- Выбираем ребристрые регистры, радиаторы и трубы отопления
- Устройство ребристых труб отопления
- Виды оребрённых труб
- Технические характеристики чугунных труб ребристой конструкции
- Применение трубной продукции ребристого исполнения из чугуна
- Монтаж чугунных ребристых труб
- Достоинства и недостатки ребристых труб
- Заключение
- Как рассчитать мощность отопительных батарей для частного дома
- Исходные данные для вычислений
- Паспортная и реальная теплоотдача радиатора
- Определяем число секций алюминиевой батареи
- Расчет размера стального радиатора
- Отопительные приборы однотрубных систем
- Напоследок несколько уточнений
Выбираем ребристрые регистры, радиаторы и трубы отопления
Отопительные трубы с рёбрами используются много десятков лет и не утратили своей востребованности по сегодняшний день. У этого оборудования есть свои конструктивные особенности, обуславливающие применение, поэтому в системах отопления частного жилья они встречаются редко, но для обогрева помещений производственного назначения они применяются достаточно широко. Фото ребристых труб отопления подскажет, о каком оборудовании идёт речь, после чего рассмотрим характеристики этой продукции подробнее.
Устройство ребристых труб отопления
Трубный материал в системах отопления используются не только при монтаже отопительного трубопровода, но и в качестве радиаторов. Чтобы повысить эффективность такой системы, в контур отопления врезается участок трубы большего диаметра или фигурного исполнения (змеевик), что увеличивает площадь теплоотдачи.
Позже стал применяться ещё один метод – оребрение участков трубопровода, выполняющих роль радиаторов.
Таким образом, ребристые трубы отопления представляют собой трубный фрагмент определённой длины (несущую трубу) с поперечными (реже – продольными) наружными рёбрами, расположенными с определённым шагом. Оребрённый элемент трубопровода оборудуется входным и выходным патрубками для подключения к отопительной системе. Патрубки такого радиатора могут быть с резьбой, гладкой поверхностью (под сварку) или фланцем.
Одно такое изделие, готовое к врезке в контур отопления, называется односекционным регистром. Если несколько односекционных регистров смонтировать в ряды, расположенные в одной или двух плоскостях, получится многосекционный регистр — конструкция, ещё более увеличивающая интенсивность обогрева.
*
В зависимости от материала исполнения, оребрение выполняется разными способами, но цель этой операции одна – улучшить теплообмен между трубопроводом отопления и окружающей средой за счёт увеличения площади их соприкосновения.
Виды оребрённых труб
Трубные элементы отопления ребристого исполнения изготавливаются из следующих металлов:
- чугун (с добавками магния и церия);
- сталь;
- нержавеющая сталь;
- медь;
- латунь;
- алюминий.
По структуре конструкции оребрённые трубы подразделяются на:
- монометаллические – цельные изделия, получаемые путём отливки или вытачивания из заготовки;
- биметаллические – изделия, собранные из трубы и рёбер.
К монометаллическим изделиям относятся чугунные оребрённые трубы, которые изготавливаются методом отливки и должны отвечать требованиям ГОСТ 1816-76, а также медные и алюминиевые изделия, на которых рёбра формируют выдавливанием/прокаткой на станке.
Биметаллическое изделие представляет собой внутреннюю несущую трубу, выполненную из нержавейки или латуни, на которой расположены продольные или поперечные медные или алюминиевые рёбра.
Оребрение биметаллических труб производится следующими методами:
- накатка – на несущую трубу надевается алюминиевая или медная муфта, на которой методом накатывания выдавливаются рёбра;
- спирально-винтовая навивка – в наружную поверхность несущей трубы вдавливается при спиральной навивке металлическая лента;
- спирально-винтовая ТВЧ – крепление ленты к несущей трубе путём сваривания контактных поверхностей после их разогрева током высокой частоты;
- продольное (осевое) оребрение – соединение ленты с несущей трубой одним из видов сварки.
При изготовлении биметаллических трубных регистров для теплообменников компоновка материалов может быть следующей (несущая труба + рёбра):
- сталь + алюминий;
- алюминий + алюминий;
- латунь + алюминий
Технические характеристики чугунных труб ребристой конструкции
Чугун – металл прочный и долговечный, с высокой теплопроводностью, поэтому в системах отопления наиболее распространены чугунные оребрённые трубы, которые характеризуются следующими параметрами:
- внутренний диаметр – от 32 до 70,0 мм;
- наружный диаметр (с рёбрами) – 175,0 мм;
- рабочая температура эксплуатации – до 90 град. (краткосрочное воздействие до 150 град.),
- рабочее давление теплоносителя в системе – 1,0 МПа;
- длина отдельных элементов – от 0,5 до 6,0 м.
Форма исполнения рёбер может быть круглой или прямоугольной. Прямоугольный формат ребристых труб отопления более эффективен из-за большей площади поверхности теплоотдачи.
Применение трубной продукции ребристого исполнения из чугуна
Чугунные оребрённые радиаторы из-за значительного веса и невысокого уровня эстетичности применяются в основном при паровом или водяном отоплении производственных цехов, складских помещений, животноводческих комплексов и других объектов значительных площадей. При этом одиночное использование такого оборудования неэффективно, и элементы устанавливают секциями из нескольких радиаторов. Такие регистры отопления из ребристой трубы увеличивают интенсивность обогрева помещения в разы, но при этом требуют значительной площади для установки.
Для обогрева жилья эти устройства также пригодны, но потребуется их дополнительная отделка в виде декоративных кожухов или фальш-стены.
Высокие технические характеристики чугуна обуславливают широкое применение чугунных оребрённых труб в экономайзерах – газы и агрессивные вещества при прохождении по ним не вызывают коррозии материала теплообменника.
Монтаж чугунных ребристых труб
В силу значительности веса, оребрённые регистры отопления предъявляют повышенные требования к основанию. Несущая способность стен (при настенном исполнении радиаторов) и прочность кронштейнов должны быть высокими, а заделка креплений в основание – надёжной. При напольном исполнении устройства агрегата у него внизу должны быть приварены опоры, штатные или самостоятельного изготовления. Если пол – деревянный настил, то в нём устраиваются прорези, чтобы опоры радиатора располагались на несущей плите перекрытия.
Перед установкой оребрённый радиатор очищают от старой краски и грязи, обезжиривают, а затем грунтуют и красят. Покраску лучше выполнить краскопультом, так как из-за конфигурации регистра площадь окраски велика, а оребрение плохо доступно для работы кистью.
В качестве грунтовки подойдёт раствор железного сурика в олифе, а финишный слой – термостойкая краска (эмаль) подходящего цвета или раствор алюминиевой пудры. Окрашиваемый регистр не должен находиться под прямыми лучами солнца – краска потечёт.
Важно! Ребристый радиатор устанавливается так, чтобы от пола до продольной оси его нижнего регистра было не менее 20 см, а от боковой поверхности до стены – не мене 15 см.
Окрашенный радиатор после высыхания краски устанавливается по месту, после чего выполняется дополнительное крепление устройства к стене во избежание случайного опрокидывания при механическом воздействии.
Подключение к контуру отопления производится после окончательной установки агрегата, чтобы его смещение не нарушило герметичность соединений. Врезка производится в зависимости от исполнения патрубков регистра – фланцевым соединением, на резьбе или сваркой. При фланцевом соединении рекомендуется в качестве прокладочного материала использовать паронит, вырезанный по размерам зеркал фланцев (зеркала очищаются от краски мелкой наждачной бумагой), или использовать штатные прокладки, если они предусмотрены комплектацией.
После окончательной установки агрегата производится точечная окраска участков, повреждённых при монтаже.
Достоинства и недостатки ребристых труб
Именно благодаря целому ряду достоинств чугунные ребристые трубы отопления используются в отопительных системах по сегодняшний день, перечислим эти факторы:
- герметичность корпуса;
- большая площадь теплоотдачи;
- нейтральность к любому виду коррозии;
- высокая теплопроводность;
- прочность;
- долговечность (100 лет – не предел);
- доступная стоимость.
Но при этом есть и недостатки:
- значительный вес;
- низкая стойкость к ударным воздействиям;
- сложность содержания в чистоте (скопление пыли в оребрении, плохая доступность площади окраски);
- громоздкость.
Заключение
По своей функциональности отопительный радиатор ребристой конструкции из чугуна являются лучшим вариантом комплектации системы отопления хозяйственных и подсобных помещений — недостаток эстетичности компенсируется долговечностью, надёжностью и доступной стоимостью, так как фактор сложности покраски в условиях подсобного помещения отходит на второй план.
Основная суть статьи
- Ребристые регистры отопления из чугуна – не изживший себя материал.
- От выбора места эксплуатации зависит уместность применения ребристых труб отопления.
- Правильность монтажа – один из факторов эффективности работы регистра.
- Знание характеристик радиатора помогает обеспечить долговечность.
Как рассчитать мощность отопительных батарей для частного дома
Допустим, вы подобрали отопительные приборы по типу и дизайну. Следующий шаг – расчет радиаторов отопления для каждой комнаты частного дома, включающий определение тепловой мощности и количества секций (или размера панелей). Простейший вариант – воспользоваться онлайн-калькулятором любого строительного портала. Но результаты вычислений желательно перепроверить, иначе за ошибки придется расплачиваться позже. Предлагаем рассчитать теплоотдачу батарей отопления вручную, проверенным и удобным способом.
Исходные данные для вычислений
Расчет тепловой мощности батарей выполняется для каждого помещения отдельно, в зависимости от числа внешних стен, окон и наличия входной двери с улицы. Чтобы правильно рассчитать показатели теплоотдачи радиаторов отопления, ответьте на 3 вопроса:
- Сколько тепла необходимо на обогрев жилой комнаты.
- Какую температуру воздуха планируется поддерживать в конкретном помещении.
- Средняя температура воды в отопительной системе квартиры либо частного дома.
Примечание. Если в коттедже смонтирована однотрубная разводка, придется делать поправку на остывание теплоносителя — добавлять секции к последним радиаторам.
Ответ на первый вопрос — как рассчитать потребное количество тепловой энергии различными способами, дается в отдельном руководстве – расчет нагрузки на отопительную систему. Приведем 2 упрощенных методики вычислений: по площади и объему комнаты.
Распространенный способ — измерить обогреваемую площадь и выделить на квадратный метр 100 Вт теплоты, иначе — 1 кВт на 10 м². Мы предлагаем уточнить методику – учесть количество световых проемов и наружных стен:
- для комнат с 1 окном или входной дверью и одной внешней стенкой оставить 100 Вт тепла на метр квадратный;
- угловое помещение (2 наружных ограждения) с 1 оконным проемом – считать 120 Вт/м²;
- то же, 2 световых проема – 130 Вт/м².
Важное условие. Расчет дает более-менее правильные результаты при высоте потолков до 3 м, здание построено в средней полосе умеренного климата. Для северных регионов применяется повышающий коэффициент 1.5…2.0, южных – понижающий 0.7—0.8.
При высоте перекрытия более 3 метров (например, коридор с лестницей в двухэтажном доме) расход тепла правильнее считать по кубатуре:
- комната с 1 окном (внешней дверью) и единственной наружной стеной – 35 Вт/м³;
- помещение окружено другими комнатами, не имеет окон, либо находится на солнечной стороне – 35 Вт/м³;
- угловая комната с 1 оконным проемом – 40 Вт/м³;
- то же, с двумя окнами – 45 Вт/м³.
На второй вопрос ответить проще: комфортная для проживания температура лежит в диапазоне 20…23 °C. Нагревать воздух сильнее неэкономично, слабее – холодно. Среднее значение для расчетов – плюс 22 градуса.
Оптимальный режим работы котла подразумевает нагрев теплоносителя до 60—70 °C. Исключение – теплые либо слишком холодные сутки, когда температуру воды приходится снижать или, наоборот, увеличивать. Количество таких дней невелико, поэтому средняя расчетная температура системы принимается равной +65 °C.
В комнатах с высокими потолками считаем расход теплоты по объему
Паспортная и реальная теплоотдача радиатора
Параметры любого отопительного прибора указываются в техническом паспорте. Обычно производители заявляют мощность 1 стандартной секции межосевым размером 500 мм в пределах 170…200 ватт. Характеристики алюминиевых и биметаллических радиаторов примерно одинаковы.
Фокус в том, что паспортный показатель теплоотдачи нельзя тупо использовать для подбора числа секций. Согласно п. 3.5 ГОСТ 31311-2005, фирма-изготовитель обязана указывать мощность батареи при следующих условиях эксплуатации:
- теплоноситель движется через радиатор сверху вниз (диагональное либо боковое подключение);
- температурный напор составляет 70 градусов;
- расход воды, протекающей через прибор, равен 360 кг/час.
Справка. Тепловой напор – разница между средней температурой сетевой воды и воздуха помещения. Обозначается ΔT, DT или dt, вычисляется по формуле:
Поясним суть проблемы, для этого подставим в формулу известные значения ΔT = 70 °C и температуры помещения – плюс 20 °C, произведем обратный расчет:
- tподачи + tобратки = (ΔT + tвоздуха) х 2 = (70 + 20) х 2 = 180 °C.
- Согласно нормативам, расчетная разница температур теплоносителя между подающей и обратной линией должна составлять 20 градусов. Значит, идущую от котла воду нужно нагреть до 100 °C, обратная остынет до 80 °C.
- Режим работы 100/80 °C недоступен бытовым отопительным установкам, максимальный нагрев составляет 80 градусов. Вдобавок поддерживать указанную температуру теплоносителя невыгодно экономически (вспомните, мы взяли средний показатель 65 °C).
Вывод. В реальных условиях батарея отдаст гораздо меньше теплоты, нежели прописано в инструкции по эксплуатации. Причина – меньшее значение ΔT – разницы температур воды и окружающего воздуха. По нашим исходным данным, показатель ΔT равен 130 / 2 — 22 = 43 градуса, почти вдвое ниже заявленной нормы.
Определяем число секций алюминиевой батареи
Пересчитать параметры отопительного прибора под конкретные условия непросто. Формула тепловой мощности и алгоритм вычислений, используемый инженерами–проектировщиками, слишком сложен для обычных домовладельцев, несведущих в теплотехнике.
Предлагаем выполнить расчет количества секций радиаторов отопления более доступным методом, дающим минимальную погрешность:
- Соберите исходные данные, перечисленные в первом разделе настоящей публикации, — узнайте необходимое для обогрева количество теплоты, температуру воздуха и теплоносителя.
- Рассчитайте реальный температурный напор DT, пользуясь приведенной выше формулой.
- При выборе определенного типа батарей откройте технический паспорт и отыщите показатель теплоотдачи 1 секции при DT = 70 градусов.
- Ниже представлена таблица готовых коэффициентов пересчета отопительной мощности радиаторных секций. Найдите показатель, соответствующий реальному DT, и умножьте его на величину паспортной теплоотдачи – получите мощность 1 ребра при ваших эксплуатационных условиях.
Зная настоящий тепловой поток, нетрудно выяснить число ребер батареи, требуемое для обогрева комнаты. Разделите нужное количество теплоты на отдачу 1 секции. Для ясности приведем пример расчета:
- Возьмем угловую комнату с двумя светопрозрачными конструкциями (окнами) площадью 15.75 м², высота потолков – 280 см (показана на фрагменте чертежа). Удельные затраты теплоты на обогрев – 130 Вт/м², общая потребность составит 130 х 15.75 = 2048 Вт.
- Величину теплового напора мы выяснили в предыдущем разделе, DT = 43 °C.
- Подбираем низенькие алюминиевые радиаторы GLOBAL VOX 350 (межосевое расстояние – 350 мм). Согласно документации изделия, теплоотдача 1 ребра составляет 145 Вт (DT = 70 °C).
- Находим в таблице коэффициент, соответствующий DT = 43 °C, K = 0.53.
- Умножаем паспортную мощность на коэффициент и находим реальную отдачу 1 секции: 0.53 х 145 = 76.85 Вт.
- Рассчитываем количество алюминиевых ребер на помещение: 2048 / 76.85 ≈ 26.65, округляем в бо́льшую сторону и получаем 27 штук.
Остается распределить секции по комнате. Если размеры окон одинаковы, делим 28 пополам и размещаем под каждым проемом радиатор на 14 ребер. В противном случае число секций батареи подбирается пропорционально ширине окон (можно приблизительно). Аналогичным образом пересчитывается теплоотдача биметаллических и чугунных радиаторов.
Схема расстановки батарей — приборы лучше размещать под окнами либо возле холодной наружной стены
Совет. Если вы владеете персональным компьютером, проще использовать расчетную программу итальянского бренда GLOBAL, размещенную на официальном ресурсе производителя.
Многие известные фирмы, в том числе GLOBAL, прописывают в документации теплоотдачу своих приборов для разных температурных условий (DT = 60 °C, DT = 50 °C), пример показан в таблице. Если ваш реальный ΔT = 50 градусов, смело пользуйтесь указанными характеристиками безо всякого перерасчета.
Расчет размера стального радиатора
Конструкция панельных приборов отличается от секционных. Батареи делаются из штампованных стальных листов толщиной 1…1.2 мм, заранее обрезанных в нужный размер. Чтобы подобрать радиатор требуемой мощности, нужно выяснить теплоотдачу 1 метра длины сваренной из листов панели.
Предлагаем воспользоваться простейшей методикой, основанной на технических данных серьезного немецкого производителя панельных водяных радиаторов Kermi. В чем суть: штампованные батареи унифицированы, типы изделий отличаются между собой количеством греющих панелей и теплообменных оребрений. Классификация радиаторов выглядит так:
- тип 10 – однопанельный прибор без дополнительных ребер;
- тип 11 – 1 панель + 1 лист гофрированного металла;
- тип 12 – две панели плюс 1 лист оребрения;
- тип 20 – батарея на 2 греющих пластины, конвекционное оребрение не предусмотрено;
- тип 22 – двухпанельный радиатор с 2 листами, увеличивающими площадь теплообмена.
Эскизы стальных обогревателей различных типов — вид сверху
Примечание. Также существуют обогреватели типа 33 (3 панели + 3 ребра), но подобные изделия менее востребованы ввиду повышенной толщины и цены. Самая «ходовая» модель – тип 22.
Итак, панельные штампованные приборы любого бренда отличаются только монтажными габаритами. Расчет радиаторов отопления сводится к выбору подходящего типа, затем по высоте и теплоотдаче вычисляется длина батареи для конкретного помещения. Алгоритм следующий:
- Определите исходные данные, перечисленные в начале статьи.
- Выберите тип и высоту отопительного прибора. Самый распространенные варианты – изделия высотой 30, 40 и 50 см, тип 22.
- Воспользуйтесь представленной таблицей, где указана теплоотдача q (Вт/1 м. п.) радиаторов Kermi разных типов и размеров в зависимости от условий эксплуатации. Начните с левого столбца – отыщите соответствующую температуру комнаты, потом – теплоносителя, дальше высоту и тип батареи. В ячейке на пересечении строки и столбца найдете мощность 1 метра радиатора.
- Количество энергии, нужной для обогрева, разделите на величину q – узнаете метраж радиатора заданной высоты.
- По каталогу подберите прибор водяного отопления соответствующей длины. При необходимости (например, батарея вышла чересчур длинной) разбейте этот размер на 2—3 прибора.
Пример расчета. Определим габариты стального радиатора для той же комнаты 15.75 м²: теплопотери — 2048 Вт, температура воздуха – 22 градуса, теплоносителя – 65 °C. Возьмем стандартные батареи высотой 500 мм, тип 22. По таблице находим q = 1461 Вт, выясняем общую длину панели 2048 / 1461 = 1.4 м. Из каталога любого производителя выбираем ближайший больший вариант – обогреватель длиной 1.5 м либо 2 прибора по 0.7 м.
Окончание первой таблицы — теплопередача 1 м длины радиаторов «Керми»
Совет. Наша инструкция на 100% верна для изделий компании Kermi. При покупке радиаторов другого бренда (особенно, китайского) длину панели стоит принимать с запасом 10—15%.
Отопительные приборы однотрубных систем
Важная особенность горизонтальной «ленинградки» — постепенное снижение температуры в основной магистрали из-за подмеса охлажденного батареями теплоносителя. Если 1 кольцевая линия обслуживает более 5 приборов, разница в начале и конце раздающей трубы может достигать 15 °C. Результат – последние радиаторы выделяют меньше теплоты.
Однотрубная схема закрытого типа — все обогреватели подключены к 1 трубе
Чтобы дальние батареи передавали помещению нужное количество энергии, при расчете отопительной мощности сделайте следующие поправки:
- Первые 4 радиатора подбирайте согласно вышеприведенным инструкциям.
- Мощность 5-го прибора увеличьте на 10%.
- К расчетной теплоотдаче каждой последующей батареи прибавляйте еще 10 процентов.
Пояснение. Мощность 6-го радиатора повышается на 20%, седьмого – на 30 и так далее. Зачем наращивать последние батареи однотрубной «ленинградки», подробно расскажет эксперт на видео:
Напоследок несколько уточнений
Приборы отопления могут работать в различных условиях, подключаться по разным схемам. Эти факторы оказывают влияние на теплоотдачу обогревателей в режиме эксплуатации. Определяя мощность комнатных радиаторов, учтите несколько рекомендаций:
- Если батарея подключается к трубопроводам по разносторонней нижней схеме, эффективность обогрева ухудшается. Добавьте к расчетному показателю мощности приборов 10%.
- В комбинированных системах (радиаторная сеть + теплые водяные полы) конвекционные приборы играют вспомогательную роль. Основную отопительную нагрузку несут напольные контуры. Но расчетную теплоотдачу радиаторов занижать не следует, при нужде батареи должны полностью заменить теплые полы.
- Домовладельцы нередко закрывают обогреватели декоративными экранами, даже зашивают гипсокартоном, оставляя конвекционные щели. В данном случае полностью теряется инфракрасное тепло, выделяемое нагретой поверхностью прибора. Соответственно, мощность батареи придется увеличить минимум на 40%.
- Не устанавливайте 1—3 радиаторных секции, даже если по расчету вышло такое количество. Чтобы получить нормальный обогревательный прибор, нужно смонтировать минимум 4 ребра.
- Незамерзающие жидкости уступают обычной воде по теплоемкости, разница составляет примерно 15%. При использовании антифризов наращивайте теплообменную площадь батарей на 10% (увеличивайте количество секций радиаторов либо размеры панелей).
При расчете радиаторов отопления учитывайте простое правило: чем ниже температура воды в подающей линии, тем большая площадь теплообменной поверхности нужна для обогрева комнат. Правильно подбирайте котельное оборудование и монтируйте системы, чтобы не приходилось решать проблемы путем наращивания батарейных секций.