- Насосно-смесительные узлы для водяного теплого пола
- Выбираем трехходовой клапан для теплого пола
- Основная функция, которая возложена на трехходовой клапан
- Основные конструктивные особенности и функции устройства
- Варианты использования трёхходового клапана в системах водяных тёплых полов
- Выбор клапана и особенности установки
- Выводы
Насосно-смесительные узлы для водяного теплого пола
Требуемый расход теплоносителя в любой системе водяного отопления подсчитывается по следующей формуле:
где Q — тепловая мощность системы, Вт; с — удельная теплоёмкость теплоносителя, Дж/кг °С; ∆Т — разность температур между прямым и обратным теплоносителем, °С.
В системах радиаторного отопления перепад температур ∆Т обычно составляет порядка 20 °С, а в системах напольного отопления ∆Т = 5–10 °С.
Это значит, что для переноса одного и того же количества теплоты тёплые полы требуют расхода теплоносителя в 2–4 раза больше.
Максимальная температура теплоносителя в системах тёплого пола, как правило, не превышает 55 °С, рабочее значение этого параметра обычно лежит в пределах 35–45 °С.
В радиаторном же отоплении теплоноситель обычно подаётся с температурой 80–90 °С.
В связи с этими двумя факторами неизменным атрибутом системы напольного отопления является узел смешения.
- Насосно-смесительный узел системы тёплого пола должен выполнять следующие основные функции:
- поддерживать во вторичном контуре температуру теплоносителя ниже температуры первичного контура;
- обеспечивать расчётный расход теплоносителя через вторичный контур;
- обеспечивать гидравлическую увязку между первичным и вторичным контурами.
- К вспомогательным функциям насосно-смесительного узла можно отнести следующие:
- индикация температуры (на входе и выходе);
- отсекание циркуляционного насоса шаровыми кранами для его замены или обслуживания;
- защита насоса от работы на «закрытую задвижку» с помощью перепускного клапана;
- аварийное отключение насоса при превышении максимально допустимой температуры теплоносителя;
- отведение воздуха из теплоносителя;
- дренирование узла.
Принцип работы простейшего насосно-смесительного узла можно объяснить по тепломеханической схеме на рис. 1.
Рис. 1. Тепломеханическая схема простейшего насосно-смесительного узла
Нагретый теплоноситель поступает на вход насосно-смесительного узла от котла или стояка радиаторной системы отопления с температурой T1. На входе в узел установлен настраиваемый термостатический клапан 2, на приводе которого выставляется требуемая температура теплоносителя, поступающего в тёплый пол Т11. Термочувствительный элемент 3 привода клапана располагается после насоса 1. При повышении температуры Т11 выше настроечного значения, клапан 2 закрывается, а при понижении – открывается, пропуская горячий теплоноситель на вход насоса. Пройдя по петлям тёплого пола, теплоноситель остывает до температуры Т21. Часть остывшего теплоносителя возвращается к котлу, а часть – через балансировочный клапан 4 поступает на вход насоса, смешиваясь с горячим теплоносителем.
Таким образом, в первичном (котловом) контуре температура теплоносителя снижается с Т1 до Т21 (∆Ткк = Т1 – Т21). Температуру Т21 задаёт пользователь. Перепад температур в петлях тёплого пола ∆Ттп = Т11 – Т21 также задаётся на стадии расчётов. Зная эти данные, и требуемую тепловую мощность тёплого пола, можно определить соотношение расходов в узле:
- Исходные данные:
- температура на входе в насосно-смесительный узел Т1 = 90 °С;
- температура после насоса Т11 = 35 °С;
- перепад температур в петлях тёплого пола ∆Ттп = 5 °С;
- тепловая мощность тёплого пола Q = 12 кВт.
- Решение:
- Температура на выходе из петель тёплого пола: Т21 = Т11 – ∆Ттп = 35 – 5 = 30 °С.
- Перепад температур в первичном (котловом) контуре: ∆Ткк = Т1 – Т21 = 90 – 30 = 60 °С.
- Расход во вторичном контуре G11 = Q/c⋅ ∆Tтп = 12000/4187⋅5 = 0,573 кг/с.
- Расход в первичном (котловом) контуре G1 = Q/c⋅ ∆Tтп = 12000/4187⋅60 = 0,048 кг/с.
- Расход через байпас G3 = G11 – G1 = 0,573 – 0,048 = 0,535 кг/с.
Таким образом, расход в контуре тёплого пола в данном примере должен быть в 12 раз выше, чем в котловом контуре.
Как правило, циркуляционный насос при проектировании выбирается с некоторым запасом, поэтому он может перекачивать через байпас большее количество теплоносителя, чем требуется по проекту. К тому же, и температура теплоносителя в первичном контуре может по факту оказаться меньше расчётной. Именно для корректировки этих расхождений с расчётными данными служит балансировочный клапан 4, которым можно ограничить расход через байпас.
Насосно-смесительные узлы VT.COMBI и VT.COMBI.S
В насосно-смесительных узлах VT.COMBI и VT.COMBI.S (рис. 2, 3) приготовление теплоносителя с пониженной температурой происходит при помощи двухходового термостатического клапана, управляемого либо термоголовкой с капиллярным термочувствительным элементом, установленном в линии подающего коллектора (модель VT.COMBI), либо аналоговым сервоприводом, который работает под управлением контроллера VT.К200.М (модель VT.COMBI.S). Контроллер с датчиками температуры теплоносителя и наружного воздуха не входит в комплект поставки насосно-смесительного узла и приобретается отдельно.
В линии подмеса узла установлен балансировочный клапан, который задаёт соотношение между количествами теплоносителя, поступающего из обратной линии вторичного контура и прямой линии первичного контура, а также уравнивает давление теплоносителя на выходе из контура тёплых полов с давлением после термостатического регулировочного клапана.
От настроечного значения Kvb этого клапана и установленного скоростного режима насоса зависит тепловая мощность смесительного узла.
Узел адаптирован для присоединения к нему коллекторных блоков с межосевым расстоянием 200 мм и горизонтальным смещением между осями коллекторов 32 мм. При этом коллекторные блоки могут присоединяться как на входе, так и на выходе насосно-смесительного узла. Это позволяет использовать этот узел в комбинированных системах отопления (рис. 4), где отопление тёплым полом совмещается с радиаторным отоплением.
Рис. 4. Узел VT.COMBI.S в комбинированной системе отопления
Насосно-смесительный узел VT.DUAL
Насосно-смесительный узел VT.DUAL (рис. 5 и 6) состоит из двух модулей (насосного и термостатического), между которыми монтируется коллекторный блок контура тёплого пола. Для смешения используется трехходовой термостатический клапан, управляемый термоголовкой с капиллярным термочувствительным элементом, установленным на обратный коллектор вторичного контура.
Рис. 5. Насосно-смесительный узел VT.DUAL
Предохранительный термостат подающего коллектора останавливает насос в случае превышения настроечного значения температуры, прекращая циркуляцию в петлях тёплого пола.
Рис. 6. Узел VT.DUAL с коллекторным блоком (подключение справа)
Конструкция узла предусматривает перепускной контур с балансировочным клапаном, сохраняющим неизменным расход теплоносителя в первичном контуре при перекрытии петель тёплого пола.
Элементы узла устанавливаются не вертикально, а под углом 9°, что вызвано горизонтальным смещением осей коллекторного блока. Это позволяет подключать узел к подводящим трубопроводам как справа, так и слева.
Насосно-смесительный узел VT.VALMIX
Насосно-смесительный узел VT.VALMIX (рис. 7) отличается от узла VT.COMBI меньшей монтажной длиной и отсутствием перепускного клапана. Узел рассчитан на установку циркуляционного насоса монтажной длиной 130 мм. Ручной воздухоотводчик узла расположен на регулировочной втулке балансировочного клапана вторичного контура.
Узел поставляется с термоголовкой VT.3011, имеющей диапазон настройки температур от 20 до 62 °С. Вместо термоголовки может быть установлен аналоговый термоэлектрический сервопривод VT.TE3061, работающий под управлением контроллера VT.K200.М. Узел поставляется без циркуляционного насоса.
Рис. 7. Насосно-смесительный узел VT.VALMIX
Насосно-смесительный узел VT.TECHNOMIX
Так же как узел VT.VALMIX, узел VT.TECHNOMIX (рис. 8) рассчитан на установку циркуляционного насоса длиной 130 мм, но имеет несколько большую монтажную длину.
Кроме того, входные и выходные патрубки узла находятся в одной плоскости, поэтому узел монтируется к коллекторному блоку под углом 9°, и может устанавливаться как справа от обслуживаемого коллекторного блока, так и слева от него.
Узел поставляется с термоголовкой VT.5011, имеющей диапазон настройки температур от 20 до 60 °С.
Вместо термоголовки может быть установлен аналоговый термоэлектрический сервопривод VT.TE3061, работающий под управлением контроллера VT.K200.М. Узел поставляется без циркуляционного насоса.
Сравнение насосно-смесительных узлов VALTEC
Таблица 1. Сравнительная таблица насосно-смесительных узлов VALTEC
Выбираем трехходовой клапан для теплого пола
Бесперебойность работы любого оборудования для обогрева жилья зависит от множества факторов, в том числе, правильного выбора комплектующих, характеристики каждой из которых определяют степень эффективности и надежности системы отопления в целом.
Тёплые водяные полы — современное оборудование, корректность работы которого также обеспечивается целым рядом устройств, имеющих определённое предназначение.
В частности, поддержание в отапливаемом помещении оптимального температурного режима непосредственно связано с интенсивностью подачи теплоносителя в водяной контур, которая регулируется различными видами запорной арматуры. К таким регулирующим устройствам относится трехходовой клапан для теплого пола, без оснащения которым теплый пол не станет полноценной функциональной системой.
Одна из моделей трёхходового клапана
Получить поверхностное представление о том, какую работу выполняет трехходовой смесительный клапан, и насколько значима его роль в смесительном узле, позволяет любая схема тёплых водяных полов, независимо от количества и конфигурации контуров. Для лучшего ориентирования при выборе этого устройства разберёмся подробнее, что собой представляет эта комплектующая, и каков её принцип действия.
Основная функция, которая возложена на трехходовой клапан
Система отопления «водяной теплый пол» кардинально отличается от традиционно используемого нами, радиаторного обогрева. Все дело в том, что для отопительных контуров, лежащих на полу в теле бетонной стяжки, необходима невысокая температура теплоносителя. Теплые полы считаются низкотемпературной системой, подключение которой осуществляется к нагревательным приборам или к источнику горячей воды через смесительный узел.
Для того, что бы осуществлялся обогрев в соответствии с санитарными нормами, необходимо существенное снижение температуры воды, поступающей от источника нагрева в водяные контуры. Именно эта функция и возложена на смесительный узел или как его принято называть в среде профессионалов, узел подмеса. Автономный котел в рабочем режиме нагревает воду до отметки 95 0 С. Немногим прохладней является вода в системе центрального отопления. Для нормальной работы греющих полов оптимальная температура теплоносителя составляет 35-55 0 С, которая и получается на выходе из смесителя.
На заметку: не путайте смесительный узел с коллекторов. Первый представляет собой комплект различных узлов и агрегатов, обеспечивающих регулировку подачи воды в водяной контур, тогда как второй является лишь составной частью всего регулирующего блока.
Смесительный узел представляет собой комплект приборов и устройств, выполняющих свои определенные функции. Если о коллекторе информации более, менее предостаточно, а вот что такое трёхходовой клапан, мало кто из нас имеет представление. Задача этого устройства заключается в смешивании двух разных по температуре потоков жидкости. Поступающая из обратной трубы, остывшая вода и горячая вода, идущая по трубе от источника нагрева, посредством работы этого механизма соединяется в один поток, необходимой температуры. Основная деталь этого прибора – термочувствительный сердечник, элемент, который реагирует на изменение температуры водной среды, сжимаясь или расширяясь.
Именно за счет такой конструкции, осуществляется работа трехходового клапана, направленная на автоматизированную регулировку температуры теплоносителя в системе.
На заметку: это устройство используется не только в работе водяных теплых полов, но и стоит на оснащении практически всех автономных систем отопления, работающих на жидком теплоносителе.
На рисунке показана схема смесительного узла для теплых полов и место, которое занимает трехходовой клапан.
Схема смесительного узла для теплых полов и место расположения в ней трехходового клапана.
Основные конструктивные особенности и функции устройства
Имея приблизительное представление о принципе работы трехходового клапана, лучше детально изучить работу этого механизма. Название «трехходовой» определяет основную функцию устройства — через два входа в клапан поступает вода различного происхождения:
- горячий теплоноситель из подающей трубы, связанной с нагревательным прибором или со стояком системы центрального отопления;
- остывшая вода, возвращающаяся после прохождения водяного контура.
Смешиваясь между собой в клапане в определённой пропорции, потоки выходят через третий патрубок, имея заданную величину температуры. Клапан работает постоянно, так как на подмешивании к остывшему теплоносителю горячей воды основан принцип циклической работы теплых полов: нагрев — теплоотдача -подмес — теплоотдача — подмес.
Процесс смешивания двух потоков теплоносителя различных температур должен постоянно контролироваться, лучше — в автоматическом режиме. В противном случае интенсивность теплообмена тёплого пола с воздухом помещения не будет привязана к изменениям температуры в комнате, и придётся по мере необходимости изменять температуру нагрева теплоносителя вручную .
Осуществлять подмес горячего теплоносителя в автоматическом режиме позволяет термочувствительная головка, регулирующая пропускную способность клапана в зависимости от температур смешиваемых жидкостей для получения на выходе заданного значения.
В зависимости от назначения и условий эксплуатации, используются различные виды трёхходовых клапанов.
1. Отопительные системы
Для системы отопления с радиаторами, работающей от автономного котла, используется самый простой тип устройства. Такие трехходовые краны недороги и имеют относительно простую конструкцию, что позволяет устанавливать их самостоятельно. Регулировка объема смешивания в данном случае осуществляется вручную.
2. Системы горячего водоснабжения
В системах ГВС трёхходовые клапаны используются для поддержания в системе коммуникаций безопасных значений температуры воды, исключая вероятность получения ожогов. Конструкция таких устройств также достаточно проста и понятна. От клапанов для отопительных систем такие устройства отличаются наличием специального защитного блока, перекрывающего горячую воду при отсутствии в водопроводе холодной.
3. Теплые водяные полы
Устройства данного типа наиболее сложны, так как предназначены для поддержания заданной температуры теплоносителя в отопительных контурах с привязкой к температуре воздуха в помещении. Использование в смесительном узле таких устройств позволяет регулировать интенсивность отопления жилья в автоматическом режиме,
Важно! Использование в системе отопления трехходового клапана требует установки циркуляционного насоса — для поддержания в водяном контуре давления, необходимого для корректной работы узла подмеса.
Модель трёхходового клапана с регулировочной шкалой
Для теплых полов кран оснащен регулировочной рукояткой и мерной шкалой, с помощью которой осуществляется настройка прибора.
Варианты использования трёхходового клапана в системах водяных тёплых полов
В жилых помещениях небольшой площади (санузел или ванная комната), теплые полы монтируются без смесительного узла, в котором нет технической необходимости. Для корректной работы системы достаточно использования модели трёхходового вентиля с двумя отсечными клапанами.
На заметку: полноценный смесительный узел (с насосом, коллектором, предохранительными клапанами) стоит немалых денег, и при оборудовании теплого пола в ванной комнате расходы на узел подмеса превысят затраты на устройство водяного контура в несколько раз.
Такое устройство благодаря наличию термостата обеспечит регулировку температуры воды, поступающей в отопительный контур.
В системе отопления, рассчитанной на обогрев всей жилой площади, узел подмеса с трехходовым клапаном потребуется в обязательном порядке. Термостатические трехходовые клапаны станут гарантией бесперебойной подачи подготовленной воды во все петли отопительного контура.
Пример: использование для обогрева жилой комнаты в 20 м 2 одного водяного контура значительной длины тепловодов. Установка на подающую трубу регулирующего крана, снабжённого электроприводом, позволит в паре с насосом обеспечить необходимую циркуляцию теплоносителя. Данная схема предполагает установку клапана в месте соединения трубы обратки с байпасом. Работа термостатической головки настраивается таким образом, чтобы при чрезмерно высокой температуре теплоносителя вода циркулировала по малому кругу.
Отопление при помощи теплых полов жилых помещений в доме с двумя или более этажами, предполагает использование большого количества водяных контуров разной длины. Соответственно, надо будет устанавливать не один, а несколько смесительных узлов.
В этом случае используется связка совместимого трехходового клапана, сервопривода и контроллера, который фиксирует граничные параметры температуры теплоносителя, подающегося в отопительные контуры водных полов. Теплая вода в данном случае будет поступать после связки сразу в определенную отапливаемую комнату, либо идти на коллектор, после чего уже будет распределяться по греющим трубам.
Выбор клапана и особенности установки
Выбирать модель клапана необходимо с привязкой к характеристикам системы отопления.
Сегодня становится модным использовать для оснащения смесительных узлов трехходовые клапаны, оборудованные электроприводами, хотя и обычная, традиционная модель по своим технологическим характеристикам мало в чем уступает сложным устройствам. Во время покупки следует обратить внимание на следующие нюансы:
- наличие технической документации на изделие (сертификаты качества, гарантийные обязательства компании-изготовителя, инструкция по установке и эксплуатации);
- изделия, изготовленные из латуни или бронзы, предпочтительнее — эти металлы прекрасно взаимодействуют с горячей водой, имеют низкий коэффициент теплового расширения.
На заметку: при покупке определить материал, из которого изготовлен трехходовой клапан можно обычным взвешиванием. Возьмите прибор в руку — если изделие покажется достаточно тяжелым, оно сделано из цветного металла. Использовать краны, изготовленные из порошковых композитных материалов прессованием, означает обречь себя на лишние расходы и неприятности.
- соединительные патрубки выбранной модели клапана должны соответствовать параметрам места установки — если шаг резьбы отличается от того, каким вы пользуетесь при монтаже смесительного узла, установить узел не удастся. Габариты клапанов должны быть соизмеримы с площадью установки тёплых полов — нецелесообразно монтировать громоздкие узлы для отопления небольшой площади.
Выводы
Монтаж трехходового клапана — задача не сложная, но требующая соблюдения технических правил. Обычно смешивающие клапаны ставят перед смесителем на подающую трубу, в местах подключения байпаса и обратной трубы. Насос в системе располагается следом за трехходовым клапаном.
После сборки всего смесительного узла надежность соединений и функциональность клапана проверяется пробным пуском, по результатам которого при необходимости выполняется пусконаладка.
Правильно установленный клапан поддерживает заданный температурный режим в обогреваемом помещении и обеспечивает рациональный расход теплоносителя, а следовательно — и экономичность отопления.