- Подбор циркуляционного насоса для системы ГВС
- Рекомендации по подбору циркуляционного насоса. Расчет напора и производительности.
- 1. Производительность насоса Q
- 2. Напор насоса Н
- 3. Выбор насоса.
- Расчёт мощности циркуляционного насоса для системы отопления и ГВС
- Необходимость насоса циркуляции
- Как подобрать циркуляционный насос для ГВС?
- Как рассчитать циркуляционный насос для отопления?
- Как рассчитать гидравлическое сопротивление?
- Как выбрать насосное оборудование по количеству скоростей?
- Рекомендации специалистов
Подбор циркуляционного насоса для системы ГВС
Циркуляционные насосы в системах ГВС чрезвычайно популярны в Европе, их монтаж регламентирован специальными строительными нормами. В России пока еще не все осознали удобство рециркуляции горячей воды, полностью приближающее эффект от использования бойлера к центральному водоснабжению. Предлагаем вниманию читателей распространенную на Западе методику подбора циркуляционного насоса ГВС.
Прежде всего, необходимо помнить, что циркуляционный и повысительных насосы — это совершенно разные приборы. Циркуляционный насос не изменяет статическое давление системы, а лишь обеспечивает перемещение теплоносителя по трубам.
Основной характеристикой любого циркуляционного насоса является рабочий график, который в случае варианта для рециркуляции в системе ГВС обычно состоит из одной кривой, поскольку он обычно не имеет переключающихся скоростей (рис. 1). Из графика видно, что по мере возрастания объема перекачиваемой жидкости напор падает. И наоборот, с ростом высоты подъема проток падает. В крайней точке с максимальным напором проток равен нулю, в точке с максимальным протоком нулю равен напор.
Физический смысл данной кривой очень удобно проиллюстрировать на примере открытой системы (рис. 1 и 2). Если длина трубы H будет равна Hmax, вода из нее вытекать не будет, поскольку при таком значении напора проток V0 равен нулю. Если укоротить трубу до длины H1, вода из нее будет вытекать со скоростью V1. Убрав трубу вовсе, мы получим проток на выходе Vmax, поскольку напор H0 = 0.
Описанная выше ситуация верна лишь для открытых систем. В закрытой системе создаваемый циркуляционным насосом напор призван не преодолевать высоту подъема жидкости, а компенсировать потери давления, вызванные сопротивлением труб и арматуры.
Рабочая точка циркуляционного контура ГВС
В циркуляционном контуре потери давления и объемный проток находятся в тесной взаимосвязи. Между потерями давления в системе, которые необходимо преобразовать в потери высоты напора, и напором насоса существует равновесие. Это означает, что потери системы совпадают с напором насоса в рабочей точке.
Поскольку каждому значению напора насоса соответствует единственная величина протока, объем циркулирующей в системе воды напрямую связан с сопротивлением трубопроводов и арматуры. Для определения рабочей точки необходимо наложить кривую контура ГВС на график циркуляционного насоса.
Нередки случаи, когда неизвестны ни кривая системы, ни ее рабочая точка. В этом случае необходимые значения потерь давления в системе и требуемого объема горячей воды для циркуляции можно определить арифметически путем расчета сопротивлений отдельных отрезков системы.
При этом необходимо учитывать, что добиться расчетных характеристик получится лишь в том случае, если все циркуляционные ветки, завязанные на один насос, будут гидравлически сбалансированы с помощью регулирующих вентилей, механических или термостатических. Целью балансировки является поддержание оптимальной скорости протока во всей системе независимо от длины труб и их диаметра с тем, чтобы не допустить чрезмерного понижения температуры воды, возвращающейся в бойлер. В идеале разница между подающей трубой на выходе и линией рециркуляции на входе в водонагреватель должна составлять для малых систем протяженностью менее 200 м и для больших (больше 200 м в длину).
В стандартном случае, при равных диаметрах всех циркуляционных трубопроводов, в ветках, расположенных ближе к насосу, сопротивление необходимо повысить до такой степени, чтобы оно соответствовало потерям давления в дальних ветках. Вдали от насоса, напротив, требуется создать повышенный проток, дабы циркулирующая вода не успела сильно остыть.
Диаметр циркуляционной трубы зависит от диаметра трубы подающей. Четких рекомендаций на сей счет российский СНиП «Внутренний водопровод и канализация», к сожалению, не имеет, поэтому обратимся к немецкому DIN 1988, ч. 3 (табл. 1).
Расчет рабочей точки
Теперь приступим к определению рабочей точки системы. Для этого нам требуются проток Vc и потери давления (напор) Δpc. Проток, который необходимо обеспечить, зависит от общего объема циркулирующей во всех ветках воды. Для предотвращения чрезмерного охлаждения жидкости насос должен обеспечивать такую скорость, чтобы вся вода, находящаяся в трубах, не успела сильно охладиться. Также следует учитывать, что максимальная скорость не должна превышать 0,5 м/с для медных труб и 1 м/с для труб из других материалов.
Напор определяется по сумме сопротивлений наиболее длинной циркуляционной ветки, если считать от присоединения циркуляционного трубопровода к подающей линии до входа в водонагреватель. Рабочая точка должна подбираться с таким расчетом, чтобы температура горячей воды в трубах не опускалась ниже °C для недопущения размножения бактерий.
Существуют разные методики расчета. Мы предлагаем здесь одну из них [1],достаточно простую, основанную на некоторых усредненных данных. Из недостатков этого способа можно лишь отметить возможность его использования для сравнительно небольших систем с диаметром циркуляционной трубы на разных участках от DN 10 до DN 20 и, соответственно, проходным сечением насоса не более 3/4ʺ.
Вначале определим теплопотери в трубопроводах. Если данных от производителя труб и теплоизоляции не имеется, для хорошо утепленной трубы принимаем: qтп.неот = 11 Вт/с на 1 м трубы, проложенной в неотапливаемом помещении (например, подвал), а такжеqтп.от = 7 Вт/с на 1 м трубы, проложенной в отапливаемом помещении (например, сантехнический короб, кухня, ванная комната). Теплопотери арматуры (вентили, счетчики и т.п.) можно не учитывать ввиду их незначительного влияния на общий результат. Таким образом, общие потери тепла в системе составляют:
где Σlтп.неот и Σlтп.от — суммарная длина трубопроводов, проложенных в холодных и обогретых помещениях, соответственно.
Максимально допустимую разницу температур между подающей и циркуляционной линиями принимаем равной Δtтп = 2 K. По этим данным мы теперь можем вычислить требуемый расход:
где ρ — плотность воды, равная 1 кг/л; c — удельная теплоемкость воды, равная 1,2 Вт*ч/(кг*K). Так можно найти требуемую скорость воды в отдельных ветках.
Если ветка всего одна, то проток в ней равен общему расходу. Но так бывает редко, поскольку циркуляционная линия охватывает все водоразборные точки, следовательно, изобилует ответвлениями.
В узловых пунктах проток делится на основной проток и дополнительный. Проток в основной части равен:
а в дополнительной:
Напорная составляющая рабочей точки определяется, как указывалось ранее, по самой длинной ветке с коэффициентом на изгибы и стыки K = Чем более извилистая труба, тем большее значение коэффициента следует принять. Проток в этом случае в каждом узловом пункте делится на основной и дополнительный. В случае, если после разветвления ни одна из труб не идет непосредственно к водоразборной точке, дополнительной считается та, объем воды в которой меньше. Также учитывают сопротивление различной арматуры, не вошедшей в расчет теплопотерь — вентили, клапаны и пр.:
Рассчитанные таким образом напор и проток представляют собой рабочую точку системы. Рассмотрим пример (рис. 3). В табл. 2 указаны основные характеристики системы горячего водоснабжения трехэтажного здания с пятью стояками: длина металлопластиковых трубопроводов, проложенных в подвале и в обогреваемых комнатах, внутренний диаметр труб, тип протока при делении в узловых точках, а также рассчитаны теплопотери в каждом отрезке. После этого находим общий проток по (2):
Расчет требуемого расхода на каждом отрезке трубы на основании определенных в табл. 2 теплопотерь приведен в табл. 3. Теплопотери основных и дополнительных отрезков просуммированы в колонке «Общие теплопотери», а соответствующие значения протока вычислены по формулам (3) и (4).
В табл. 4 на основании СП [2] рассчитаны скорость движения теплоносителя и потери давления на трение (если трубы пластиковые или медные, то пользоваться нужно СП [3] или СП [4], соответственно).Самая длинная ветка: потери давления в ней составляют величину 1271,27 Па. По формуле (6) найдем напор в рабочей точке:
Δpc = KΣlтрRтр + ΣRарм = 1,4 × 1271,27 + 200 = 1979,78 Па,
при K = 1,4 и Rарм = 200 Па. В пересчете на метры напора 1979,78 Па = 0,2 м.
По имеющимся в табл. 4 данным необходимо также настроить регулировочные вентили.
Итак, для данной системы подходит насос с рабочей точкой Vc = 189,17 л/ч, Δpc = 0,2 Па. С такими незначительными параметрами без труда справится практически любой из имеющихся на рынке циркуляционных насосов ГВС.
1. Брошюра VORTEX Brauchwasserpumpen. Technische Broschu..re. Trinkwasserzirkulation mit VORTEX Pumpen // 09de0090 11/09.
2. СП Проектирование и монтаж трубопроводов систем отопления зданий с использованием метало-полимерных труб.
3. СП Проектирование и монтаж трубопроводов из полипропилена «рандом сополимер».
4. СП Проектирование и монтаж трубопроводов внутренних систем водоснабжения и отопления зданий из медных труб.
Рекомендации по подбору циркуляционного насоса. Расчет напора и производительности.
1. Производительность насоса Q
Для расчета производительности насоса необходимо знать один из следующих параметров:
а) отапливаемая площадь
б) мощность источника тепла
А. Если известна отапливаемая площадь, сначала надо рассчитать необходимую мощность источника тепла по формуле:
Qn — необходимая тепловая мощность, в кВт
Sn — отапливаемая полезная площадь здания, и м 2
Qуд — удельная теплопотребность здания
70 Вт/м 2 – для здания с более чем 2-мя квартирами
100 Вт/м 2 – для отдельно стоящих зданий с 1-2 квартирами
А, Б. Расчет производительности насоса производиться по формуле:
Qн — подача насоса, в м 3 /ч
Qn — необходимая тепловая мощность, в кВт
1,16 — удельная теплоёмкость воды, в Вт х час/кг х о К
tr — температура воды на выходе из котла, в о С
tx — температура воды на входе в котел, в о С
Разница температур Δt = tr – tx зависит от типа отопительной системы
Δt = 20 о К для стандартных отопительных систем
Δt = 10 о К для низкотемпературных отопительных систем
Δt = 5 о К для системы теплых полов
2. Напор насоса Н
Самое важное замечание: напор циркуляционного насоса зависти не от высоты здания, а от гидравлического сопротивления отопительной сети. Поэтому необходимо рассчитать это сопротивление. Расчет производится по формуле:
Hн = (R x I + ΣZ) / (ρ x g), где
Hн — напор насоса, в м
Если речь идет о старом здании, чаще всего можно говорить о приблизительном расчете параметров, поскольку документация вряд ли сохранилась. В этом случае расчет лучше вести по другой формуле:
Hн — напор насоса, в м
R – потери на трение в прямой трубе, в Па/м
I – общая длина трубопровода до самого дальнего нагревательного элемента, в м
SF – коэффициенты запаса для
1,3 – фитингов / арматуры
1,7 – термостатических вентилей
1,2 – смесителя / устройства, предотвращающего естественную циркуляцию
Опытным путем установлено, что в прямой трубе трубопровода возникает сопротивление порядка R = 100:150 Па/м. Это соответствует необходимому напору насоса в 1,0:1,5 см на метр трубопровода. Определяется самая неблагоприятная ветка трубопровода между источником тепла и самым удаленным радиатором. Длина, ширина и высота складываются и умножаются на 2:
I = 2 x (a + b +h)
Для определения сопротивления всех дополнительных частей трубопровода можно использовать коэффициенты запаса ZF, исчисленные опытным путем. Значения этих коэффициентов для фитингов и арматуры составляют примерно 30% от потерь в прямой трубе, то есть:
ZF1 = 1,3
Если в системе установлены термостатические вентили, то значение общего коэффициента запаса будет следующим:
ZF = ZF1 x ZF2 = 1,3 x 1,7 = 2,2
Если же в системе присутствует смеситель, то при расчетах следует учитывать дополнительный коэффициент запаса, то есть:
ZF = ZF1 x ZF2 x ZF3 = 1,3 x 1,7 x 1,2 = 2,6
3. Выбор насоса.
После расчетов 1 и 2 должны получиться значения производительности и напора, определяющие рабочую точку, по которой выбирается модель насоса. У каждого насоса есть своя гидравлическая характеристика. Наиболее оптимальная работа насоса в средней трети графика (очень часто эта зона выделена толстой линией). Очень редко бывает, когда расчетная точка совпадает с гидравлической характеристикой насоса. аще всего эта точка лежит между характеристиками двух насосов. При выборе конкретной модели насоса не нужно выбирать саамы мощный, поскольку, даже менее мощный насос полностью обеспечит систему отопления.
Расчёт мощности циркуляционного насоса для системы отопления и ГВС
Качественная работа автономной отопительной системы, не требующей постоянного присутствия человека рядом, невозможна без циркуляционного насоса . Этот прибор делает работу техники эффективнее, а обогрев лучше.
p, blockquote 1,0,0,0,0 —>
Российский рынок переполнен множеством моделей и отечественных, и зарубежных компаний. Вы с лёгкостью сможете подобрать оборудование для обогрева дома, которое подойдёт по техническим характеристикам к определённой системе. Однако для верного выбора необходимо учитывать некоторые особенности и произвести расчёт циркуляционного насоса.
p, blockquote 2,0,0,0,0 —>
Циркуляционный насос с мокрым ротором
Необходимость насоса циркуляции
Многим жильцам верхних этажей высоток знакома ситуация, когда радиаторы отопления греются очень слабо. Причина на это – малое давление. Потому что если в системе отсутствует насосное оборудование, то вода движется по трубам медленно, остывая на определённых этажах. Теперь вы понимаете важность верного расчёта производительности циркуляционного насоса на отопление.
p, blockquote 3,0,0,0,0 —>
Такая же ситуация знакома и проживающим в загородных домах – в отдалённых уголках системы обогрева батареи более холодные, чем на старте. Лучшим решением этой проблемы станет именно установка насоса циркуляции. Суть в том, что маленьких по площади домах системы с естественной циркуляцией жидкости довольно эффективны. Однако и в подобном случае не будет лишним задуматься о покупке насосной системы, так как при правильной настройке работы этого оборудования, затраты на отопление станут меньше.
p, blockquote 4,0,0,0,0 —>
Как выглядит конструкция насоса? Это техника, которая состоит из мотора с ротором, погружённым в воду. Суть работы такова: ротор вращается и двигает нагретую до определённой температуры жидкость по отопительной системе с конкретной скоростью, как результат – необходимо давление.
p, blockquote 5,0,0,0,0 —>
Работа насосов возможна в различных режимах. Если провести монтаж насоса в системе обогрева на максимальную работу, то жильё, которое остынет во время отсутствия хозяев, прогреть можно будет в самые короткие сроки. Потом потребители восстановят настройки и получат при наименьших затратах нужное количество тепла.
Чтобы знать, как выбрать циркуляционный насос для отопления, необходимо знать, что бывают устройства с сухим (частичное погружение в теплоноситель ) и мокрым ротором (полное погружение). Приборы с мокрым ротором практически не издают шума – в этом их отличие.
p, blockquote 7,0,0,0,0 —>
Как подобрать циркуляционный насос для ГВС?
Нужно знать при выборе, что циркуляционный насос должен справляться со следующими задачами:
p, blockquote 8,0,1,0,0 —>
- Формирование в системе ГВС напора, которое в силах справиться с гидросопротивлением, что появляется в некоторых элементах.
- Обеспечение требуемой производительности и содействие движению по системе тепла, которого было бы достаточно для отопления жилья.
Исходя из целей, расчёт циркуляционного насоса для системы отопления необходим для того, чтобы установить потребности дома в теплоэнергии и всей системы в гидросопротивлении. Если вы не будете знать подобные параметры, подобрать прибор будет невозможным.
p, blockquote 9,0,0,0,0 —>
Рассмотрите таблицу, чтобы знать, как подобрать насос циркуляции для отопления.
p, blockquote 10,0,0,0,0 —>
Таблица тепловой мощности насосов циркуляции
Как рассчитать циркуляционный насос для отопления?
Производительность такого устройства, как правило, отмечают буквой Q. Эта величина – тепла, перемещённое за единицу времени.
p, blockquote 11,0,0,0,0 —>
Для расчёта используют такую формулу:
p, blockquote 12,0,0,0,0 —>
p, blockquote 13,0,0,0,0 —>
Параметры, что используются в этой формуле, указаны в таблице.
p, blockquote 14,0,0,0,0 —>
Обозначение | Параметр | Единица измерения |
---|---|---|
Q | Расход теплоносителя | м³/час |
R | Требуемая для отопления помещения тепловая мощность | кВт |
TF | Температура жидкости в трубе линии подачи | °С |
TR | Температура в трубах на выходе из системы | °С |
В странах Европы показатель R зависит от эксплуатационных условий, его рассчитывают в связи с определёнными нормами.
p, blockquote 16,1,0,0,0 —>
- В домах с количеством квартир не больше двух, мощность циркуляционного насоса для отопления берут за 100 Вт/м².
- В многоквартирных постройках – 70 Вт/м².
При расчёте насосного оборудования для помещений с плохой тепловой изоляцией, показания вышеприведённых показателей увеличивают. При хорошем утеплении, значения R берут в районе 30-50 Вт/м².
p, blockquote 17,0,0,0,0 —>
p, blockquote 18,0,0,0,0 —>
Как рассчитать гидравлическое сопротивление?
Уже шла речь о том, что на подбор циркуляционного насоса для системы отопления непосредственно влияет и такой важный параметр, как гидравлическое сопротивление, которое создаётся отдельными элементами системы обогрева, позволяет произвести расчёт высоты всасывания насоса и, как следствие, даёт возможность выбрать модель техники по мощности и создаваемому напору. Для расчёта всасывания насоса (обозначается буквой Н) используют такую формулу:
p, blockquote 19,0,0,0,0 —>
H = 1,3 x (R1L1 + R2L2 + Z1……..Zn) / 10000
p, blockquote 20,0,0,0,0 —>
Параметры, используемые в этой формуле, указаны в таблице.
p, blockquote 21,0,0,0,0 —>
Обозначение | Параметр | Единица измерения |
---|---|---|
R1, R2 | Потери давления, создаваемого насосом циркуляции, в подающей магистрали трубопровода и в обратке | Па/м |
L1, L2 | Длина подающей части трубопровода и обратки | м |
Z1… Zn | Гидравлическое сопротивление, которое создают отдельные элементы системы отопления | Па |
Значения R1и R2, которые применяются этой таблице, стоит выбирать по специальной информационной таблице.
p, blockquote 22,0,0,0,0 —>
Значения гидросопротивления, что создаётся разными устройствами, применяемыми для оснащения отопительных систем, как правило прописываются в техдокументации на них. Если подобные сведения в паспорте устройства отсутствуют, то можно взять примерные показания гидравлического сопротивления (см. таблицу).
p, blockquote 23,0,0,0,0 —>
Отопительный прибор | Гидравлическое сопротивление, Па |
---|---|
Отопительный котёл | 1000–2000 |
Сантехнический смеситель | 2000–4000 |
Термоклапан | 5000–10000 |
Прибор для определения количества тепла | 1000–1500 |
Есть специальные информационные таблицы, позволяющие узнать гидросопротивление почти для любого элемента оснащения обогревательных систем.
p, blockquote 24,0,0,1,0 —>
Зная высоту всасывания, для расчёта которой применяется вышеприведённая формула, можно быстро подобрать насос циркуляции по его мощности и узнать необходимый его напор.
p, blockquote 25,0,0,0,0 —>
Как выбрать насосное оборудование по количеству скоростей?
С выбором напора и мощности циркуляционного насоса для отопления частного дома определились, теперь остановимся на функциях регулировки скорости работы, которые имеются во многих моделях. Обычно это трёхскоростные приборы, которые позволяют управлять объёмом тепла, направляемым на отопление комнат. При быстром похолодании увеличивают скорость работы устройства, а в случае потепления делают её меньше, тогда как температура в помещениях остаётся комфортной для проживания.
p, blockquote 26,0,0,0,0 —>
Для переключения скорости есть рычаг, что расположен на корпусе насосного оборудования. Популярностью пользуются насосы с автоматической системой регулирования этого показателя исходя от температуры за пределами здания.
p, blockquote 27,0,0,0,0 —>
Рекомендации специалистов
Так как на рынке имеются насосы, которые укомплектованы сухим либо мокрым ротором, с механическим либо автоматическим способом управления скоростями, мастерами рекомендуется покупать оборудование, ротор которого погружён в жидкость целиком. И свой выбор стоит основывать не только за счёт пониженного шума, но и потому, что он выдержит нагрузку лучше. Циркуляционный насос стоит устанавливать таким образом, чтобы вал ротора быть в горизонтальном положении.
p, blockquote 28,0,0,0,0 —>
Для изготовления прибора высокого качества используют прочную сталь и керамический вал. Минимальный эксплуатационный период данного насосного оборудования равен 20 годам. Для горячего водяного снабжения не стоит выбирать прибор с корпусом из чугуна, потому что он быстро разрушается при работе в данных условиях. Лучше приобретать оборудование из нержавеющей стали, латуни либо бронзы.
Если во время функционирования в насосной системе слышится шум, это не означает о стопроцентном присутствии неисправности. Зачастую шум может возникать из-за скопившегося воздуха в систему после включения. Потому перед запуском системы обогрева необходимо стравливать воздух с помощью специальных клапанов. Нужно дать системе поработать несколько минут, а затем повторить эту процедуру и настроить насос.
p, blockquote 30,0,0,0,0 —>
При запуске насоса с механическим способом регулирования, устройство ставят на максимальную скорость, в то время как в регулируемых моделях попросту отключают блокировку.
p, blockquote 31,0,0,0,0 —>
Вывод: чтобы мощный циркуляционный насос для отопления работал долго и эффективно, необходимо произвести расчёт двух параметров – напора и производительности. Не нужно стремиться постичь сложную инженерную математику. Дома хватит и приблизительного расчёта. Все получившиеся дробные числа округляют в большую сторону.
p, blockquote 32,0,0,0,0 —> p, blockquote 33,0,0,0,1 —>
Как видите, расчёт циркуляционного насоса для отопления и ГВС можно произвести и самостоятельно.