — интенсифицировать процесс теплообмена на данном участке. То есть одна среда должна передать, а другая получить как можно больше тепла на минимальном промежутке его течения. Для этого часто применяют дополнительную поверхность теплообмена, в виде развитого оребрения поверхности (для отрыва пограничного ламинарного подслоя и усиления турбулизации потока). Оптимальное балансовое соотношение гидравлических потерь, площади теплообменной поверхности, массогабаритных характеристик и снимаемой тепловой мощности является результатом совокупности теплового, гидравлического и конструктивного расчета ТОА.

Поверочный расчет

Поверочный расчет теплообменника проводят в случае, когда надо заложить запас по мощности либо по площади теплообменной поверхности. Поверхность резервируют по разным причинам и в разных ситуациях: если так требуется по техзаданию, если производитель решает внести дополнительный запас для того, чтобы быть точно уверенным в том, что такой теплообменник выйдет на режим, и минимизировать ошибки, допущенные при расчетах. В каких-то случаях резервирование требуется для округления результатов конструктивных размеров, в других же (испарители, экономайзеры) в расчет мощности теплообменника специально вводят запас по поверхности, на загрязнение компрессорным маслом, присутствующим в холодильном контуре. Да и низкое качество воды необходимо принимать во внимание. Через некоторое время бесперебойной работы теплообменников, особенно при высоких температурах, накипь оседает на теплообменной поверхности аппарата, снижая коэффициент теплопередачи и неминуемо приводя к паразитному снижению теплосъёма. Поэтому грамотный инженер, проводя расчет теплообменника «вода-вода», уделяет особое внимание дополнительному резервированию поверхности теплообмена. Поверочный расчет также проводят для того, чтобы посмотреть, как выбранное оборудование будет работать на иных, вторичных режимах. Например, в центральных кондиционерах (приточных установках) калориферы первого и второго подогрева, использующиеся в холодный период года, нередко задействуют и летом для охлаждения поступающего воздуха, подавая в трубки воздушного теплообменника холодную воду. Как они будут функционировать и какие будут выдавать параметры, позволяет оценить поверочный расчет.

Типы теплообменников для систем ГВС

Среди множества типов различных агрегатов бытовых условиях используются только два – пластинчатые и кожухотрубные. Последние практически исчезли с рынка вследствие больших габаритов и низкого КПД.

Пластинчатый ГВС представляет собой ряд гофрированных пластин на жесткой станине. Все пластины идентичны по размерам и конструкции, но следуют в зеркальном отражении друг к другу и разделяются специальными прокладками – резиновыми и стальными. В результате строгого чередования между парными пластинами образуются полости, которые заполняются теплоносителем или нагреваемой жидкостью – смешение сред полностью исключено.

Чем выше количество или размер пластин в устройстве – тем больше площадь полезного теплообмена и выше производительность. У многих моделей на направляющей балке между станиной и запорной (крайней) плитой остается достаточно пространства, чтобы установить несколько плит аналогичного типоразмера. В этом случае дополнительные плиты всегда устанавливаются парами, иначе потребуется менять направление «вход-выход» на запорной плите.

Читайте также:  Потребление электроэнергии электрическими теплыми полами

Все пластинчатые устройства можно разделить на:

Предлагаем ознакомиться: Оптимальная высота полков в бане

  • Разборные (состоят из отдельных плит)
  • Паяные (герметичный корпус, не разборные)

Преимущество разборных агрегатов заключается в возможности их доработки (добавление или удаление пластин) – в паяных моделях эта функция не предусмотрена. В регионах с низким качеством водопроводной воды такие экземпляры можно разбирать и очищать от мусора и отложений вручную.

Среди множества типов различных теплообменников в бытовых условиях используются только два – пластинчатые и кожухотрубные. Последние практически исчезли с рынка вследствие больших габаритов и низкого КПД.

Пластинчатый теплообменник ГВС представляет собой ряд гофрированных пластин на жесткой станине. Все пластины идентичны по размерам и конструкции, но следуют в зеркальном отражении друг к другу и разделяются специальными прокладками – резиновыми и стальными. В результате строгого чередования между парными пластинами образуются полости, которые заполняются теплоносителем или нагреваемой жидкостью – смешение сред полностью исключено.

Чем выше количество или размер пластин в теплообменнике – тем больше площадь полезного теплообмена и выше производительность теплообменника. У многих моделей на направляющей балке между станиной и запорной (крайней) плитой остается достаточно пространства, чтобы установить несколько плит аналогичного типоразмера. В этом случае дополнительные плиты всегда устанавливаются парами, иначе потребуется менять направление «вход-выход» на запорной плите.

Схема и принцип работы пластинчатого теплообменника ГВС

Все пластинчатые теплообменники можно разделить на:

  • Разборные (состоят из отдельных плит)
  • Паяные (герметичный корпус, не разборные)

Преимущество разборных теплообменников заключается в возможности их доработки (добавление или удаление пластин) – в паяных моделях эта функция не предусмотрена. В регионах с низким качеством водопроводной воды такие теплообменники можно разбирать и очищать от мусора и отложений вручную.

Более высокой популярностью пользуются паяные пластинчатые теплообменники – из-за отсутствия зажимной конструкции они имеют более компактные размеры, чем разборная модель аналогичной производительности. производит подбор и продажу паяных пластинчатых теплообменников ведущих мировых брендов – Alfa Laval, SWEP, Danfoss, ONDA, KAORI, GEA, WTT, Kelvion (Кельвион Машимпэкс), Ридан. У нас вы можете купить теплообменник ГВС любой производительности для частного дома и квартиры.

  • Небольшие габариты и вес
  • Более строгий контроль качества
  • Продолжительный срок службы
  • Устойчивость к высоким давлениям и температурам

Очистка паяных теплообменников выполняется безразборным методом. Если по истечении определенного периода эксплуатации начали снижаться теплотехнические характеристики, то в аппарат на несколько часов заливается раствор реагента, удаляющего все отложения. Перерыв в работе оборудования составит не более 2-3 часов.

Исследовательские расчеты

Исследовательские расчеты ТОА проводят на основе полученных результатов теплового и поверочного расчетов. Они необходимы, как правило, для внесения последних поправок в конструкцию проектируемого аппарата. Их также проводят с целью корректировки каких-либо уравнений, закладываемых в реализуемой расчетной модели ТОА, полученной эмпирическим путём (по экспериментальным данным). Выполнение исследовательских расчетов предполагает проведение десятков, а иногда и сотен вычислений по специальному плану, разработанному и внедрённому на производстве согласно математической теории планирования экспериментов. По результатам выявляют влияние различных условий и физических величин на показатели эффективности ТОА.

Другие расчеты

Выполняя расчет площади теплообменника, не стоит забывать и о сопротивлении материалов. Прочностные расчеты ТОА включают проверку проектируемого агрегата на напряжение, на кручение, на прикладывание максимально допустимых рабочих моментов к деталям и узлам будущего теплообменника. При минимальных габаритах изделие должно быть прочным, устойчивым и гарантировать безопасную работу в различных, даже самых напряженных условиях эксплуатации.

Динамический расчет проводится с целью определения различных характеристик теплообменного аппарата на переменных режимах его работы.

Как сделать?

Для того чтобы самостоятельно сделать теплообменник для горячей воды от отопления, в первую очередь стоит определиться с выбором типа устройства. Проще всего будет сделать устройство бойлерного типа. Агрегат представляет собой бочку с теплоносителем, внутри которой будет расположен змеевик для нагрева ГВС.

Для выполнения работ понадобятся следующие материалы и изделия:

  • металлическая трубка и бак;
  • анод;
  • регулятор мощности.

Трубка скручивается в спираль, в емкости выполняются два отверстия, нижнее будет использовано для подвода холодной воды, верхнее – для горячей. Можно также сделать так называемую трубную доску. Такое изделие состоит из трубок, которые присоединяются к двум пластинкам с отверстиями. Пластины отсекают друг от друга емкости, в первой происходит поступление холодной воды и вывод нагретой, вторая емкость используется для циркуляции воды, увеличивая длину трубок и площадь контакта. Такое устройство опускается в корпус теплоносителя, который нагреет воду в трубках.

Теплообменники «труба в трубе»

Рассмотрим самый простой расчет теплообменника «труба в трубе». Конструктивно данный тип ТОА максимально упрощен. Во внутреннюю трубу аппарата пускают, как правило, горячий теплоноситель, для минимизации потерь, а в кожух, или в наружную трубу, запускают охлаждающий теплоноситель. Задача инженера в этом случае сводится к определению длины такого теплообменника исходя из рассчитанной площади теплообменной поверхности и заданных диаметров.

Здесь стоит добавить, что в термодинамике вводится понятие идеального теплообменника, то есть аппарата бесконечной длины, где теплоносители работают в противотоке, и между ними полностью срабатывается температурный напор. Конструкция «труба в трубе» ближе всего удовлетворяет этим требованиям. И если запустить теплоносители в противотоке, то это будет так называемый «реальный противоток» (а не перекрёстный, как в пластинчатых ТОА). Температурный напор максимально эффективно срабатывается при такой организации движения. Однако выполняя расчет теплообменника «труба в трубе», следует быть реалистами и не забывать о логистической составляющей, а также об удобстве монтажа. Длина еврофуры — 13,5 метров, да и не все технические помещения приспособлены к заносу и монтажу оборудования такой длины.

Кожухотрубные теплообменники

Поэтому очень часто расчет такого аппарата плавно перетекает в расчет кожухотрубного теплообменника. Это аппарат, в котором пучок труб находится в едином корпусе (кожухе), омываемым различными теплоносителями, в зависимости от назначения оборудования. В конденсаторах, например, хладагент запускают в кожух, а воду – в трубки. При таком способе движения сред удобнее и эффективнее контролировать работу аппарата. В испарителях, наоборот, хладагент кипит в трубках, а они при этом омываются охлаждаемой жидкостью (водой, рассолами, гликолями и др.). Поэтому расчет кожухотрубного теплообменника сводится к минимизации габаритов оборудования. Играя при этом диаметром кожуха, диаметром и количеством внутренних труб и длиной аппарата, инженер выходит на расчетное значение площади теплообменной поверхности.

Теплообменник для воды

Принцип работы теплообменника для ГВС

Теплообменник для горячего водоснабжения (ГВС) предназначается для передачи тепла от греющего теплоносителя к нагреваемой среде. Подача горячей воды в контур теплообменника осуществляется от котла или теплосети, а холодная вода поступает от системы холодного водоснабжения.

Установка теплового оборудования в котельной позволяет значительно сэкономить на затратах для обогрева помещений зданий.

Типы теплообменников для ГВС

Кожухотрубный теплообменник для горячего водоснабжения, в котором жидкости двигались в герметичном корпусе (кожухе) по теплопередающим трубкам, устарели. Эта конструкция давала эффект от своей работы, тем не менее, была довольно-таки затратной в эксплуатации.

Сейчас широко выпускаются пластинчатые теплообменники разборного или паяного типа.

Теплообменник ГВС пластинчатого типа работает по принципу теплового обмена жидкостей между собой (вода-вода), которые движутся противоположно друг другу, и соответственно, с разными значениями температуры. Пластины и прокладки могут выполняться из различных материалов. Выбор будет основываться на предназначении теплообменного устройства и сфере его применения.

Например, пластинчатый теплообменник для ГВС и системы отопления выступает в качестве теплосилового прибора. Как правило, его пластины изготавливаются из нержавейки, а прокладки из высокопрочной резины EPDM или NBR.

Если теплообменное оборудование оснащается прокладками из резины NBR, то устройство может функционировать с носителем тепла, температура которого составляет 110 градусов. Резина EPDM выдерживает температуру до 170 градусов.

Паяный теплообменник более компактный и устойчивый к перепадам давления и гидроударам, однако не такой универсальный при сервисном обслуживании.

Преимущества пластинчатого теплообменника для ГВС:

  • — Легкоразборная конструкция в случае засорения внутреннего контура и пластин теплообмена, сборка и разборка возможна без привлечения помощи специалистов;
  • — Эксплуатационный срок службы пластинчатого теплообменника составляет порядка десятка лет, а расходные материалы (прокладки) имеющие меньший срок службы, легко подлежат замене, и совсем недорогие;
  • — Скоростная турбулентная рабочая среда минимизирует процесс отложению солей на важных узлах аппарата;
  • — Компактный вид агрегата;
  • — Высокий КПД тепловой передачи;
  • — Минимальные потери тепла и перепады давления.

Подключение теплообменника для ГВС

Система горячего водоснабжения может подключаться к тепловым сетям по параллельной или двухступенчатой схеме.

В первом случае используется один теплообменник, который параллельно подключается к системе отопления, то есть в одну линию.

Читайте также:  Концессия водоснабжения что означает

Стандартная схема подключения

Во втором случае монтируется два теплообменных прибора. Чтобы правильно определить тип схемы, нужно рассчитать отношение тепловой нагрузки на отопительную систему к тепловой нагрузке, которая приходится на ГВС.

Двухступенчатая схема подключения

Для того чтобы произвести расчет теплообменного устройства, которое подключается параллельно, нужно знать температуры в обратном и подающем трубопроводе. Также для этого определяется среднечасовой расход горячей воды. Чтобы рассчитать подходящий теплообменник для двухступенчатой схемы подключения, нужно узнать температуру тепловой сети в зимний период времени и тепловую нагрузку на отопительную систему.

Расчет теплообменника для ГВС (горячей воды)

Расчет теплообменного оборудования производится согласно СНиП, которые были приняты правительством России с учетом среднечасового потребления. Расчет оборудования для передачи тепла системе водоснабжения отличается от других объектов, которые потребляют воду.

Для того чтобы узнать среднечасовой расход на систему горячего водоснабжения, нужно четко понимать, что потребителями тепла являются не сами приборы, а люди. По этой причине, чтобы правильно произвести расчет приборов, необходимо указывать точное количество проживающих в доме людей.
Минимальные данные для расчета:

  1. Объем воды на одного потребителя (стандартно 120 л. в сутки);
  2. Максимальная температура по греющей и нагреваемой стороне;
  3. Количество потребителей и точек водоразбора (кранов, душевых и кухонь).

Все данные для расчета можно найти в Технических условиях, которые находятся в организации, занимающейся теплоснабжением. Обратившись к нам, мы подберем и рассчитаем оборудование под Ваш объект, которое 100% будет работать.

Пример расчета теплообменника для горячего водоснабжения многоквартирного дома

Расчет осуществлялся на 160 квартир по стандартному графику 90/70. Стоимость 94 300,00 руб.

Остались вопросы?

Вы всегда можете получить консультацию по подбору теплообменника

на систему ГВС у нашего инженера совершенно бесплатно.

определится, какой именно вариант больше подходит для
Вашего объекта
, учитывая технические характеристики и пожелания. Обращайтесь по номеру
8-804-333-71-04 (звонок бесплатный)
или же напишите
на электронную почту
С наиболее полной информацией о теплообменном оборудовании Вы всегда можете ознакомиться на нашем сайте

Воздушные теплообменники

Один из самых распространённых на сегодняшний день теплообменных аппаратов – это трубчатые оребрённые теплообменники. Их ещё называют змеевиками. Где их только не устанавливают, начиная от фанкойлов (от англ. fan + coil, т.е. «вентилятор» + «змеевик») во внутренних блоках сплит-систем и заканчивая гигантскими рекуператорами дымовых газов (отбор теплоты от горячего дымового газа и передача его на нужды отопления) в котельных установках на ТЭЦ. Вот почему расчет змеевикового теплообменника зависит от того применения, куда этот теплообменник пойдёт в эксплуатацию. Промышленные воздухоохладители (ВОПы), устанавливаемые в камерах шоковой заморозки мяса, в морозильных камерах низких температур и на других объектах пищевого холодоснабжения, требуют определённых конструктивных особенностей в своём исполнении. Расстояния между ламелями (оребрением) должно быть максимальным, для увеличения времени непрерывной работы между циклами оттайки. Испарители для ЦОДов (центров обработки данных), наоборот, делают как можно более компактными, зажимая межламельные расстояния до минимума. Такие теплообменники работают в «чистых зонах», окруженные фильтрами тонкой очистки (вплоть до класса HEPA), поэтому такой расчет трубчатого теплообменника проводят с упором на минимизацию габаритов.

Применение пластинчатого теплообменника для ГВС

Нагрев воды от теплосети полностью обоснован с экономической точки зрения – в отличие от классических водонагревательных котлов, использующих газ или электроэнергию, устройство работает исключительно на отопительную систему. В результате конечная стоимость каждого литра горячей воды оказывается для домовладельца на порядок ниже.
Пластинчатый вариант для горячего водоснабжения использует тепловую энергию теплосети для нагрева обычной водопроводной воды. Нагреваясь от пластин устройства, горячая вода поступает к точкам водоразбора – кранам, смесителям, душевую в ванной комнате и пр.

Нагрев воды от теплосети полностью обоснован с экономической точки зрения – в отличие от классических водонагревательных котлов, использующих газ или электроэнергию, теплообменник работает исключительно на отопительную систему. В результате конечная стоимость каждого литра горячей воды оказывается для домовладельца на порядок ниже.

Пластинчатый теплообменник для горячего водоснабжения использует тепловую энергию теплосети для нагрева обычной водопроводной воды. Нагреваясь от пластин теплообменника, горячая вода поступает к точкам водоразбора – кранам, смесителям, душевую в ванной комнате и пр.

Важно учитывать, что вода-теплоноситель и нагреваемая вода никак не контактируют в теплообменнике: две среды разделены пластинами теплообменного аппарата, через которые осуществляется теплообмен.

Использовать воду из системы отопления в бытовых нуждах напрямую нельзя – это нерационально и зачастую даже вредно:

  • Процесс водоподготовки для котельного оборудования – достаточно сложная и дорогая процедура.
  • Для умягчения воды часто используются химические реагенты, которые негативно сказываются на здоровье.
  • В трубах отопления с годами скапливается колоссальный объем вредных отложений.

Однако использовать воду отопительной системы косвенно никто не запрещал – теплообменник ГВС обладает достаточно высоким КПД и полностью обеспечит вашу потребность в горячей воде.

Пластинчатые теплообменники

В настоящее время стабильным спросом пользуются пластинчатые теплообменники. По своему конструктивному исполнению они бывают полностью разборными и полусварными, меднопаяными и никельпаяными, сварными и спаянными диффузионным методом (без припоя). Тепловой расчет пластинчатого теплообменника достаточно гибок и не представляет особой сложности для инженера. В процессе подбора можно играть типом пластин, глубиной штамповки каналов, типом оребрения, толщиной стали, разными материалами, а самое главное – многочисленными типоразмерными моделями аппаратов разных габаритов. Такие теплообменники бывают низкими и широкими (для парового нагрева воды) или высокими и узкими (разделительные теплообменники для систем кондиционирования). Их часто используют и под среды с фазовым переходом, то есть в качестве конденсаторов, испарителей, пароохладителей, предконденсаторов и т. д. Выполнить тепловой расчет теплообменника, работающего по двухфазной схеме, немного сложнее, чем теплообменника типа «жидкость-жидкость», однако для опытного инженера эта задача разрешима и не представляет особой сложности. Для облегчения таких расчетов современные проектировщики используют инженерные компьютерные базы, где можно найти много нужной информации, в том числе диаграммы состояния любого хладагента в любой развёртке, например, программу CoolPack.

Пластинчатый теплообменник для ГВС. На что обратить внимание при выборе.


Пластинчатый теплообменник для системы горячего водоснабжения (ГВС) представляет собой оборудование, предназначенное для нагрева воды (в данном случае для системы ГВС). Он состоит из пакета пластин, стянутых между двух плит стяжным крепежом.
С одной стороны пластины протекает горячая вода, идущая от источника тепла (котельная, ТЭЦ, бытовой котел и т. д.), с другой — холодная вода, которая, нагреваясь идет в систему ГВС на разбор горячей воды (ванные, душевые, кухни)

При подборе теплообменного оборудования нужно определится с исходными данными для расчета:

  1. Тип помещения, где будет установлен теплообменник — могут быть столовые, рестораны, душевые в гостиницах и на производстве, частные дома и многоквартирные комплексы и т. д.
  1. Количество точек водоразбора — это количество мест, где необходима горячая вода. К примеру, в обычной однокомнатной квартире две точки водоразбора горячей воды — кухня и ванная.
  1. Если в качестве источника тепла используется центральное теплоснабжение, к примеру районная котельная, то необходимо учитывать по какому графику эта котельная работает летом. Так как летом отсутствует отопление, то температурный график работы котельной будет 70 С на подаче и 40 С в обратной линии и теплообменник нужно рассчитывать на “худшие” условия.
  1. При расчете нужно учитывать пиковые нагрузки работы ГВС. Например, в многоквартирных домах утром и вечером нагрузка увеличивается, либо когда заканчивается смена на заводе, и вся бригада принимает душ.

Температура горячей воды на выходе из теплообменника по СанПиН 2.1.4.2496-09 должна быть не ниже 60 С для предотвращения появления бактерий — легионелл, которые размножаются в воде с температурой ниже 60 С. Верхний предел температуры горячей воды СанПиН 2.1.4.2496-09 устанавливает не больше 75 С. Выше появляется риск получения термического ожога.

Мы советуем при подборе теплообменников для ГВС выбирать разборные пластинчатые теплообменники. Зачастую вода, поступающая в теплообменник, предварительно химически не очищается от примесей, содержащихся в воде (накипь, органические отложения, ржавчина). В результате со временем на пластинах откладываются загрязнения, уменьшающие теплопередающие качества теплообменника. В конечном итоге, это может привести к выходу его из строя. Поэтому теплообменник необходимо периодически промывать — мы советуем не реже 1 раза в год. Промывку разборного теплообменника проводить намного легче чем паяного. Промывка производиться следующим образом: теплообменник разбирается, каждая пластина замачивается в промывочной жидкости, далее очищается гидродинамическим способом, после теплообменник собирается, опрессовывается и запускается в работу. При этом, Вы можете визуально оценить качество очистки. В паяных теплообменниках промывка проводится безразборным способом, при помощи специальных промывочных установок и проконтролировать качество очистки не получится.

Ниже приведен пример расчета теплообменника для системы ГВС, с расходом 2 т/ч по нагреваемой стороне. Цена 41 880,00 руб., срок изготовления 1 день.

Оцените статью