- Температура теплого водяного пола
- Оптимальная температура теплого водяного пола
- Максимальная температура теплого водяного пола
- Температура теплоносителя
- Водяные теплые полы от компании Атмосфера тепла
- Теплые полы
- Теория и практика
- Излучающая эффективность теплого пола и комфорт в помещении
- Укладка теплого пола
- Расчет параметров теплого пола
- Пример расчета:
Температура теплого водяного пола
Водяной теплый пол является одним из самых популярных видов систем отопления в квартирах и домах. В его пользу влияют два фактора:
- Высокий комфорт, который обеспечивает система обогрева «Теплый пол» (любой – электрический, водяной).
- Относительная дешевизна энергоносителей в этом случае (газ или твердое топливо) по сравнению с электроэнергией для электрического теплого пола.
В этой статье мы рассмотрим, какой температуры должны быть теплые водяные полы, чтобы достичь максимального комфорта и при этом, какой температуры должен быть теплоноситель (вода) на входе и выходе системы.
Оптимальная температура теплого водяного пола
Не будем вдаваться в рассуждении о физиологии человека, а сразу обратимся к CНиП 41-01-2003, п.6.5.12, в котором указано это значение:
- Для помещений с постоянным пребыванием человека – 26 0 С.
- Для помещений с кратковременным пребыванием человека, где происходит его повышенная теплоотдача (дорожки бассейнов и т.д.) − 31 0 С.
- В детских дошкольных учреждениях − 24 0 С.
Но здесь есть один нюанс. У разных материалов напольного покрытия различная теплопроводность. Поэтому одну и ту же температуру на разных покрытиях человек будет ощущать по-разному. Керамическая плитка будет ощущаться более холодной, а ковровые покрытия более теплыми. Кстати, европейские стандарты это учитывают, поэтому рекомендуют разные значения комфортной температуры в зависимости от материала:
- для ковровых покрытий − 21 0 С;
- для деревянных полов и паркета, ламината – 22-23 0 С;
- для линолеума − 25 0 С
- для керамической плитки − 26 0 С;
Мы считаем, что такой подход более правильным и рекомендуем придерживаться именно таких температурных режимов. Также специалисты не рекомендуют использовать для теплых полов ковровые напольные покрытия, так как при их температуре поверхности в 21 0 С, на высоте метра от них уже будет 16-17 0 , а в районе потолка всего 13-14 0 С. Если же вы любитель ковров, то тогда рекомендуется устанавливать для дополнительного нагрева иные отопительные приборы.
Максимальная температура теплого водяного пола
Согласно CНиП 41-01-2003 максимальная температура пола не должна превышать 26 градусов. Во влажных помещениях (например, бассейнах) − 31 0 С. Превышать эти значения не рекомендуется по трем причинам:
- Возможны неприятные тактильные ощущения.
- Перерасход энергоресурсов, а, значит, и финансовых средств.
- В случае лаковых покрытий возможно разрушение лака.
Приведенные выше цифры температурных режимов для частных домов и квартир являются справочной информацией и человек волен устанавливать значения, которые считает нужным.
Температура теплоносителя
Необходимая температура помещения обеспечивается двумя показателями – температурой теплоносителя на входе и на выходе. Нормативными документами предусмотрено, что на входе вода не должна быть нагретой свыше +55 0 С. В противном случае возможен локальный перегрев поверхности пола – непосредственно по оси трубы температура на полу может превысить +35 0 С, что будет восприниматься, как очень горячо.
Исходя из практики нашей компании «Атмосфера тепла», оптимальными значениями считаются:
- на входе – 45-50 0 С;
- на выходе – 35-40 0 С (перепад температур должен варьироваться в пределах 5-10 0 С, мы стараемся придерживаться значения 7 0 С).
Для выдерживания этих параметров необходимо:
- Правильно выполнить тепловой расчет и на выходе получить значения диаметра труб, шага укладки и максимальной длины одного контура.
- Обязательно предусмотреть в системе термостат с датчиком температуры.
Диаметр и длина труб, а также шаг их укладки зависит от теплопотерь в помещении и схемы подключения (прямая, с использованием насосно-смесительного узла, с гидравлическим разделителем). Обычно придерживаются следующих значенийпо шагу укладки:
- холодных регионов − 100 мм;
- для юга и средней полосы – 150 мм;
- в ванной комнате – 200 мм.
Длина одного контура трубы 16 диаметра не должна превышать 80 м. Оптимальное значение – 55 м.
Термостаты (терморегуляторы) для регулировки температуры могут быть трех видов:
- механические – наиболее доступные, но с наименьшей функциональностью;
- электронные, в т. ч. и программируемые.
Программируемые модели наиболее дорогие. Но они окупят себя уже за первый год эксплуатации благодаря экономии энергоносители. Эти устройства позволят снижать температуру теплоносителя в ночное время или когда людей нет в помещении.
Водяные теплые полы от компании Атмосфера тепла
Водяной теплый пол – эффективное решение проблемы обогрева. В настоящее время является лучшей для России системой обогрева жилищ по комфортности и экономичности (при существующих ценах на энергоносители). Но это и наиболее сложная инженерная сеть с точки зрения подбора оптимальных параметров и монтажа (создание многослойной стяжки, герметизация стыков труб, установка клапанов и необходимость их регулировать и т.д.)
Компания «Атмосфера тепла» имеет 10 летний опыт создания водяных теплых полов под ключ, начиная с проекта и заканчивая пусконаладочными работами. Опираясь на него, мы можем гарантировать:
- создание эффективной и экономной отопительной системы;
- выгодные тарифы на работу и материалы;
- сжатые сроки создания;
- предоставление закрепленных в договоре гарантийных обязательств.
Обращайтесь к проверенному опытному исполнителю, который гарантирует качество и отвечает за свою работу.
Теплые полы
Теория и практика
Технология теплых полов в последнее время существенно модернизировалась. Теплый пол теперь обеспечивает максимальный комфорт в помещении, поскольку современная технология позволяет значительно уменьшить конвективные процессы, объемы перемещаемых загрязняющих веществ и масштаб теплового воздействия в отношении человека, а также – что не менее важно – сократить габариты такой системы отопления и улучшить параметры относительной влажности в помещении.
Настоящий прорыв в развитии систем отопления, расположенных под полом, состоялся в начале 1980-х годов, когда изменился подход к оценке тепловой изоляции ограждающих конструкций здания в сторону сокращения теплопотерь. Сегодня тепло, излучаемое теплым полом, имеет тот оптимальный уровень, с помощью которого обеспечивается эффективное отопление жилых помещений, когда нет нужды дополнять такие системы отопительными радиаторами – при этом температура поверхности не создает людям дискомфортных ощущений. Кроме того, влажность, имеющая тенденцию к недостаточности в самую холодную погоду, теперь существенно более благоприятна, чем прежде, поскольку при лучистом отоплении при равной результирующей температуре она коррелируется с более низкой температурой воздуха. Приведем пример. Предположим, нам требуется обеспечить в помещении при помощи системы теплого пола активную температуру 20 °С. Температура поверхности пола составит 26 °С, при этом из каждой геометрической точки во всех направлениях испускаются инфракрасные лучи, как показано на рис. 1. Лучи попадают в стены, потолок и все твердые тела, находящиеся в помещении. В свою очередь сами нагреваемые таким образом поверхности из каждой своей геометрической точки во всех направлениях тоже испускают инфракрасные лучи, так что собственная температура всех ограждающих конструкций всегда выше температуры воздуха. В нашем примере, показанном на рис. 1, если мы примем как данность, что все ограждения имеют однородный характер, следует, что их средняя температура составляет 23 °С. Для получения требуемой результирующей температуры воздух в помещении нагревается до уровня 17 °С, определяемого экранированным термометром. При такой температуре воздух при равных значениях абсолютной влажности будет иметь более высокую относительную влажность по сравнению с воздухом помещения, отапливаемого системой воздушного отопления, где, чтобы получить ту же самую результирующую температуру 20 °С, потребуется нагреть воздух до 23 °С при средней температуре ограждений 17 °С.
Таблица 1 Классы стойкости цементной стяжки в зависимости от движущейся нагрузки | |||||||||||||||
|
Таблица 2 Максимально допустимые значения температуры поверхности пола в зависимости от типа помещения | |||||||||||||
|
Расчет параметров теплого пола
После того как выбран тип теплого пола (тип теплоизолятора и подложки, тип трубопровода, толщина излучающей стяжки и вид окончательной отделки), весь расчет сводится к определению четырех основных параметров, а именно:
• температуры поверхности пола в корреляции с температурой воздуха, °С;
• межосевого расстояния между трубками змеевика, см;
• излучающей способности, Вт/м 2 ;
• теплового перепада между средней температурой теплоносителя и температурой воздуха, К.
Следует обратить внимание на номограмму на рис. 9, относящуюся к системе теплого пола с нижним алюминиевым отражающим слоем по полистирену толщиной 30 мм и стяжкой l = 1,4 Вт/м (К) толщиной 45 мм над змеевиком.
Расчет верен при условии, что температура воздуха на улице не опускается ниже –15 °С, а ограждающие конструкции отвечают требованиям соответствующих регламентов по теплоизоляции.
Пример расчета:
• допустим, для теплого пола требуется излучающая способность 90 Вт/м 2 , проводим вертикальную линию от значения 90 по абсциссе до верхней таблички, где у значения температуры воздуха q 20 °С мы найдем допустимое значение температуры поверхности пола 27,7 °С;
• берем перепад Dq С между средней температурой воды в змеевике 32 °С и температурой воздуха q 20 °С, равный 12 К;
• на пересечении линий определяем точку Р, соответствующую межосевому расстоянию между витками змеевика в пределах от 15 до 20 см.
Теперь можно перейти к поиску точки Р1, отличной от Р, к примеру, увеличив межосевое расстояние между витками до 25 см, если, допустим, средняя температура воды в змеевике будет 40,5 °С.
Получаем перепад Dq С между средней температурой воды в змеевике и температурой воздуха, равный 20,5 К, который, например, соответствует воде на входе 43 °С и выходе – 38 °С с Dq циркулирующей воды 5 К.
В этом случае температура поверхности пола в штатном режиме остается в допустимых рамках (28,7 °С), а излучающая способность теплого пола составляет 100 Вт/м 2 . Анализ номограммы помогает понять динамику излучающего отопления: при тех же температурных параметрах уменьшение межосевого расстояния между витками змеевика ведет к росту температуры поверхности пола, но для обеспечения такого же комфорта при уменьшении межосевого расстояния между витками змеевика придется понизить температуру теплоносителя, что в итоге не дает никаких плюсов, напротив, одни только минусы – рост стоимости системы, увеличение энергопотребления и теплопотерь. Таким образом, если позволяют обстоятельства, рекомендуемая средняя рабочая температура теплоносителя составляет 40 °С с межосевым расстоянием между витками змеевика 20–30 см с учетом того, что в ванных комнатах, где обычно межосевое расстояние необходимо уменьшить, определенное повышение температуры поверхности пола никому не повредит. В табл. 2 приведены максимально допустимые значения температуры поверхности пола в зависимости от типа помещения и используемой одежды. Указанные значения имеют характер осторожной оценки, поскольку имеется множество переменных факторов, способных повлиять в той или иной степени на рабочие параметры системы, например: окончательная отделка пола (облицовочная плитка, мрамор, дерево, ковролин), назначение помещения (гостиная, туалет, спальня), продолжительность пребывания людей и их положение (сидя, стоя, в движении) и даже тип обуви. Определив по имеющейся номограмме значение общей излучающей способности теплого пола, необходимо сделать пару поправок, соответственно, во-первых, на толщину и теплопроводность окончательной отделки пола (отличная теплопроводность у мрамора, затем в порядке убывания следуют плитка, терракота, деревянный паркет, линолеум и, наконец, различные виды ковролина) и, во-вторых, на толщину цементной стяжки: индекс 1,00 при толщине бетона 45 мм в соответствии с вышеуказанными рекомендациями. Имеются рекомендации и по длине змеевика. Лучше, если все змеевики будут иметь одинаковую общую длину, что обеспечивается аккуратным внимательным расчетом и опытом. Это позволит получить сбалансированную сеть и обойтись без локальной компенсации нагрузки (например, при помощи сужающих отсечных клапанов), что само по себе шумно, да и накладно. Для сохранения требуемого гидравлического баланса можно прибегнуть к трубопроводам разного диаметра. Потери нагрузки рассчитываются на основе данных, предоставляемых изготовителем или импортером, поскольку у разных производителей даже однотипные изделия могут существенно отличаться, например по шероховатости и, соответственно, общему снижению давления.
Достаточно большие межосевые расстояния между витками змеевика (в пределах от 20 до 30 см) позволяют не только уменьшить затраты на приобретение труб и оплату работ по укладке, но и иметь умеренную потерю давления с меньшими затратами на насос, не говоря о снижении шума и меньших эксплуатационных расходах.
|
Если, к примеру, все змеевики в системе имеют длину порядка 65 м (комната площадью 16 м 2 с межосевым расстоянием витков 25 см дает примерно такую длину), потеря давления в каждом змеевике на трубке внутренним диаметром 16 мм составит примерно 8 450 Па при скорости воды 0,38 м/с, общей плотностью теплового потока 100 Вт/м 2 и общей теплопроизводительностью 1 600 Вт/м 2 . Напомним здесь предыдущий пример, где средняя температура циркулирующей воды составляет 40,5 °С с перепадом Dq С между средней температурой воды в змеевике и температурой воздуха 20,5 К, что соответствует воде на входе 43 °С и выходе – 38 °С с Dq циркулирующей воды 5 К. Расчетная температура поверхности пола – 28,7 °С. Для сравнения можно взять такой же теплый пол с межосевым расстоянием витков 10 см, а не 25 см. Тогда придется снизить температуру воды до среднего уровня 32,5 °С с перепадом Dq С между средней температурой воды в змеевике и температурой воздуха 12,5 К, что соответствует воде на входе 35 °С и выходе 30 °С с Dq циркулирующей воды 5 К. Расчетная температура поверхности пола в этом случае также 28,7 °С, но длина змеевика увеличивается до 144 м с одновременным ростом потери давления от 8 450 до 18 750 Па. Проектировщику надо теперь увеличить Dq циркулирующей воды до 6 К и выше, что позволит снизить потери давления. Но если слишком увеличить Dq , например до 8 К, температура на выходе из змеевика также может излишне понизиться, в нашем примере до 28,5 °С, т. е. до уровня температуры поверхности теплого пола, иначе говоря, слишком близко к порогу, за которым уже не происходит эффективного теплообмена.
Отсюда ясна бесполезность малых межосевых расстояний витков. Наша рекомендация – отдавать предпочтение более редким и более коротким змеевикам с умеренной пропускной способностью.
Перепечатано с сокращениями из журнала «RCI».
Перевод с итальянского С. Н. Булекова.
Научное редактирование выполнено С. Н. Хоревым, главным инженером проекта по специальности отопление и вентиляция.