Обеспечение теплом многоквартирных домов: централизованная система отопления
Опубликовано 14 декабря 2014 в 1:58
Как известно, обеспечение теплом значительной доли жилого фонда осуществляется централизованно. И, не смотря на то, что в последние годы появляются и внедряются более современные схемы теплоснабжения, центральное отопление остается востребованным, если не у собственников, то у застройщиков многоквартирного жилья. Однако следует отметить, что многолетний зарубежный и отечественный опыт использования такого варианта обогрева доказал его эффективность и право на существование в дальнейшем при условии безотказной и качественной работы всех элементов.
Отличительным признаком такой схемы является выработка тепла за пределами обогреваемых зданий, доставка которого от источника тепла осуществляется посредством трубопроводов. Другими словами, централизованное отопление – сложная инженерная система, распределенная по значительной площади, обеспечивающая теплом одновременно большое количество объектов.
Структура системы центрального отопления
Основными структурными элементами системы центрального отопления являются:
Источник тепловой энергии, в качестве которого могут выступать крупные котельные или теплоэнергоцентрали (ТЭЦ); в них осуществляется нагрев теплоносителя за счет использования какого-либо вида источника энергии. При этом в котельных для передачи тепловой энергии до потребителей используется вода, тогда, как в ТЭЦ она сначала нагревается до состояния пара, имеющего более высокие энергетические показатели и направляющегося в паровые турбины для выработки электроэнергии. И уже отработанный пар используется для нагрева той воды, которая поступает в систему отопления многоквартирного дома.
Одна теплоэнергоцентраль способна заменить несколько котельных, в результате чего не только снижаются расходы на строительство и высвобождаются значительные площади, но и значительно улучшается общая экологическая обстановка.
Необходимо отметить, что крупные централизованные схемы теплоснабжения имеют, как правило, несколько источников теплоты, связанные резервными магистралями и обеспечивающие надежность и маневренность их функционирования.
Рисунок 1 – Общая схема центрального отопления
Классификация систем централизованного отопления
Существующее на сегодня многообразие схем организации центрального отопления позволяет произвести их ранжирование по некоторым классификационным признакам.
По режиму потребления тепловой энергии
сезонные, обеспечение теплом требуется только в холодный период года;
круглогодичные, нуждающиеся в постоянном теплоснабжении.
По виду используемого теплоносителя
водяные – это самый распространенный вариант отопления, используемый для обогрева многоквартирного дома; такие системы просты в эксплуатации, позволяют транспортировать теплоноситель на большие расстояния без ухудшения качественных показателей и регулировать температуру на централизованном уровне, а также характеризуются хорошими санитарно-гигиеническими качествами.
воздушные – эти системы позволяют осуществлять не только отопление, но и вентиляцию зданий; однако вследствие высокой стоимости такая схема не находит широкого применения;
Рисунок 2 – Воздушная схема отопления и вентиляции зданий
паровые – считаются самыми экономичными, т.к. для отопления дома используются трубы небольшого диаметра, а гидростатическое давление в системе мало, что облегчает ее эксплуатацию. Но такая схема теплоснабжения рекомендуется для тех объектов, которым помимо тепла требуется и водяной пар (в основном это промышленные предприятия).
По способу подключения отопительной системы к теплоснабжающей
независимые, в которых циркулирующий по теплосетям теплоноситель (вода или пар) нагревает в теплообменнике подаваемый в систему отопления теплоноситель (воду);
Рисунок 3 – Независимая система централизованного отопления
зависимые, в которых нагретый в теплогенераторе теплоноситель подается непосредственно к потребителям тепла по сетям (см. рисунок 1).
По способу присоединения к системе теплоснабжения горячего водоснабжения
открытые, горячая вода забирается непосредственно из теплосети;
Рисунок 4 – Открытая система отопления
закрытые, в таких системах забор воды предусмотрен из общего водопровода, а ее нагрев осуществляется в сетевом теплообменнике централи.
Рисунок 5 – Закрытая система центрального отопления
Устройство централизованной системы отопления и принцип работы ее узлов в многоквартирном доме
Понятно, что для обеспечения теплом многоквартирного дома его нужно подключить к теплосети, идущей от котельной или ТЭЦ. Для этих целей в ведущих к зданию трубах устанавливают входные задвижки, от которых запитан один или два тепловых узла.
После задвижек, как правило, устанавливаются грязевики, предназначенные для осаждения образующихся в трубопроводе при длительном контакте с горячей водой окислов и солей металлов. К слову, эти устройства позволяют продлить срок безремонтной работы системы отопления.
Далее в домовом контуре расположены врезки горячего водоснабжения: одна на подаче, вторая на обратке. Как известно, центральное отопление функционирует на перегретой воде (температура теплоносителя с ТЭЦ составляет 130-150 0С, а чтобы жидкость не превращалась в пар, в системе создается давление 6-10 кгс). Поэтому в холодный период года ГВС подключается с обратки, где температура воды не превышает обычно 70 0С. В летний период, когда температура теплоносителя в теплосети относительно низкая, горячее водоснабжение подключается с подачи.
После задвижек ГВС находится самый главный узел системы – элеватор отопления, основное предназначение которого заключается в охлаждении перегретой (поступающей с ТЭЦ) воды до нормативных показателей, необходимых для подачи непосредственно к отопительным приборам многоквартирного дома.
Это устройство состоит из стального корпуса, в котором расположено сопло, из которого поступающая с теплоэнергоцентрали вода выходит с пониженным давлением и высокой скоростью. В результате этого создается разрежение, вызывающее подсос теплоносителя из обратки в элеватор, где и происходит смешивание воды, т.е. изменение ее температуры.
Рисунок 6 – Устройство элеватора отопления
Следует отметить, что регулирование системы отопления, т.е. определение реального перепада температур в ней, а также уровня нагрева рабочей водяной смеси и, соответственно, отопительных приборов, осуществляется изменением диаметра сопла элеватора.
За элеватором обычно расположены задвижки на отопление подъездов или многоквартирного дома в целом.
Домовые задвижки позволяют подключать и отсекать отопительный контур здания от теплоцентрали: зимой они открыты, летом перекрываются.
Далее центральное отопление предусматривает монтаж так называемых сбросов, представляющих собой вентили для перепускания или осушения системы. Иногда их соединяют с трубопроводом холодного водоснабжения с целью заполнения радиаторов водой в летний период.
В последние годы в соответствии с требованиями по обязательной установке приборов учета, на вводе в подъезды или дом устанавливаются теплосчетчики.
Рисунок 7 – Схема устройства теплового узла центральной системы отопления
Стояки и розливы централизованной системы отопления
Схема организации циркуляции воды в системе многоквартирного дома представляет собой, как правило, однотрубный вариант подачи теплоносителя с верхним или нижним розливом. При этом трубы подачи и обратки могут разводиться либо обе в подвале, либо подача на чердаке или техэтаже, а обратка в подвале.
Стояки, в свою очередь, бывают с:
попутным движением теплоносителя;
движением воды верху вниз;
встречным движением снизу вверх.
При использовании схемы с нижним розливом каждая пара стояков соединяется посредством перемычек, которая может располагаться либо в квартирах на последнем этаже, либо на чердаке. При этом в верхней точке перемычки обязательно должен быть смонтирован воздухоотводчик (воздушник).
Кран Маевского — самый простейший по конструкции, но отказоустойчивый воздушник.
Основным недостатком этого варианта является завоздушивание системы после каждого сброса воды, что требует стравления воздуха из каждой перемычки.
Рисунок 8 – Возможные схемы центральной системы отопления с нижним розливом
Система отопления с верхним розливом предусматривает установку на техэтаже многоэтажного дома расширительного бака с вентилем-воздухоотводчиком, а также отдельные вентили, позволяющие отсекать каждый стояк.
Правильный уклон при прокладке розлива обеспечивает при открытии воздушников полный слив воды из системы за очень короткое время. Но такой вариант имеет ряд особенностей, которые необходимо учитывать при проектировании.
Температура отопительных приборов уменьшается по мере движения теплоносителя вниз. Понятно, что на нижних этажах она будет значительно ниже, чем на верхних, что обычно компенсируется увеличением количества секций радиаторов или площади конвекторов.
Процесс запуска отопления довольно прост. Для этого требуется заполнить систему, открыть имеющиеся домовые задвижки и на короткое время воздушник на расширительном баке. После этого центральное отопление и вся система начинают функционировать в полной мере.
Сброс теплоносителя из конкретного стояка, наоборот, имеет некоторые сложности. Для этого требуется сначала найти и перекрыть нужный стояк на техэтаже многоэтажного дома, затем найти и отключить его вентиль в подвале, и только после этого можно будет открыть сбросник.
Рисунок 9 – Схема однотрубной системы отопления с верхним розливом
Достоинства и недостатки центральной системы отопления
Центральная система отопления имеет следующие достоинства:
возможность использования недорогих видов топлива;
надежность, обеспеченная регулярным контролем работоспособности и технического состояния со стороны специальных служб;
применение экологичного оборудования;
простота в эксплуатации.
Среди недостатков такой схемы обогрева многоквартирного дома следует отметить:
система функционирует по строгому сезонному графику;
невозможность индивидуального регулирования температуры приборов отопления;
частые перепады давления в системе;
значительные теплопотери в процессе транспортировки и отопления в многоквартирном доме;
высокую стоимость оборудования и его монтажа.
О проектировании современных систем отопления в многоэтажных зданиях жилого и общественного назначения
В. Н. Карпов, главный специалист АО «Моспроект», ведущий специалист по проектированию систем отопления
Действующие в настоящее время строительные нормы требуют установки у нагревательных приборов систем отопления термостатических клапанов, которые автоматически поддерживают в помещении постоянную, заданную потребителем, температуру. Это экономит до 20 % тепла за счет использования теплопоступлений от солнечной радиации, бытовых и производственных тепловыделений. В связи с тем, что различные нормативные документы по-разному трактуют необходимость установки термостатов (СНиП 41–01–2003 п. 6.5.13 – «как правило», МГСН 3.01–01 п. 5.36 – всегда), современными системами можно условно назвать системы, оснащенные термостатами.
Наиболее широкое применение в гражданском строительстве Москвы нашли три типа водяных систем отопления: вертикальные однотрубные, вертикальные двухтрубные и горизонтальные двухтрубные поквартирные системы. Все эти типы систем широко применяются при проектировании в нашей организации. Анализ многолетней работы этих систем в специфических условиях Москвы показывает, что каждая из этих систем обладает как своими достоинствами, так и своими, иногда неприемлемыми, недостатками. В тех или иных условиях строительства и эксплуатации диктующими становятся различные достоинства или недостатки систем.
Вертикальные однотрубные системы
В инженерном сообществе сложились некоторые мифы. Один из них – вертикально-однотрубная система устарела, не отвечает современным требованиям, ее проектирование нужно если не прекратить, то максимально ограничить.
На самом деле это совершенно не так. Однотрубная система обладает такими достоинствами, которые в наших обычных условиях эксплуатации зданий выдвигают ее на первое место.
Главное из достоинств заключается в том, что эта система гораздо более надежна, чем двухтрубная.
В узле обвязки нагревательного прибора (рис. 1) теплоноситель разветвляется на два потока. Один затекает в прибор, другой проходит по замыкающему участку, минуя его. Конструкция термостата создается таким образом, чтобы обеспечить максимальное количество теплоносителя в первом потоке. Для этого отверстие для прохода воды и диаметр плунжера делается максимальным. Термостат (в отличие от двухтрубной системы) практически не засоряется, если качество теплоносителя далеко от идеала. При несанкционированной замене отопительных приборов (чем часто грешат наши граждане) изъятие термостата не приводит к таким катастрофическим последствиям, как в двухтрубных системах. В журнале «Энерго-сбережение», № 6, 2004 наш киевский коллега В. Ф. Гершкович очень правильно описал картину, к чему приводит такая замена, – происходит «короткое замыкание», дезорганизующее всю работу системы.
Обвязка нагревательного прибора
Существуют и другие преимущества однотрубных систем: меньшая стоимость, большая простота заготовок, возможность унификации деталей системы, легкость монтажа и т. п., что в настоящее время не так актуально, но тоже имеет свое значение.
Обладают эти системы и недостатками. Основной из них – это то, что в том случае, если помещение перегрето и термостат закрылся, теплоноситель минует отопительный прибор не остывая. В этом смысле можно сказать, что однотрубная система не экономит, а не дает перерасходовать тепло. В течение отопительного сезона существуют такие периоды, когда температура на улице 18–20 °С, а система отопления работает потому, что завтра будет опять –5 °С и отключать систему нецелесообразно. Можно назвать такой режим режимом минимум. При этом режиме все термостаты могут быть закрыты, а теплоноситель из подающей линии перетекает в обратную, почти не остывая. Это крайне нежелательное явление, если источником теплоснабжения является ТЭЦ. Отсутствие массовых нареканий на это со стороны теплоснабжающих организаций при том, что в Москве построены тысячи однотрубных систем отопления с термостатами (все типовые жилые дома последнего времени), можно объяснить только тем, что эти явления краткосрочны и происходят при относительно высоких наружных температурах. К тому же, обратный теплоноситель прежде, чем вернуться в теплосеть, как правило, проходит предварительное охлаждение в первой ступени подогрева системы горячего водоснабжения.
Необходимо сказать, что зона применения вертикально-однотрубных систем отопления с термостатами ограничивается минимальным количеством этажей в стояке. Например, при количестве этажестояков меньше 7 температура воды, выходящей из последних приборов, снижается в расчетном режиме до 18–20 °С, что недопустимо. Объясняется это тем, что в домах, запроектированных в соответствии со вторым этапом энергозащищенности, теплопотери пониженные и, соответственно, расход теплоносителя в стояке также небольшой. При коэффициенте затекания теплоносителя в прибор 0,2–0,3 и малом количестве воды в стояке количество теплоносителя, затекающего в прибор, становится неприлично малым и вода остывает до указанных температур. В нашей практике мы рекомендуем не применять однотрубные системы при количестве приборов в стояке меньше 9–10. Максимальное количество приборов в стояке равно 25 (объясняется это возможностями программ для ЭВМ).
Еще одной особенностью однотрубных систем является то, что расход теплоносителя в системе мало зависит от степени открытия термостатов. Если в режиме максимум (все термостаты открыты) расход воды по стояку принять за 100 %, то расход по замыкающим участкам может быть 80 %. В режиме минимум (все термостаты закрыты) расход воды по замыкающим участкам несколько увеличится и общий расход по системе может достигать 90 %. С достаточной степенью правдоподобия можно сказать, что расход воды в однотрубных системах – величина постоянная.
Этот факт влияет на балансировку стояков в системе.
В некоторых случаях (например, при расчете системы методом постоянных перепадов температур на стояках) расчетный перепад давлений на стояках не соответствует расчетным располагаемым напорам в местах расположения этих стояков. При этом в стояк будет поступать количество теплоносителя, отличное от расчетного. Это приводит к перегреву или недогреву помещений. Такая же ситуация может иметь место, если сопротивление трубопроводов при монтаже или реконструкции системы будет отличаться от расчетного. Для уравнивания фактического количества теплоносителя в стояке с расчетным на стояках устанавливаются балансировочные клапаны (БК).
Факт постоянства расхода теплоносителя в стояке влияет на тип БК.
В качестве балансировочных в этих системах могут устанавливаться или клапаны типа регулируемой диафрагмы с ручным управлением, или автоматические клапаны типа регуляторов постоянства расхода. Нужно иметь в виду, что БК создают дополнительную потерю давления в системе в размере 15–20 кПа.
Здесь уместно поговорить о другом мифе – в системах отопления обязательно должны устанавливаться БК. Дело в том, что в Москве успешно работают многие тысячи вертикально-однотрубных систем, в том числе и с термостатами, без всяких БК.
Объяснение этому простое: эти системы рассчитаны методом переменных перепадов температур на стояках. При этом методе по выбранным диаметрам трубопроводов системы рассчитываются фактические (действительные) расходы теплоносителя в стояках, гидравлическая увязка стояков при этом равна 100 %. Это при правильном теплоснабжении здания приводит к соответствию теплопроизводительности нагревательных приборов теплопотерям помещений, системы в своей массе работают без нареканий. Большинство жалоб, связанных с недогревами помещений, объясняются неправильным распределением теплоносителя между системами (ближайший дом к ЦТП перегрет, дальний – недогрет). Многолетняя практика эксплуатации типовых зданий в Москве подтверждает все вышесказанное.
Вертикальные двухтрубные системы
В западном мире наибольшее распространение получили не однотрубные, а двухтрубные системы отопления.
В отличие от однотрубных систем, двухтрубные системы напрямую экономят тепло. В том случае, если помещение перегрето, термостат уменьшает или прекращает доступ теплоносителя в прибор. Если теплоноситель, который не поступил в прибор, попадет в прибор соседнего помещения, то он перегреет это помещение и термостат этого помещения прикроется. Таким образом, излишний теплоноситель из циркуляции исключается. В режиме минимум в двухтрубную систему поступает теплоноситель, циркулирующий только по нерегулируемым стоякам (лестничные клетки, лифтовые холлы, межквартирные коридоры). В этом отношении двухтрубные системы более прогрессивны, чем однотрубные.
На рис. 2 представлен фрагмент двухтрубной системы 25-этажного здания.
Фрагмент вертикальной двухтрубной системы отопления
Для обеспечения необходимой тепловой и гидравлической устойчивости в узлах обвязки нагревательных приборов устанавливаются термостаты, способные сдросселировать значительную потерю давления. Из теории автоматизации известно, что для качественной работы регулирующего органа его авторитет (отношение потери давления в регуляторе к потере давления на регулируемом участке) должен быть в пределах 30–70 %. Таким образом, эта потеря может колебаться от 8–10 кПа на периферии до 25–28 кПа у основания стояка.
Для обеспечения такой потери давления, учитывая, что расчетный расход теплоносителя в приборе может быть небольшим, размер дросселирующего отверстия термостата должен быть очень маленьким. Практически минимальное отверстие в термостатах для двухтрубных систем сравнимо даже не с булавочной головкой, а с булавочным острием. В том случае, если теплоноситель в системе имеет загрязнения, такие отверстия легко засоряются.
Для того чтобы этого не происходило, требуется качественное обслуживание системы, постоянная очистка грязевиков и еще ряд известных мероприятий. В том случае, если заказчик не в состоянии гарантировать такое обслуживание (а также сохранность термостатических клапанов у приборов), применение двухтрубной системы не является оптимальным решением. Поэтому при выборе типа системы отопления мы рекомендуем в первую очередь выяснять, в каких условиях будет эксплуатироваться здание.
При выборе типа термостатов следует обращать внимание, во-первых, на шумовые характеристики термостатов (не зашумит ли термостат при максимальных потерях давления в нем) и, во-вторых, на то, какое количество фиксированных настроек может этот термостат обеспечить. Чем больше это число, тем точнее можно обеспечить распределение теплоносителя по нагревательным приборам.
Вертикально-двухтрубные системы проектируются наиболее часто с нижней прокладкой разводящих магистралей. Объясняется это тем, что из-за разности температур в подающем и обратном стояках возникают значительные гравитационные давления (в 25-этажном доме до 10 кПа). Для приборов различных этажей эти давления различны, чем выше прибор, тем больше гравитационное давление. При нижнем расположении разводящих магистралей дополнительное гравитационное давление используется для преодоления теплоносителем трубопроводов стояка. В этих условиях система работает более равномерно. Однако, если это невозможно, можно проектировать системы и с верхним расположением подающей магистрали. Рекомендуется избегать систем с верхним расположением подающей и обратной магистралей, так как в этом случае трудно исключить засорение нижних приборов, они становятся естественными сборниками шлама.
Для балансировки в основании стояков устанавливаются БК. Однако балансировка системы и тип БК не такие, как в однотрубной системе. Как было сказано выше, расход теплоносителя в двухтрубной системе колеблется от максимума в режиме максимум почти до нуля в режиме минимум. При этом потери давления в трубопроводах и арматуре, имеющей постоянное гидравлическое сопротивление, изменяются и тоже стремятся к нулю. В этих условиях БК должны обеспечивать постоянный перепад давления в месте установки. Поэтому балансировку осуществляют регуляторы постоянства перепада давления. Таким образом, БК в двухтрубной системе не только гидравлически увязывают первый стояк с последним, но и обеспечивают постоянство условий работы всех стояков при различных режимах работы системы. Установка в двухтрубных системах в качестве БК регуляторов с ручным управлением типа регулируемой диафрагмы ошибочна, так как она обеспечивает балансировку системы только в расчетном режиме (режиме максимум). Установка этих регуляторов возможна для некоторой юстировки расходов теплоносителя по стоякам.
Хотелось бы вернуться ко второму мифу про системы отопления – необходимости повсеместной установки БК. Конечно, в том случае, если в разводящих магистралях мы теряем значительный напор, сравнимый с потерей давления в стояках и термостатах (например, 15–20 кПа), установка БК обязательна. Однако, если в разводящих магистралях мы теряем напор незначительный (3–4 кПа), то БК, по нашему мнению, можно не устанавливать.
Дело в том, что в двухтрубной системе разрегулировка наступает из-за изменения потерь давления в нерегулируемых элементах (трубопроводах, задвижках, вентилях и т. п.) при изменениях расхода теплоносителя, а также из-за изменения гравитационного напора. БК, установленные в основании стояка, не в состоянии изменить разбалансировки, возникающие после них (потери в стояках, гравитационный напор), потому что их основная функция – поддерживать постоянный перепад давления после себя, что бы после них ни происходило. Они могут ликвидировать только те разрегулировки, которые возникают до них (в случае установки регулятора постоянства перепада давления в узле ввода – разрегулировки от изменения потери давления в разводящих магистралях).
Установка дорогостоящей арматуры, которая требует дополнительных затрат на наладку и эксплуатацию, для ликвидации разрегулировки в 3 кПа при наличии разрегулировок в 17 и 9 кПа, с которыми мы не способны справиться в принципе, мероприятие довольно странное. Ведь при минимальной потере давления в термостатах, равной 10 кПа, разрегулировка 3 кПа практически не окажет никакого влияния на работу системы. Получить такие небольшие потери давления в разводящих магистралях без значительного завышения диаметров труб вполне реально при проектировании посекционных тупиковых систем отопления.
Зона применения двухтрубных систем отличается от зоны применения однотрубных: стояки двухтрубных системы могут быть и одноэтажными. Ограничение высотности должно быть скорее сверху. Хотя существующие программы для ЭВМ позволяют проектировать и 25-этажные системы, мы рекомендуем ограничивать высотность 17–20 этажами. При уменьшении высоты системы снижаются вертикальные разрегулировки и экономится большее количество тепла.
В заключение хочется предостеречь от ручного расчета двухтрубных систем, так как он достаточно трудоемок. Дело в том, что происходит значительное охлаждение теплоносителя в стояках, если они не изолированы. При 25-этажном стояке температура у последнего прибора снижается на 10–15 °С, и это нужно учитывать наряду с дополнительными теплопоступлениями от труб на первых этажах. Расчет двухтрубной системы не легче, чем расчет однотрубной.
Горизонтальные поквартирные системы
С теплотехнической и гидродинамической точек зрения горизонтальные поквартирные системы отопления оптимальны. Зона их применения – от одного этажа до максимума, который ограничивается прочностью элементов системы или высотой пожарного отсека высотного здания. Эти системы способны экономить наибольшее количество тепла. Такие системы наименее уязвимы в случае несанкционированного изменения или реконструкции. Они обладают несомненными эстетическими достоинствами. Словом, эти системы почти во всем самые лучшие. За исключением одного – они самые дорогие из рассматриваемых систем. Поэтому они применяются в основном в высокодоходных индивидуальных зданиях в том случае, если заказчик дает на это согласие.
На рис. 3 показана принципиальная схема горизонтальной поквартирной системы отопления. Здесь же приведены ориентировочные рекомендуемые потери давления в элементах системы.
Принципиальная схема горизонтальной поквартирной системы отопления:
1 – отопительный прибор;
3 – квартирный узел регулирования и учета (КУРУ);
4 – главный стояк;
5 – квартирная разводка;
6 – циркуляционный насос системы отопления;
7, 8, 9 – регуляторы перепада давления
Теплоноситель приготавливается в ИТП и циркуляционным насосом (6) подается к секционным узлам ввода. На выходе из ИТП при помощи регулятора (8) или другого устройства (например, частотного регулятора) поддерживается постоянство перепада давлений. В том случае, если на выходе из ИТП (в точках А и Б) располагаемый напор больше 130–150 кПа, в узле ввода также устанавливается аналогичный регулятор (9). Стояками теплоноситель подается на этажи. Здесь возможны варианты: через квартирные (КУРУ) или этажные (ЭУРУ) узлы регулирования и учета тепла теплоноситель распределяется по квартирам. Принципиальная схема КУРУ приведена на рис. 4. ЭУРУ отличаются от КУРУ тем, что к ним могут присоединяться все или несколько квартир этажа. КУРУ могут располагаться в квартире (например, в прихожей или в сантехнической шахте) или вне квартир, ЭУРУ – только вне квартир. Расположение УРУ вне квартир предпочтительнее, так как все обслуживание и контроль производится независимо от жильцов.
Квартирный узел регулирования и учета:
1 – отключающие краны;
4 – датчик температуры;
5 – БК (регулятор постоянства перепада давления);
6 – БК (регулируемая диафрагма);
7 – клапаны для замера давления;
8 – штуцеры для замера давления;
9 – воздушный кран;
10 – спускной кран
В КУРУ осуществляется:
– очистка теплоносителя (2);
– учет расхода тепла на отопление (3, 4);
– поддержание постоянства перепада давления на вводе в квартиру (5);
– в том случае, если на нагревательных приборах термостаты сняты, производится дополнительное дросселирование квартирной системы, которое ограничивает максимальный расход теплоносителя (6), отключение системы или ее части (2).
Для возможности настройки КУРУ и проверки его работоспособности служат штуцеры для замера давления (7 и 8).
На рисунке указаны рекомендуемые потери давления для подбора элементов КУРУ. БК (5) подбирается таким образом, чтобы при полном открытии в нем терялось до 5 кПа, однако в расчетном режиме он должен работать в полузакрытом состоянии (чтобы в случае необходимости он мог открыться). При этом потери давления в нем должны быть около 15 кПа.
Кроме очевидных достоинств: независимости, ремонтопригодности, легкости организации поквартирного учета тепла и т. п. – данная система превосходит вертикальную двухтрубную тем, что БК здесь максимально приближен к отопительным приборам и снимает все разрегулировки, которые возникают до него в процессе работы системы (гравитационные напоры, изменения потери давления в стояке). Это не только лучше стабилизирует систему, но и позволяет настраивать термостаты на большие настройки, что приводит к более плавному регулированию и большей экономии тепла. В поквартирных системах установка БК обязательна.
По нашему мнению, горизонтальные поквартирные системы наиболее перспективны в настоящее время.
Автор приносит благодарность В. В. Невскому (ООО «Данфосс») за сведения, использованные при подготовке статьи.
Системы водяного отопления многоэтажных зданий. Технические рекомендации по проектированию