Раздел 7. ВОДОСНАБЖЕНИЕ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ
§ 157. Системы водоснабжения тепловых электростанций
Водоснабжение тепловой электростанции может быть прямоточным, оборотным или смешанным.
При прямоточном водоснабжении отработавшая теплая вода сбрасывается в реку, водохранилище, озеро или море на таком расстоянии от водоприемного сооружения, чтобы исключить возможность попадания в него теплой воды. При низких температурах речной воды водоснабжение электростанций из реки может быть осуществлено по системе с подмешиванием к речной воде в маловодные периоды года отработавшей на электростанции теплой воды.
При применении системы прямоточного водоснабжения не требуется больших капиталовложений на строительство и обеспечиваются низкие и устойчивые температуры охлаждающей воды. Однако расходы воды, достаточные для прямоточного водоснабжения мощной электростанции, могут быть получены только из больших рек, на которых размещение тепловых электростанций по совокупности технико-экономических показателей (топливоснабжение, выдача электроэнергии) оправдывается лишь в редких случаях. Возможность размещения электростанций на реках ограничивается также повышенными требованиями к условиям сброса воды в водоемы, связанными с тем, что изменение температурного режима реки оказывает большое влияние на происходящие в ней биологические процессы. Поэтому крупная теплоэнергетика в дальнейшем будет развиваться преимущественно с применением оборотного водоснабжения.
Наиболее выгодной системой оборотного водоснабжения для конденсационной электростанции является система с водохранилищем-охладителем. Однако возрастающая ценность земельных участков все чаще приводит к необходимости применения для охлаждения воды на ГРЭС градирен. В таких случаях может быть применена система воздушной конденсации с радиаторными охладителями (сухими градирнями), если в районе размещения ГРЭС не имеется источников, достаточных для подпитки системы оборотного водоснабжения.
На ТЭЦ, располагаемых, как правило, вблизи потребителей тепла в крупных городах, широко применяются системы оборотного водоснабжения с испарительными градирнями.
Существуют системы смешанного водоснабжения электростанции, когда параллельно с прямотоком в маловодные периоды включаются в в работу охладители (водохранилище-охладитель, градирни или брызгальные установки) либо параллельно с водохранилищем — градирни или брызгальные установки.
Подача воды на электростанцию из реки, озера или водохранилища осуществляется блочными или центральными насосными станциями либо самотеком.
При схеме с блочными насосными станциями (VII.20) на каждый блок (котел-турбина) устанавливают по два циркуляционных насоса. От каждого насоса к конденсатору турбины прокладывают отдельный водовод,
В качестве циркуляционных водоводов обычно применяют тонкостенные стальные сварные трубы с ребрами жесткости.
Блочные насосные станции располагают перед фронтом машинного зала электростанции: либо непосредственно на берегу источника водоснабжения, либо на самотечном канале, подводящем воду от источника. Последнюю схему применяют при небольшом превышении площадки электростанции над уровнем воды в источнике.
При размещении на берегу источника водоснабжения блочные насосные станции совмещают с водоприемниками, в которых устанавливают водоочистные решетки и вращающиеся сетки.
Насосы могут быть установлены по блочной схеме также в машинном отделении электростанции непосредственно около конденсаторов турбин. В этом случае на канале, подводящем воду из источника, устанавливается водоприемник с водоочистными вращающимися сетками.
При значительном удалении площадки электростанции от источника водоснабжения или большой амплитуде колебаний уровня воды в водохранилище многолетнего регулирования применяют двухступенчатую перекачку охлаждающей воды; береговая насосная станция первого подъема подает воду в канал, подводящий ее на площадку электростанции, а к конденсаторам вода подается блочными насосами или насосами, установленными в машинном отделении электростанции.
При блочной схеме обратные клапаны и задвижки на напорных линиях не ставят, задвижки устанавливают лишь на сливной линии конденсатора (см. VII.20 и VI 1.21). Такая схема наиболее надежна и вместе с тем экономична, так как гидравлические потери в системе сводятся к минимуму. Для возможности регулирования подачи воды при блочных схемах устанавливают осевые насосы с поворотными лопастями, а при глубоком регулировании — также и с двухскоростными двигателями.
На VII.21 приведена вертикальная схема подачи воды в конденсатор. После прохождения через конденсаторы нагретая вода сбрасывается в общий для всех турбин отводящий канал. На территории электростанции этот канал выполняется закрытым из сборных железобетонных звеньев прямоугольного сечения размером до 4,2X3 м. Вне территории электростанции отводящий канал выполняется открытым трапецеидального сечения.
При схеме с центральной береговой насосной станцией (VII.22) охлаждающая вода подается от насосной станции к машинному отделению электростанции по двум или нескольким напорным магистральным водоводам, диаметры которых достигают 3—3,5 м. К каждому конденсатору устраивают отводы от двух магистральных водоводов. Центральные насосные станции сооружают в одном блоке с водоприемниками. В них устанавливают не менее четырех насосов суммарной производительностью, равной максимальному расчетному расходу охлаждающей воды (без резерва); насосы работают параллельно на разветвленную сеть. Такое расположение насосов обеспечивает их взаимное резервирование и возможность регулирования подачи воды изменением не только угла установки лопастей, но и числа работающих насосов. При морском водоснабжении устанавливают один резервный насос.
Недостатками такой схемы являются большое количество арматуры (обратные клапаны, задвижки на напорных линиях и перемычках) и повышенные гидравлические потери в разветвленной сети.
При значительном превышении площадки электростанции над уровнем воды в источнике водоснабжения может быть предусмотрено использование энергии сбрасываемой отработавшей воды (рекуперация). Рекуперация осуществляется либо путем устройства гидроэлектростанции на отводящем канале, либо применением гидротурбин для привода части циркуляционных насосов.
При расположении электростанции ниже плотины может быть осуществлена схема водоснабжения без циркуляционных насосов, если разница уровней в верхнем и нижнем бьефах плотины достаточна для преодоления гидравлического сопротивления в конденсаторе и водоводах. При такой схеме вода из верхнего бьефа подводится к конденсаторам по напорным трубам и сбрасывается после конденсаторов в нижний бьеф. Если при этом расходы реки недостаточны для прямоточного водоснабжения электростанции, может быть предусмотрена перекачка части отработавшей теплой воды из нижнего бьефа в верхний.
Самотечная схема может быть осуществлена также при больших уклонах реки путем сооружения деривационного канала с небольшим уклоном.
Если в отдельные периоды года из источника водоснабжения не могут быть получены достаточные расходы воды, но в то же время температура этой воды невысока, может быть применено последовательное включение конденсаторов, при котором вода, прошедшая через один конденсатор, подается затем в другой. Такую схему применяют иногда при расширении действующих электростанций. При последовательном включении конденсаторов неизбежно усложнение коммуникаций.
При системе оборотного водоснабжения с градирнями или брызгальными бассейнами циркуляционные насосы устанавливают, как правило, в машинном отделении электростанции по два на каждую турбину (VH.23). Приемные и обратные клапаны в этом случае не устанавливают, но во избежание обезвоживания конденсатора предусматривают автоматическое закрытие напорной задвижки при остановке насоса.
В некоторых случаях циркуляционные насосы при системе оборотного водоснабжения располагают в центральной насосной станции.
Подвод воды от градирен или брызгальных бассейнов к циркуляционным насосам осуществляется, как правило, по закрытым железобетонным каналам, а подача теплой воды на охладители — по напорным линиям из стальных или железобетонных труб.
Конденсаторы паровых турбин обычно располагаются на значительной высоте над уровнем земли, поэтому в целях уменьшения геодезической высоты подачи воды насосами при системе прямоточного водоснабжения или при системе с водохранилищем используют сифон (см. VI 1.21). Для этого сливную линию конденсатора выводят в сливной колодец под уровень воды в нем, и вода подается на отметку уровня воды в колодце. Высоту от этого уровня до верха конденсатора принимают во избежание срыва сифона обычно не более 8 м.
Для поддержания необходимого уровня воды в сливных колодцах на отводящих каналах сооружаются общие для всех турбин водосливные устройства с глухой переливной стенкой.
Кроме системы технического водоснабжения на тепловых электростанциях предусматривается система противопожарного водоснабжения, как правило, высокого давления, а также система хозяйственно-питьевого водоснабжения.
Прямоточные системы технического водоснабжения
Прямоточное водоснабжение — технически наиболее совершенная и, как правило, экономичная система водоснабжения. В предшествующие годы она была самой распространенной для большинства строившихся КЭС и позволяла получать более глубокий вакуум в конденсаторах турбин по сравнению с другими системами водоснабжения. В настоящее время ее применение ограничено по техническим или экологическим условиям, необходимым для ее осуществления. Увеличение установленной мощности электростанций привело к росту количества теплоты, сбрасываемой с охлаждающей водой в источник прямоточного водоснабжения, поэтому стало сложнее соблюдать экологические требования не повышать температуру воды в реках более чем на 3—5°С. Абсолютные расходы охлаждающей воды достигли 150 м 3 /с на ТЭС и 360 м 3 /с на АЭС.
Рис 6.5. Схема прямоточного водоснабжения:
1-водоприёмник н береговая насосная станция; 2 — циркуляционные насосы;3 — конденсаторы; 4 — напорные водоводы; 5 – сливные водоводы; 6 — закрытые отводящие каналы; 7 — открытый отводящий канал; 8 — сливной сифонный колодец; 9 -переключательныйколодец; 10— сооружение для регулирования уровняводы в закрытом отводящем канале; 11 —трубопровод обогреваводозабора; 12 — водозаборный ковш; 13 —водосброс
При прямоточной системе водоснабжения главный корпус электростанции размещают вблизи от берега реки, озера (водоема) с проточной водой или на берегу моря. Территория ТЭС и АЭС должна быть незатопляемой во время максимального уровня воды в реке. При значительных колебаниях этого уровня в течение года циркуляционные насосы обычно размещают в береговой насосной (рис. 6.5). На крупных ТЭС и АЭС применяют осевые насосы поворотно-лопастного типа с вертикальным валом. Они работают с подпором воды в 2—5 м, и их колеса размещаются ниже уровня воды (рис. 6.6). Подача насосов может изменяться на работающем агрегате специальным устройством дистанционного поворота лопастей рабочего колеса (например, от —7 до +4 угловых градусов). Перед поступлением в насосы вода освобождается от крупных плавающих или взвешенных предметов в механических решетках, очищаемых специальными решеткоочистными машинами. После «грубой» очистки вода проходит через тонкие вращающиеся сетки, представляющие собой вертикальную бесконечную ленту, огибающую барабаны сверху и снизу. Сетки снабжены промывным струйным устройством, автоматически включающимся при их загрязнении.
На современных конденсационных электростанциях применяют, как правило, блочные схемы водоснабжения, т. е. подачу воды на каждый конденсатор или его половину осуществляют от одного насоса, при этом арматуру у насосов и перед конденсаторами не устанавливают (см. рис. 6.5). При централизованной схеме водоснабжения в насосной устанавливают не менее четырех циркуляционных насосов, работающих параллельно на общую сеть, что обеспечивается наличием обратных клапанов и задвижек на трубопроводах у насосов и задвижек на трубопроводах перед конденсаторами и после них.
Техническая вода после конденсаторов поступает в сливные каналы через сливные колодцы, что позволяет использовать известное из физики действие сифона. Сливной трубопровод погружают выходным сечением под уровень воды. Во время пуска системы из циркуляционных трубопроводов и трубной системы конденсатора пусковыми эжекторами циркуляционной системы отсасывают воздух. Сливная труба заполняется водой, и благодаря действию атмосферного давления на поверхность воды в колодце в трубе поддерживается столб воды Hсиф == 7-8 м.
Сливные каналы подогретой технической воды, закрытые на территории электростанции и открытые за ее пределами, сливают воду в реку, озеро, море через водосброс, обеспечивающий допустимую разность температур сбрасываемой подогретой воды и воды в реке. Водоприемное устройство обычно совмещают со зданием береговой насосной. При заборе воды из рек с большим количеством влекомых наносов или внутриводного льда (шуги) в отдельных случаях перед водоприемным устройством сооружают водозаборный ковш. К водоприемному устройству зимой подводят часть нагретой технической воды для предохранения водных окон забора воды от обледенения.
|
Рис. 6.6. Схематичный разрез по сооружениям водоснабжения:
1 — поворотно-лопастный осевой вертикальный циркуляционный насос; 2 — конденсатор; 3 —сливнойсифонный колодец; 4 — отвод воды к сливному водоводу
Эффективным является применение на береговой насосной глубинного водозабора, что позволяет использовать «стратификацию» (разделение) слоев воды — более теплая вода располагается вверху течения, более холодная— внизу. Кроме понижения температуры охлаждающей воды tв1, этим удается уменьшить загрязнение конденсаторов. Разработанная АТЭП конструкция глубинного водозабора состоит из затопленной галереи с входными водозаборными окнами переменной высоты, с козырьком над ними.
На атомных электростанциях при отключении турбогенератора возникает необходимость конденсации значительного количества редуцированного свежего пара в конденсаторе. В условиях полного обесточивания АЭС решение этой задачи подключением циркуляционных насосов к источникам аварийного питания нерационально, так как мощность их электропривода значительна и составляет 1—3 МВт. Поэтому одним из возможных решений является создание напорного водяного бассейна, расположенного между береговой насосной и конденсаторами турбины. Из напорного водяного бассейна вода в случае остановки циркуляционных насосов самотеком поступает в трубную систему конденсаторов. Разница в отметках напорного бассейна и конденсаторов составляет примерно 5 м, запас воды в бассейне позволяет питать конденсаторы технической водой примерно 10 мин. Выбор и определение параметров работы циркуляционных насосов зависят от принятой схемы их включения, от количества потребляемой охлаждающей воды. Общее давление, создаваемое насосом,
где ;
— давление, необходимое для подъема воды на геометрическую высоту Hг,мПа; здесь
в
0,01 МН/м 3 — удельный вес воды;
рс— гидравлическое сопротивление всасывающих и напорных водоводов с их арматурой, МПа;
рк = 0,04-0,06 МПа —гидравлическое сопротивление конденсатора. Общее давление насосов составляет обычно 0,1— 0,2 МПа. Значения
рс и
рк стремятся всемерно уменьшить, размещая электростанцию по возможности ближе к реке с минимальным превышением над уровнем воды в ней.
Мощность, потребляемую циркуляционными насосами, МВт, определяют по формуле
,
где Gв— расход воды, кг/ч; КПД осевого насоса =0,75-0,85 определяют по его характеристике в зависимости от режима работы; КПД электропривода
0,98.
Доля расхода электроэнергии на перекачку охлаждающей воды для энергоблока (электростанции) равна:
Если, например, m=60; dк=2 кг/(кВт*ч) =2000 кг/(МВт*ч); рц.н=0,2 МПа;
= 1000 кг/м 3 ;
= 0,82;
эд=0,98, то
Как видно из формулы, расход электроэнергии на циркуляционные насосы больше всего зависит от кратности охлаждения т и общего давления насосов рц.н, изменяясь прямо пропорционально их значениям. Доля расхода электроэнергии на собственные нужды для системы технического водоснабжения колеблется в пределах 0,3—1,2 % в зависимости от типа турбоустановок (большие значения для АЭС).
Дата добавления: 2015-08-01 ; просмотров: 1644 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ