- Датчики температуры. Типы, устройство, принцип работы. Схемы подключения
- Разновидности, устройство и принцип работы
- Термоэлектрические
- Полупроводниковые
- Пирометрические
- Терморезистивные
- Акустические
- Пьезоэлектрические
- Схемы подключения
- Примение
- Как подобрать?
- Принцип работы температурного датчика для отопления
- Принцип работы
- Виды устройств измерения температуры
- Типы термодатчиков
- Бытовые варианты использования
- zОтопление
Датчики температуры. Типы, устройство, принцип работы. Схемы подключения
Контроль температуры повсеместно задействуется в технологических процессах, позволяя выбирать подходящий режим работы или отслеживать изменения состояния материала. Температурный режим одинаково важен как при включении духовки на кухне, так и в доменных печах при плавлении стали, а отклонение от нормальной работы может привести к аварии и травмированию людей. Чтобы избежать неприятных последствий и обеспечить возможность регулирования степени нагрева используется датчик температуры.
Разновидности, устройство и принцип работы
В ходе развития и совершенствования технологий датчик температуры, как измерительное приспособление, претерпел множественные изменения и модернизации. Благодаря чему сегодня они представлены в большом разнообразии, которые можно разделить по нескольким критериям. Так, в зависимости от способа передачи и отображения данных об измерениях температуры они подразделяются на цифровые и аналоговые. Цифровые устройства являются более современным решением, так как информация в них отображается на дисплее и передается по электронным каналам коммуникации, аналоговые имеют циферблатное отображение данных, электрический или механический способ передачи измерений.
В зависимости от принципа действия все датчики можно подразделить на:
- термоэлектрические;
- полупроводниковые;
- пирометрические;
- терморезистивные;
- акустические;
- пьезоэлектрические.
Термоэлектрические
В основе работы термоэлектрического датчика лежит принцип термопары (см. рисунок 1) – у всех металлов существует определенная валентность (количество свободных электронов на внешних атомарных орбитах, не задействованных в жестких связях). При воздействии внешних факторов, сообщающих свободным электронам дополнительную энергию, они могут покинуть атом, создавая движение заряженных частиц. В случае совмещения двух металлов с различным потенциалом выхода электронов и последующим нагреванием места соединения возникнет разность потенциалов, получившая название эффекта Зеебека.
Рис. 1. Устройство термопары
На практике применяется несколько разновидностей термоэлектрических датчиков температуры, так, согласно п.1.1 ГОСТ Р 50342-92 они подразделяются на:
- вольфрамрений-вольфрамрениевые (ТВР) – применяется в средах с большой рабочей температурой порядка 2000°С;
- платинородий-платинородиевые (ТПР) – отличаются высокой себестоимостью и высокой точностью измерений, применяются я в лабораторных измерениях;
- платинородий-платиновые (ТПП) – оснащаются защитной трубкой из металла и керамической изоляцией, обладают высоким температурным пределом;
- хромель-алюмелевые (ТХА) — широко применяются в промышленности, способны охватывать диапазон температуры до 1200°С, используются в кислых средах;
- хромель-копелевые (ТХК) – характеризуются средним температурным показателем, монтируются только в неагрессивных средах;
- хромель-константановые (ТХК) — актуальны для газовых смесей и разжиженных аэрозолей нейтрального или слабокислого состава;
- никросил-нисиловые (ТНН) – применяются для устройств среднего температурного диапазона, но обладают длительным сроком эксплуатации;
- медь-константановые (ТМК) – характеризуется наименьшим пределом измерений до 400°С, но отличается устойчивостью к влаге и некоторым категориям агрессивных сред;
- железо-константановые (ТЖК) – применяются в среде с разжиженной атмосферой или вакуумного пространства.
Такое разнообразие температурных датчиков на основе термопары позволяет охватывать любые сферы человеческой деятельности.
Полупроводниковые
Изготавливаются на основе кристаллов с заданной вольтамперной характеристикой. Такие датчики температуры работают в режиме полупроводникового ключа, аналогично классическому биполярному транзистору, где степень нагревания сравнима с подачей потенциала на базу. При повышении температуры полупроводниковый датчик начнет выдавать большее значение тока. Как правило, самостоятельно полупроводник не используется для измерения нагрева, а подключается через цепь усилителя (см. рисунок 2).
Рис. 2. Подключение полупроводникового датчика через усилитель
Отличаются широким диапазоном производимых измерений и возможностью подстройки датчика в соответствии с рабочими параметрами оборудования. Являются высокоточным типом, мало зависящим от продолжительности эксплуатации. Обладают небольшими габаритами, за счет чего легко устанавливаются в схемах, радиоэлементах и т.д.
Пирометрические
Работают за счет специальных датчиков – пирометров, которые позволяют улавливать малейшие температурные колебания рабочей поверхности любого предмета. Непосредственно сам чувствительный элемент представляет собой матрицу, реагирующую на определенную частоту температурного диапазона. Этот принцип положен в основу измерений бесконтактным термометром, который получил широкое распространение в период борьбы с коронавирусом. Помимо этого их применение активно используется для тепловизионного контроля конструктивных элементов, оборудования, зданий и сооружений.
Рис. 3. Принцип действия пирометрического датчика
Терморезистивные
Такие датчики температуры выполняются на основе терморезисторов – устройств с определенной зависимостью сопротивления от степени нагрева основного материала. С повышением температуры, изменяется и проводимость резистора, благодаря чему вы можете следить за состоянием нужного объекта.
Основным недостатком терморезистивного датчика является малый диапазон измеряемой температуры, но он способен обеспечивать хороший шаг измерений и высокую точность в десятых и сотых долях градусов Цельсия. Из-за чего их нередко включают в цепь с применением усилителя, расширяющего рабочие пределы.
Акустические
Акустические датчики температуры функционируют по принципу определения скорости прохождения звуковых колебаний в зависимости от температуры материала или поверхности . Непосредственно сам сенсор производит сравнение скорости звука, генерируемого источником, которая будет отличаться, в зависимости от степени нагрева (см. рисунок 4). Такой тип является бесконтактным и позволяет производить замеры в труднодоступных местах или на объектах повышенной опасности.
Рис. 4. Звуковой датчик температуры
Пьезоэлектрические
Работа датчика основана на эффекте распространения колебаний кварцевого кристалла при прохождении электрического тока. Но, в зависимости от температуры окружающей среды, будет меняться и частота колебаний кристалла. Принцип фиксации температурных изменений заключается в измерении частоты колебаний и последующем сравнении с установленной градуировкой номиналов для разных температур.
Схемы подключения
Основные отличия в подключении датчика температур обуславливаются сферой его применения и конструктивными особенностями. Так, в рамках статьи, мы рассмотрим несколько наиболее распространенных и интересных вариантов. Таковыми является подключение с помощью двухпроводной и трехпроводной схемы.
Рис. 5. Двухпроводная схема подключения
На рисунке 5 приведен вариант двухпроводного присоединения измерительного устройства. Этот принцип рекомендуется для всех датчиков температуры с небольшим расстоянием до контролируемого объекта. Так как сопротивление самого чувствительного элемента Rt мало измениться от сопротивления соединительных проводников R1 и R2, соответственно, поправка на измерения будет минимальной.
Рис. 6. Трехпроводная схема подключения
При больших расстояниях, от 150 м и более, подключение датчика следует выполнять по трехпроводной схеме, в которой существенно снижается погрешность на сопротивление в проводах R1, R2, R3.
Рис. 7. Схема подключения датчика температуры двигателя
Практически в каждом современном авто осуществляется постоянный контроль температурных параметров мотора. Поэтому использование датчика является обязательным требованием безопасности. Согласно двухпроводной схемы (рисунок 7) датчик подключается одним выводом на отдельно стоящий концевик капота, который не имеет каких-либо подключений к цепи. А второй вывод, подсоединяется к блоку сигнализации установленным порядком, в соответствии с моделью.
Рис. 8. Схема подключения цифрового датчика температуры
На рисунке 8 приведен пример включения цифрового датчика Dallas. Это модель с тремя выводами, первый из которых, согласно распиновки GND подключается к заземляющему выводу микроконтроллера, второй DATA к выводу PIN 2, а третий к клемме питания +5 В. Между третей и второй ножкой включается резистор на 4,7кОм.
Примение
Сфера применения датчиков температуры охватывает как бытовые приборы, так и оборудование общепромышленного назначения, сельскохозяйственную отрасль, военную промышленность, аэрокосмический сектор. Каждый из вас может встретить их у себя дома в нагревательных приборах – бойлерах, духовках, мультиварках или хлебопечках.
В тяжелой промышленности тепловые сенсоры позволяют контролировать степень нагрева печей, воздуха в рабочей области, состояние трущихся поверхностей. В медицине их используют для контроля температуры в труднодоступных местах или для упрощения различных процедур.
Многие автолюбители часто сталкиваются с анализаторами температуры, контролирующими состояние масла или другой охлаждающей жидкости. На сети железных дорог они позволяют отслеживать нагрев букс и колесных пар. В энергетике с их помощью обследуются контактные соединения и качество прилегания поверхностей.
Как подобрать?
При выборе датчика температуры необходимо руководствоваться такими критериями:
- если датчик будет соприкасаться или располагаться внутри измеряемой среды, то берется контактная модель, если находиться вне объекта, то бесконтактная;
- условия и состояние среды, в которой он будет функционировать (влажность, агрессивные вещества и т.д.) должны соответствовать возможностям датчика;
- шаг и градуировка измерений должны обеспечивать удобную эксплуатацию и датчика, и оборудования;
- если датчик подлежит замене в ходе эксплуатации, то устанавливаются сменные варианты;
- при выборе датчика температуры для замены неисправного, лучше воспользоваться его VIN кодом;
- предел рабочих температур должен охватывать все возможные значения нагрева, некоторые из них приведены в таблице ниже.
Таблица: температурные пределы датчиков термоэлектрического типа
Принцип работы температурного датчика для отопления
Большинство нагревательных приборов, так или иначе, связаны в своей работе с датчиками. Измерители контролируют степень нагрева, а также воздух и воду обогреваемую ими. Приборы обрабатывают получаемые с измерителей сигналы и следуют согласно запрограммированным инструкциям. Так они поддерживают комфортное отопление в помещении.
Принцип работы
Система отопления контролируется несколькими методами:
- автоматика, запрограммированная на определенную энергоподачу;
- блоки безопасности;
- смесительные узлы.
Контроль всех методов осуществляется через датчики, ведущие соответствующие измерения и передающие в главный блок для обработки сигнала.
К таким блокам относится термодатчик, или программатор. Они применяются для автоматической регулировки работы котла или иного устройства поддержания климата.
Виды устройств измерения температуры
Классификация термоприборов происходит по важным для них показателям:
- По принципу трансляции сигнала.
К таким приборам относятся проводные и беспроводные. Проводные непосредственно связаны с отапливающим устройством проводами. Беспроводные аппараты напротив подают радиосигнал без помощи проводов. Проводные аппараты, как правило, обладают большей точностью показаний и надежностью в эксплуатации.
Для работы беспроводного устройства, как правило, необходимо дополнительно установить в отопительную систему приемную антенну. Подобные радио приборы можно монтировать практически везде, они намного удобней в использовании по сравнению с проводными аналогами.
Главнейшими параметрами термодатчика являются:
- присутствие аккумулятора;
- погрешность измерений;
- дальность приема сигнала.
- По форме размещения.
Датчики могут быть накладными, закрепляемыми вдоль линии отопления и помогать работе электрокотлов. Погружные контактируют с подогреваемым элементом. Комнатные находятся внутри помещений и измеряют их температуру внутри. Внешние располагаются снаружи здания или отапливаемого объекта. Нередко применяются одновременно несколько видов для повышения эффективности общей работы.
- По принципу снятия измерений.
К таким относятся биметаллические и спиртовые.
В первом случае используется пара пластин из разного металла и стрелочный индикатор. В случае повышения температуры одна из пластин деформируется, осуществляя давления на стрелку-индикатор. Показания приборов обладают высокой точностью, однако слабым местом будет инертность.
Датчик температуры погружной ESMU
Во втором случае используется спиртосодержащий раствор, надежно запертый в колбе. Раствор расширяется при нагреве. Конструкция проста, но неудобна для наблюдений.
Типы термодатчиков
Существуют следующие виды распространенных приборов:
№ | Полезная информация |
---|---|
1 | Термопары |
Они состоят из пары спаянных между собой проволок из разных металлов. Разница температур между холодным и теплым концом проволоки является причиной возникновения слабого тока величиной зависящей от вида металла.
Термопара является высокоточной системой измерения изменений в температуре, однако снять вычисления с нее является сложной задачей. Сложностью является, в том числе создание специальных условий для обоих концов термопары и специальные системы измерений, сам процесс снятия температуры которых, связан с возможными помехами от других источников.
Значительно проще в использовании, чем термопара. В основу измерений заложен принцип изменения сопротивления материалов в зависимости от температуры окружения. Приспособления сделанные, как правило, из платины обладают высокой точностью и простотой измерений.
Подключая прибор к цепи источника тока, и замеряя его диф. напряжение, получить значение сопротивления. Такой прибор можно легко подключить к преобразователям полученных значений в цифру осуществляя тем самым тепловой контроль через главный процессор.
Популярная ныне модель, созданная в виде платы с тремя выходами. Выходы осуществляют измерение температурных показаний с нескольких датчиков одновременно, с погрешностью всего в 0.5 градусов. Также к достоинствам этого прибора относят большой диапазон рабочей температуры, а к недостатку относят медлительную работу. Такие измерители часто используются в отопительной системе.
Они в свою очередь делятся на три разновидности: радиационные, оптические, цветовые.
Разницей между собой как различиями, так и преимуществами является возможность помех извне на их измерения. Дальность измерений. Химические и физические факторы. Каждый из них имеет место быть в определенных условиях применения и при определенных потребностях.
- Кварцевые.
Принцип работы основан на частотной зависимости кварца с нагревом. К их достоинствам относят высокую точность и разрешение. Длительный срок работы и возможность широкого применения. Считается что за ними технологии будущего.
Работают на разнице акустических потенциалов в зависимости от градусов резистора.
Способ применения прост. Диапазон и качество измерений высокого уровня. Однако большое количество помех способных повлиять на измерения прибора чаще всего сводят его работу на нет.
Существует еще много видов термодатчиков основанных на разных принципах, и существующих под разные запросы, однако они уже не так распространены в бытовых условиях.
Бытовые варианты использования
В быту чаще всего датчики используются в единой системе с климатическим оборудованием. Будь то кондиционер или котел, осуществляющий отопительную работу.
Термодатчики в этих системах используются повсеместно. Они устанавливаются на радиаторы и осуществляют измерения нагрева воды и поддержания ее температуры на заданном уровне. Датчики температур могут быть установлены внутри и снаружи дома, для измерения разниц температур, регулировки мощности обогревательного оборудования, а также для продолжительности и интервалах работы системы.
Особую популярность сейчас получили датчики, идущие в паре с системой «теплый пол». Они отвечают за нагрев пола, температуру на участках пола, поддержания ее на комфортном уровне.
Большинство бытовых датчиков просты в монтировании. Используются людьми даже без специального образования и познаний в их работе. Как правило, для их монтирования, например для котла отопления, хватает паспорта идущего с ними в комплекте или обучающего ролика в интернете. Однако в сложных системах типа «теплого пола» рекомендуется всё же доверить его монтаж специалистам, чтобы не пришлось все переделывать с нуля.
zОтопление
Зота – это ведущий отечественный бренд, выпускающий отопительные системы. Завод расположен в Красноярске, что говорит само за себя. Продукция, выпускаемая заводом, отвечает качествам и требованиям даже жителей Сибири.
Зота выпускает не только распространённые повсеместно газовые котлы, но и угольные (работающие на угле и дереве). Модели полностью соответствуют потребительским запросам и технически устроены, так чтобы их обслуживание было максимально простым.