Потери по длине водоснабжение

Онлайн расчет потерь напора по длине

Формулы для расчета потерь давления по длине

Данная автоматизированная система позволяет произвести расчет потерь напора по длине online. Расчет производится для трубопровода, круглого сечения, одинакового по всей длине диаметра, с постоянным расходом по всей длине (утечки или подпитки отсутствуют). Расчет производится для указанных жидкостей при температуре 20 град. С. Если вы хотите рассчитать потери напора при другой температуре, или для жидкости отсутствующей в списке, перейдите по указанной выше ссылке — Я задам кинематическую вязкость и эквивалентную шероховатость самостоятельно.

Для получения результата необходимо правильно заполнить форму и нажать кнопку рассчитать. В ходе расчета значения всех величин переводятся в систему СИ. При необходимости полученную величину потерь напора можно перевести в потери давления.

Порядок расчета потерь напора

    Вычисляются значения:
  • средней скорости потока где Q — расход жидкости через трубопровод, A — площадь живого сечения, A=πd 2 /4, d — внутренний диаметр трубы, м
  • числа Рейнольдса — Re где V — средняя скорость течения жидкости, м/с, d — диаметр живого сечения, м, ν — кинематический коэффициент вязкости, кв.м/с, Rг — гидравлический радиус, для круглой трубы Rг=d/4, d — внутренний диаметр трубы, м

Определяется режим течения жидкости и выбирается формула для определения коэффициента гидравлического трения.

  • Для ламинарного течения Re
  • Для переходного режима 2000
  • Для турбулентного течения Re>4000 универсальная формула Альтшуля. где к=Δ/d, Δ — абсолютная эквивалентная шероховатость.

Потери напора по длине трубопровода вычисляются по формуле Дарси — Вейсбаха.

Потери напора и давления связаны зависимостью.

Потери давления по длине можно вычислить используя формулу Дарси — Вейсбаха.

После получения результатов рекомендуется провести проверочные расчеты. Администрация сайта за результаты онлайн расчетов ответственности не несет.

Как правильно заполнить форму

Правильность заполнения формы определяет верность конечного результата. Заполните все поля, учитывая указанные единицы измерения. Для ввода чисел с десятичной частью используйте точки.

Потери по длине водоснабжение

В этой статье мы решим задачку на потерю напора в трубопроводе. Данная статья поможет вам понять, как идет сопротивление движению потока. На реальных цифрах, опишу алгоритм как это делать. Используем основные формулы.

Разберем простой пример с трубой, как видно на изображении в начале трубы насос потом идет манометр, который позволяет измерить давление жидкости в начале трубы. Через определенную длину установлен второй манометр, который позволяет измерить давление в конце трубы. Ну и в самом конце стоит кран. Эта схема достаточно проста, и я попытаюсь привести примеры. И так начнем.

Вообще существует не один способ как узнать потерю напора: Способ, когда известно давление вначале и в конце трубы, можно вычислить потерю напора по формуле: М1-М2=Давление, то есть эта разница между двумя манометрами. Допустим у нас получилось, грубо говоря 0,1 МПа, что составляет одну атмосферу. Это значит у нас потеря напора по длине составляет 0,1 МПа. Обратите внимание, мы можем указывать потерю напора по двум величинам, это по гидростатическому давлению, что составляет 0,1 МПа и по высоте напора водного столба в метрах, что составляет 10 метров. Как я не однократно говорил каждые 10 метров это одна атмосфера давления.

Читайте также:  Терморегулятор для теплого пола eastec как подключить

Существует ряд методов, как рассчитать потерю напора не имея манометров на трубах. Ученые исследователи приготовили для нашего пользования замечательные формулы и цифры, которые нам пригодятся.

Существует хорошая формула которая позволяет вычислить потерю напора по длине трубопровода.

h-потеря напора здесь она измеряется в метрах.
λ-коеффициент гидравлического трения, находится дополнительными формулами о которых опишу ниже.
L-длина трубопровода измеряется в метрах.
D-внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах.
V-скорость потока жидкости. Измеряется [Метр/секунда].
g-ускорение свободного падения равен 9,81 м/с 2

А теперь поговорим о коэффициенте гидравлического трения.

Формулы нахождения этого коэффициента зависит от числа Рейнольдса и эквивалента шероховатости труб.

Напомню эту формулу (она применима только к круглым трубам):

V-Скорость потока жидкости. Измеряется [Метр/секунда].
D-Внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах.
ν-Кинематическая вязкость. Это обычно для нас готовая цифра, находится в специальных таблицах.

Далее находим формулу для нахождения коэффициента гидравлического трения по таблице:

Здесь Δэ — Эквивалент шероховатости труб. Эта величина в таблицах указывается в милиметрах, но вы когда будете вставлять в формулу обязательно переводите в метры. Вообще не забывайте соблюдать пропорциональность единиц измерения и не смешивайте в формулах разных типа [мм] с [м].

d-внутренний диаметр трубы, то есть диаметр потока жидкости.

Также хочу подметить, что подобные величины по шероховатости бывают абсолютными и относительными или даже есть относительные коэффициенты. Поэтому когда если будете искать таблицы с величинами, то величина эта должа называться «эквивалентом шероховатости труб» и не как иначе, а то результат будет ошибочный. Эквивалент означает — средняя высота шероховатости.

В некоторых ячейках таблицы указаны две формулы, вы можете считать на любой выбранной, они почти дают одинаковый результат.

Таблица: (Эквивалент шероховатости)

Таблица: (Кинематическая вязкость воды)

А теперь давайте решим задачу:

Найти потерю напора по длине при движении воды по чугунной новой трубе D=500мм при расходе Q=2 м 3 /с, длина трубы L=900м, температура t=16°С.

Дано:
D=500мм=0.5м
Q=2 м 3 /с
L=900м
t=16°С
Жидкость: H2O
Найти: h-?

Решение: Для начала найдем скорость потока в трубе по формуле:

Сдесь ω — площадь сечения потока. Находится по формуле:

ω=πR 2 =π(D 2 /4)=3.14*(0,5 2 /4)=0,19625 м 2

Далее находим число Рейнольдса по формуле:

Читайте также:  Как украсить стояки отопления

Re=(V*D)/ν=(10,19*0.5)/0,00000116=4 392 241

ν=1,16*10 -6 =0,00000116. Взято из таблицы. Для воды при температуре 16°С.

Δэ=0,25мм=0,00025м. Взято из таблицы, для новой чугунной трубы.

Далее сверяемся по таблице где находим формулу по нахождению коэффициента гидравлического трения.

Далее завершаем формулой:

h=λ*(L*V 2 )/(D*2*g)=0,01645*(900*10,19 2 )/(0,5*2*9,81)=156,7 м.

Ответ: 156,7 м. = 1,567 МПа.

Давайте рассмотрим пример, когда труба идет вверх под определенным углом.

В этом случае нам к обычной задаче нужно прибавить высоту(в метрах) к потери напора. Если труба будет идти на спуск в низ, то тут необходимо вичитать высоту.

Чтобы в ручную не считать всю математику я приготовил специальную программу:

Что такое потери напора?

Третья статья в цикле статей по теоретическим основам гидравлики посвящена определению потерь напора.

Как рассказывалось ранее, при своем движении жидкость испытывает сопротивление, что выражается затратами ее энергии, т.е. затратами ее напора, что называют потерями напора.

Потери напора принципиально делятся на два типа:

  1. Местные (на рисунке обведены красным)
  2. Потери по длине (на рисунке подчеркнуты зеленым)

Местные потери конкретно на данном рисунке: поворот, задвижка (условное обозначение по ГОСТ – «бантик»), еще один поворот и внезапное (т.е. не плавное) расширение.

1. Местные потери напора (говорят также потери напора на местные сопротивления) – это потери напора, которые происходят в основном из-за вихреобразования в конкретных местах трубопровода (потому и «местные»). Любое препятствие на пути движения потока жидкости является местным сопротивление. Чем сильнее деформируется поток, тем больше будет потеря напора. Например, на рисунке ниже показано внезапное сужение трубопровода. Хорошо видны 4 вихревые зоны до и после сужения.

(говорят также потери напора на местные сопротивления) – это потери напора, которые происходят в основном из-за вихреобразования в конкретных местах трубопровода (потому и «местные»). Любое препятствие на пути движения потока жидкости является местным сопротивление. Чем сильнее деформируется поток, тем больше будет потеря напора. Например, на рисунке ниже показано внезапное сужение трубопровода. Хорошо видны 4 вихревые зоны до и после сужения.

Местную потерю напора можно определить, зная коэффициент сопротивления для данного сопротивления (обозначается буквой дзэта ζ, не имеет размерности) и среднюю скорость потока в сопротивлении V.

(g – ускорение свободного падения, g = 9,81 м/с 2 , для быстрых подсчетов можно округлить до 10 м/с 2 )

Пример. Определить потерю напора в вентиле, установленном на трубе внутренним диаметром d = 51 мм, при расходе Q = 2 л/с.

Сначала по уравнению неразрывности (ссылка на статью 2) определим среднюю скорость движения жидкости.

V = Q / ω = 4 · Q / 3,14 · d² = 4 · 0,002 / 3,14 · 0,051² = 0,98 м/с

Теперь необходим коэффициент сопротивления вентиля. Такие данные берут из гидравлических справочников или у производителей конкретной арматуры. По справочным данным находим, что коэффициент местного сопротивления вентиля равен 6.

Тогда потеря напора на вентиле: hвент = ζ · V²/ 2 · g = 6 · 0,98² / 2 · 10 = 0,29 м.

Читайте также:  Как правильно обвязать электрокотел отопления схема

Иллюстрация местных потерь напора

При расчете трубопроводных систем (внутренний водопровод здания, наружная водопроводная сеть и т.п.) обычно высчитывают не все сопротивления (так как их может быть очень много), а только самые существенные, создающие наибольшие сопротивления: например, счетчик воды. Потеря напора на остальных местных сопротивлениях учитывается коэффициентом, на который умножается значение потерь напора по длине (1,05 – 1,15 для наружных сетей, 1,1 – 1,3 для внутренних сетей здания).

2. Потери напора по длине – потери напора на участках трубопровода. Возникают из-за работы сил трения. (сила трения возникает между слоями движущейся жидкости). Величина потерь напора, также, как и местных потерь, напрямую зависит от скорости движения жидкости. При достаточно высокой скорости усиливается влияние шероховатости стенок трубы.

Потерю напора по длине можно увидеть по разнице в уровнях воды между двумя пьезометрами

Точное определение потерь напора по длине является довольно сложной задачей, для этого необходимо устанавливать режим движения жидкости (бывает ламинарный и турбулентный), подбирать расчетную формулу для коэффициента гидравлического трения в зависимости от числа Рейнольдса Re, характеризующего степень турбулизации потока. Это изучается студентами в рамках курса механики жидкости.

При этом для быстрого расчета потерь напора были составлены специальные таблицы для инженеров, позволяющие, зная материал трубы и ее диаметр, а также расход воды, быстро определить так называемые удельные потери напора (сколько напора теряется на 1 м трубы). Эта величина называется 1000i, значение 1000i = 254 означает, что поток, проходя 1 м такой трубы теряет 254 мм (миллиметра) напора, т.е. 0,254 метра. Это значение также называется «гидравлический уклон», и это нельзя путать с геодезическим, т.е. просто с физическим уклоном (наклоном) самой трубы. Для расчета стальных труб используют таблицы Шевелева

Фрагмент этих таблиц представлен на рисунке ниже.

Например, из данного фрагмента видно, что если вода с расходом 1,50 л/с пойдет по трубе диаметром 50 мм, то скорость в этой трубе будет 0,47 м/с, а 1000i составит 9,69 мм на метр (на каждом метре трубы теряется 9,69 миллиметров напора).

Чтобы определить, сколько метров напора будет потеряно на всем участке – нужно перемножить 1000i с длиной участка. Чтобы ответ получился в метрах, 1000i делят на 1000.

Итак, потери напора по длине: hl = 1000i·l / 1000 = i·l

Если наш участок трубы имеет длину, скажем, 25 метров, то потеря напора на нем:

hl = 9,69*25/1000 = 0,24 м.

Учтем и местные сопротивления, тогда полная потеря напора на данном участке:

Таблицы были переведены в электронный вид в виде программы, созданной студентом Любчуком Ю.Е. Загрузить программу можно с нашего сайта. С помощью этой программы, можно легко посчитать потери напора в трубах из различных материалов. В следующей статье подробно опишем, как пользоваться данной программой на задаче из жизни.

Оцените статью