- Подбор элеватора с регулируемым сечением сопла (регулируемый элеватор) типа ЭГ703 регулятора «Ретэл 703»
- Пример расчета
- Подбор элеватора отопления по нагрузке онлайн. Элеваторы
- Условная проходимость DN
- Параметр номинального давления PN
- Контроль
- Выбор материала
- Итоги
- Типы соединений
- Управление
- Запуск отопления
- Работа без сопла
- Регулировка перепада
- Линейное расширение
- Компенсаторы расширения трубопроводных сетей
- Отводы
- Волнистые компенсаторы
- Элеватор отопления: функции
- Изоляционная защита
- Снижение давления и расчет гидросопротивления
- Зоны ответственности
- Эквивалентное значение диаметра
- Диаметр трубопроводных сетей
- Номограммы для гидравлических вычислений труб
- Принцип функционирования
- Примеры номограмм
- Принцип работы централизованного отопления
Подбор элеватора с регулируемым сечением сопла (регулируемый элеватор)
типа ЭГ703 регулятора «Ретэл 703»
Выбор исполнения Регулятора «Ретэл 703» заключается в подборе размера (номера) регулируемого элеватора ЭГ703.
Элеватор ЭГ703 подбирают на расчетную производительность при полностью открытом сопле (по расчетному коэффициенту смешения). В этом случае при уменьшении расхода сетевой воды (сопло прекрывается) коэффициент смешения будет возрастать по сравнению с расчетным значением.
Подбор элеватора ЭГ703 производится аналогично подбору нерегулируемого элеватора — по диаметру горловины dг (камеры смешения) и диаметру сопла dс.
Номера элеваторов ЭГ703 и нерегулируемых элеваторов водоструйных типа ВТИ совпадают.
(Гкал/ч=1.163*10 6 Вт)
(располагаемый перепад давления на вводе)
(потери напора в системе отопления после элеватора при расчетном расходе воды)
* Рекомендуемый перепад давлений между патрубками сетевой и обратной воды для элеватора ЭГ703 составляет 15-30 м вод.ст.
** Гидравлическое сопротивление системы отопления при использовании автоматического гидроэлеватора с регулируемым сечением сопла ЭГ703 рекомендуется принимать не более 1 м.
При значительно большем значении сопротивления рекомендуется схема установки элеватора с циркуляционным насосом.
Определив значение диаметра горловины, можно найти номер элеватора по следующей таблице:
Диаметр горловины dг полученный по расчету, мм | Условное обозначение исполнения элеватора | Размеры, мм | |||
---|---|---|---|---|---|
dc | dг | DN1 | DN2 | ||
9 — 14 | ЭГ703-4-0,04 №0 | 4 | 10 | 40 | 50 |
14 — 18 | ЭГ703-6-0,10 №1 | 6 | 15 | ||
18 — 23 | ЭГ703-8-0,19 №2 | 8 | 20 | ||
23 — 28 | ЭГ703-10-0,30 №3 | 10 | 25 | 50 | 80 |
28 — 33 | ЭГ703-12-0,43 №4 | 12 | 30 | ||
33 — 43 | ЭГ703-14-0,58 №5 | 14 | 35 | ||
43 — 55 | ЭГ703-16-0,76 №6 | 16 | 47 | 80 | 100 |
55 — 63 | ЭГ703-18-0,94 №7 | 18 | 59 |
При выборе элеватора следует принимать стандартный элеватор ЭГ703 с ближайшим меньшим значением диаметра горловины, так как завышенный диаметр горловины снижает КПД элеватора.
Расчетный диаметр сопла dc не должен быть больше диаметра сопла элеватора ЭГ703.
Располагаемый перепад давления перед элеватором H1 должен быть больше (равен) чем расчетный минимально необходимый напор перед элеватором H (H1>=H).
Если располагаемый перепад давления H1 превышает напор H, определенный по формуле, в два раза и более, а также в случае когда диаметр сопла, определенный по формуле, получается менее 3 мм, избыток напора следует гасить регулятором перепада давления устанавливаемым перед элеватором.
Пример расчета
Расчетная температура в тепловой сети 130°С/70°С, расчетная температура в системе отопления 95°С/70°С, тепловой поток на отопление 0,21 Гкал/ч, давление в теплосети: в прямом трубопроводе 6,5 кгс/см 2 , в обратном 3,2 кгс/см 2 , гидравлическое сопротивление системы отопления 1 м вод.ст.
Тепловой поток на отопление Вт;
Напор перед элеватором м вод.ст.;
Расчетный коэффициент смешения
Максимальный расход сетевой (греющей) воды из тепловой сети т/ч;
Для справки: расход воды в системе отопления т/ч;
Для справки: расход подмешиваемой воды в элеваторе т/ч;
Диаметр горловины элеватора мм;
Диаметр сопла элеватора мм;
Минимально необходимый напор перед элеватором м вод.ст.
С помощью регулятора давления гасим избыточный напор перед элеватором Н1 до 20 м вод.ст. и пересчитываем диаметр сопла мм.
Согласно приведенной выше таблице, по расчетному диаметру горловины выбираем регулируемый элеватор ЭГ703-10-0,30 №3 с диаметром сопла dc=10 мм и диаметром горловины dг=25 мм.
Подбор элеватора отопления по нагрузке онлайн. Элеваторы
Гидравлический расчет трубопроводов позволяет вычислить расход воды (пропускную способность), длину участка, его внутреннее сечение и падение напора, сравнить с рекомендуемыми параметрами:
- Потери на 1 м участка, исходя из материала, составляют 80 — 250 Па/м или 8 — 25 мм водяного столба.
- Предельная скорость воды для внутренних диаметров варьирует: 1,5 см – 0,3 м/с, 2 см – 0,65 м/с, 2,5 см – 0,8 м/с, 3,2 см – 1 м/с, для других параметров она ограничивается пределом в 1,5 м/с.
- В противопожарных трубопроводах максимальная скорость движения воды равна 5 м/с.
Условная проходимость DN
Параметр условной проходимости DN (номинального диаметра) выступает безразмерной величиной, его численное значение приблизительно соответствует внутреннему поперечному сечению труб (например, DN 125). Числовые значения условного перехода подбирают для увеличения пропускной способности трубопроводной сети в пределах 60 — 100% при переходе от одной условной проходимости к следующей.
Согласно ГОСТ 28338-89, параметры условной проходимости (Ду в прошлом) подбирают из размерного ряда:
Значения подобраны с учетом исключения проблем, относительно припасовки деталей друг к другу. Номинальный диаметр на основе параметров внутреннего сечения подбирают на основе диаметра трубы в свету.
Параметр номинального давления PN
Значение номинального давления PN (величины, соответствующей предельному уровню давления перекачиваемых сред при 20 °C), рассчитывают для определения длительной эксплуатации трубопроводной сети, имеющей заданные параметры. Параметр номинального давления — безразмерная величина, градуированная на основе практики эксплуатации.
Параметр номинального давления для конкретных трубопроводных систем подбирают, исходя из реального напряжения путем определения максимального значения. Полученным данным соответствуют фитинги и арматура. Для обеспечения нормальной эксплуатации систем, толщину стенок труб рассчитывают по номинальному давлению.
Контроль
Контролирующая организация — опять-таки теплосети.
Что именно они контролируют?
- Несколько раз в течение зимы проводятся контрольные замеры температур и давлений подачи, обратки и смеси
. При отклонениях от температурного графика расчет элеватора отопления проводится заново с расточкой или уменьшением диаметра сопла. Разумеется, этого не стоит делать в пик холодов: при -40 на улице подъездное отопление может прихватить льдом уже через час после остановки циркуляции. - В рамках подготовки к отопительному сезону проверяется состояние запорной арматуры
. Проверка предельно проста: все задвижки в узле перекрываются, после чего открывается любой контрольный вентиль. Если вода из него поступает — нужно искать неисправность; кроме того, в любом положении задвижек у них не должно быть течей по сальникам. - Наконец, в конце отопительного сезона элеваторы в системе отопления наряду с самой системой проходят испытания на температуру . Теплоноситель при отключенной подаче ГВС разогревается до максимальных значений.
Выбор материала
Подбор материала производится на основе характеристик сред, транспортируемых по трубопроводной линии и рабочего давления, предусмотренного для данной системы. Следует помнить о корродирующем действии перекачиваемых сред, относительно материала стенок трубопроводной сети. Обычно трубы и химические системы изготавливают из стали. При отсутствии высокого механического и корродирующего воздействия при разработке труб используют серый чугун или нелегированную конструкционную сталь.
При высоком рабочем давлении и отсутствии нагрузок с коррозийным образованием используют трубы из высококлассной стали или технологию ее литья. При высоком корродирующем действии или предъявлении к чистоте продуктов высоких требований, трубы разрабатывают из нержавейки.
Для повышения устойчивости к действию морской воды применяют медно-никелевый состав. Допускается использование алюминиевых сплавов, тантала или циркония. Хорошо распространены пластиковые составы, устойчивые к коррозийным образованиям. Они обладают малым весом и просты в обработке, что выступает идеальным решением для обустройства канализационных систем.
Итоги
В этой статье мы выяснили, что такое элеватор в системе отопления, из чего он состоит и как работает. Как выяснилось, такое оборудование широко распространено благодаря своим неоспоримым преимуществам. Нет предпосылок для того, чтобы коммунальные предприятия отказались от них.
Альтернативы для этого оборудования есть, но они отличается своей высокой стоимостью, меньшей надежностью и энергоэффективностью, потому что требуют для своей работы электричество и периодические ремонты.
Элеваторный узел системы отопления используется для подключения дома к внешней тепловой сети (источнику теплоснабжения) при необходимости снижения температуры теплоносителя посредством подмешивания к нему воды из обратного трубопровода.
Типы соединений
Для монтажа отдельных элементов трубопроводных элементов и фитингов, арматуры и аппаратов, служат специальные соединительные детали, подбираемые, исходя из ряда параметров:
- материала для разработки трубопровода и фасонных деталей (главным критерием их выбора выступает возможность сварки);
- условий эксплуатации: при низком или высоком давлении, температурном режиме;
- рекомендаций производителя;
- включения разъемных или неразъемных соединительных деталей.
Управление
Приведем порядок выполнения некоторых операций, связанных с работой элеватора.
Запуск отопления
Если система заполнена, достаточно лишь открыть домовые задвижки — и циркуляция начнется.
Несколько сложнее инструкция по запуску сброшенной системы.
- Открывается сброс на обратном трубопроводе и закрывается сброс на подаче.
- Медленно (во избежание гидроудара) открывается верхняя домовая задвижка.
- После того, как в сброс пойдет чистая, без воздуха, вода, он закрывается, после чего открывается нижняя домовая задвижка.
Полезно: если на стояках стоят современные шаровые вентиля, направление работы контура на сброс не имеет значения. А вот у винтовых быстрым противотоком может оторвать клапана, после чего слесарю предстоит долгий и мучительный поиск причин остановки циркуляции в стояках.
Работа без сопла
При катастрофически низкой температуре обратки в пик холодов практикуется работа элеватора без сопла. В систему поступает теплоноситель из трассы, а не смесь. Подсос глушится стальным блином.
Регулировка перепада
При завышенной обратке и невозможности оперативной замены сопла практикуется регулировка перепада задвижкой.
Как выполнить ее своими руками?
- Замеряется давление подачи, после чего манометр ставится на обратку.
- Входная задвижка на обратке полностью закрывается и постепенно открывается с контролем давления по манометру. Если просто прикрыть задвижку — ее щечки могут не полностью опуститься по штоку и соскользнуть вниз позже. Цена неправильного порядка действий — гарантированно размороженное подъездное отопление.
За один раз следует убирать не более 0,2 атмосфер перепада. Повторный замер температуры обратки проводится через сутки, когда все значения стабилизируются.
Линейное расширение
Смена геометрической формы изделий производится под силовым или температурным действием.
Физические нагрузки, приводящие к линейному расширению или сжатию, негативно отражаются на эксплуатационных характеристиках. При невозможности компенсации расширения, трубы деформируются, что приводит к повреждению фланцевых уплотнителей и участков стыковки труб между собой.
Компонуя трубопроводные магистрали, следует ориентироваться на возможную смену длины при увеличении температурного режима или теплового линейного расширения (ΔL). Этот параметр определяется длиной труб, обозначаемой Lo и разностью температурных режимов Δϑ =ϑ2-ϑ1.
В приведенной формуле коэффициент теплового линейного расширения для трубопровода протяженностью 1 м при увеличении температурного режима составляет 1°C.
Компенсаторы расширения трубопроводных сетей
Отводы
Специальные отводы, ввариваемые в трубопроводную сеть, компенсируют естественный показатель линейного расширения изделий. Этому способствует выбор компенсирующих U-образных, Z-образных и угловых отводов, лирных компенсаторов.
Они предназначены для принятия линейного расширения труб за счет деформирования, но для данной технологии предусмотрен ряд ограничений. В трубопроводных магистралях с повышенным уровнем давления для компенсации расширения служат колени под разным углом. Напряжение, предусмотренное в отводах, способствует усилению коррозийного действия.
Волнистые компенсаторы
Изделия представлены тонкостенными гофротрубами из металла, называемыми сильфоном и растягиваемым в направлении трубопроводной линии. Их монтируют в трубопроводной сети, предварительный натяг служит для компенсации расширения.
Выбор осевых компенсаторов позволяет обеспечить расширение по поперечному сечению. Внутренние направляющие кольца предупреждают боковое смещение и внутреннее загрязнение. Для защиты труб от внешнего воздействия служит специальная облицовка. Компенсаторы, не включающие в конструкцию внутреннего направляющего кольца, способствуют поглощению боковых сдвигов и вибрации, исходящей от насосных систем.
Элеватор отопления: функции
Это устройство относится к категории отопительной техники и выполняет несколько функций.
- Понижение температуры воды – так как поставляемая жидкость слишком горячая, то перед подачей ее следует охладить. При этом скорость подачи не должна теряться. Аппарат смешивает подаваемый теплоноситель с водой из обратного трубопровода, тем самым снижая температуру и не уменьшая скорости.
- Создание объема теплоносителя – благодаря описанному выше смешению подаваемой воды и жидкости из обратки получается необходимый для нормального функционирования объем.
- Функция циркуляционного насоса – забор воды из обратки и подача теплоносителя в квартиры осуществляется за счет перепада давления перед элеватором отопления. При этом электроэнергия не используется. Регуляция температуры подаваемой воды и ее расход осуществляется путем изменения размера отверстия в сопле.
Изоляционная защита
Для трубопроводов, рассчитанных на перемещение высокотемпературных сред, предусмотрен выбор изоляции:
- до 100°C применяется жесткий пенопласт (полистирол или полиуретан);
- до 600°C предусмотрено использование фасонных оболочек или минеральных волокон (каменной шерсти или стеклянного войлока);
- до 1200°C – волокна на основе керамики или глинозема.
Трубы с условной проходимостью ниже DN 80 и толщиной изоляционной защиты до 5 с, обрабатывают изоляционными фасонными элементами. Этому способствуют 2 оболочки, размещенные вокруг труб и соединенные с помощью металлической ленты, закрытые кожухом из жестяного материала.
Трубы с условной проходимостью от DN 80 оснащают теплоизоляционным материалом с нижним каркасом. Он включает зажимные кольца, распорки и металлическую облицовку, разработанную из оцинкованного мягкого стального материала или нержавейки листовой. Между трубами и кожухом из металла размещают изоляционный материал.
Теплоизоляционный слой составляет диапазон размеров 5 — 25 см. Его наносят по всей протяженности труб, на отводах и коленах. Важно исключить наличие незащищенных участков, влияющих на образование теплопотерь. Фасонная изоляция служит для защиты фланцевых соединений и арматуры. Это способствует беспрепятственному доступу к стыковочным участкам без снятия изоляции по всей магистрали при нарушении герметичных свойств.
Снижение давления и расчет гидросопротивления
Для определения напора внутри труб и правильной подборки оборудования, способствующего перекачиванию жидких или газообразных сред, требуется вычислить снижение давления. За неимением доступа к интернет-сети, расчеты производятся по формуле:
Δp=λ·(l/d1)·(ρ/2)·v²
Δp – перепады напряжения на участке трубопровода, Па l – протяженность участка трубопроводной линии, м λ – коэффициент сопротивления d1 – поперечное сечение труб, м ρ – уровень плотности транспортируемых сред, кг/м3 v – скорость перемещения, м/с
Гидравлическое сопротивление образуется под воздействием 2-х основных факторов:
- сопротивление трения;
- местное сопротивление.
Первый вариант предусмотрен при образовании неровностей и шероховатостей, препятствующих движению перекачиваемых сред. Для преодоления тормозящего эффекта требуются дополнительный расход энергии. При ламинарном протоке и соответствующего ему низкого показателя Рейнольдса (Re), характеризующегося равномерностью и исключением возможности смешения соседних слоев жидких или газообразных сред, влияние шероховатостей минимально. Это объясняется увеличением параметра крайнего вязкого подслоя перекачиваемых сред, относительно образованных неровностей и выступов на поверхности труб. Эти условия позволяют считать трубы гидравлически гладкими.
При повышении значения Рейнольдса вязкий подслой имеет меньшую толщину, что обеспечивает перекрытие неровностей и воздействия шероховатостей, уровень гидравлического сопротивления не зависит от показателя Рейнольдса, и средней высоты выступов на покрытии труб. Последующее повышение значения Рейнольдса позволяет перевести перекачиваемые среды в режим турбулентного протекания, где образуется разрушение вязкого подслоя, а образуемое трение определяется величиной шероховатости.
Потери при трении рассчитываются путем подстановки данных:
HТ=[(λ·l)/dэ]·[w2/(2g)]
- HТ – потери напора при сопротивлении трению, м
- [w2/(2g)] – скоростной напор, м
- λ – коэффициент сопротивления
- l – протяженность трубопроводного участка, м
- dЭ – эквивалентное значение поперечного сечения трубопроводной линии, м
- w – скорость движения сред, м/с
- g – ускорение свободного падения, м/с2
Зоны ответственности
Что такое элеваторный узел отопления — мы худо-бедно разобрались.
А кто за него отвечает?
- Участок трассы внутри дома до фланцев входных задвижек — зона ответственности транспортирующей тепло организации (тепловых сетей).
- Все, что после входных задвижек, и сами задвижки — зона ответственности жилищной организации.
Однако: подбор элеватора отопления по номеру (типоразмеру), расчет диаметра сопла и подпорных шайб выполняются теплосетями. Жилищники лишь обеспечивают монтаж и демонтаж.
Эквивалентное значение диаметра
Применяют при проведении расчетов нецилиндрических трубопроводных систем (овального или прямоугольного сечения). Эквивалентное значение диаметра соответствует параметрам трубопроводной сети с круглым сечением, при условии одинаковой длины. Для проведения расчетов используют формулу:
dэ = 4F/P
Для труб с цилиндрической формой эквивалентное и внутреннее поперечное сечение совпадает. Для открытых каналов эквивалентный диаметр рассчитывают путем подстановки данных:
dэ = 4F/Pс
Смоченным периметром выступает длина линии сопряжения транспортируемых сред со стенками трубопровода, влияющими на ограничение потока. Ниже представлены формы периметра для разных труб.
Местное сопротивление образуют трубопроводные элементы, где транспортируемые среды подвержены резкому образованию деформаций со сменой направления, скорости или завихрений. Этот процесс может быть вызван под действием задвижек, вентилей, поворотов и развилок труб.
Потери напора при местном трении рассчитывают через формулу:
Hмс=ζмс·[w2/(2g)]
Уровень потери напора при местном трении определяется скоростью и коэффициентом местного сопротивления (указан в табличных данных).
При суммировании приведенных выше формул получится общее уравнение, позволяющее определить напор насоса:
Диаметр трубопроводных сетей
При вычислении поперечного сечения труб, следует учесть, что высокая скорость перекачиваемых сред снижает материалоемкость изделий и удешевляет установку систем. Но повышение скорости приводит к потерям напора, требующим дополнительного расхода энергии для перекачивания сред. Чрезмерное уменьшение может привести к негативным последствиям. Для вычисления оптимальных параметров поперечного сечения труб служит формула (для изделий с круглым поперечным сечением):
Q = (Πd²/4)·w
Для вычисления оптимальных параметров поперечного сечения требуется узнать скорость перекачиваемых сред, исходя из сводных таблиц:
Окончательное уравнение для определения оптимального поперечного сечения имеет следующий вид:
d = √(4Q/Πw)
Различают два вида этих устройств:
- Элеваторы, не поддающиеся регулированию.
- Элеваторы, регулирование работы которых осуществляется посредством электропривода.
В процессе установки любого из них очень важно соблюдать герметичность. Данное оборудование устанавливается в систему отопления, которая уже функционирует. Поэтому перед монтажом рекомендуется изучить место, где планируется последующее размещение этого оборудования. Данный вид работ рекомендуется доверить специалистам, которые способны разобраться в схеме, а также разработать чертежи и выполнить расчеты.
Номограммы для гидравлических вычислений труб
Для проверки потерь давления на заданном участке, показатели манометров сравнивают с табличными данными, или ориентируются на функциональную зависимость расхода жидкости от изменений напряжения (при постоянном диаметре).
Для примера используется ветка с радиаторами на 10 кВт. Расход жидкости рассчитывается на перенос теплоэнергии на уровне 10 кВт. В качестве расчетного участка взят отрез от первой в ветке батареи. Его диаметр является постоянным. Второй участок размещен между 1-ой и 2-ой батареей. На втором участке расход потребляемой энергии составляет 9 кВт с возможным снижением.
Расчет гидравлического сопротивления производится до обратной и подающей трубы, этому способствует формула:
G уч = (3,6*Q уч)/(c*(t r-t o)),
где Q уч — уровень тепловой нагрузки участка, (Вт). Нагрузка тепла на 1 участок составляет 10 кВт;
с — (показатель удельной теплоемкости для жидкости) постоянная, равная 4,2 кДж (кг*°С);
t r — температурный режим горячего теплоносителя;
t o — температурный режим холодного теплоносителя.
Гидрорасчеты отопительных гравитационных систем: скорость транспортировки теплоносителя
Минимальная скорость теплоносителя составляет 0,2-0,26 м/с. При снижении параметра из жидкости могут выделяться избыточные воздушные массы, приводящие к образованию воздушных пробок. Это выступает причиной для полного или частичного отказа от системы отопления. Верхний порог скорости теплоносителя составляет 0,6-1,5 м/с. Не достижение скорости до заданных параметров возможно образование гидравлических шумов. На практике оптимальная скорость варьирует в диапазоне 0,4-0,7 м/с.
Для более точных вычислений используются параметры материалов для изготовления труб, Например, для стальных труб скорость жидкости варьирует в диапазоне 0,26-0,5 м/с. При использовании полимерных или медных изделий, допускается увеличение скорости до 0,26-0,7 м/с.
Вычисление сопротивления отопительных гравитационных систем: потери давления
Сумма всех потерь при гидравлическом трении и локальном сопротивлении определяется в Па:
Руч = R * l + ((p * v2) / 2) * E3,
- где v — скорость транспортируемых сред м/с;
- p — плотность жидкости, кг/м³;
- R — потери давления, Па/м;
- l — длина, используемая для расчета труб, м;
- E3 — сумма всех коэффициентов локального сопротивления на обустроенном участке запорной арматуры.
Общий уровень гидравлического сопротивления определяется суммой сопротивлений расчетных участков.
Гидрорасчет двухтрубных гравитационных отопительных систем: выбор основной ветви
Если система гидравлики характеризуется попутной транспортировкой теплоносителя, для двухтрубных систем следует выбрать кольцо максимально загруженного стояка через размещенные внизу отопительные приборы. Для систем, характеризующихся тупиковым движением теплоносителя, требуется выбор кольца нижнего прибора обогрева для максимально загруженного из самых удаленных стояков. Для горизонтальных отопительных конструкций подбирают кольца через наиболее загруженные ветви, относящиеся к нижним этажам.
Принцип функционирования
Наилучшим примером, который покажет элеватор отопления принцип работы, будет многоэтажный дом. Именно в подвале многоэтажного дома среди всех элементов можно отыскать элеватор.
Первым делом, рассмотрим, какой в данном случае имеет элеваторный узел отопления чертеж. Здесь два трубопровода: подающий (именно по нему горячая вода идет к дому) и обратный (остывшая вода возвращается в котельную).
Схема элеваторного узла отопления
Из тепловой камеры вода попадает в подвал дома, на входе обязательно стоит запорная арматура. Обычно это задвижки, но иногда в тех системах, которые более продуманы, ставят шаровые краны из стали.
Как показывают стандарты, есть несколько тепловых режимов в котельных:
- 150/70 градусов;
- 130/70 градусов;
- 95(90)/70 градусов.
Когда вода нагреет до температуры не выше 95-ти градусов, тепло будет распределено по отопительной системе при помощи коллектора. А вот при температуре выше нормы – выше 95 градусов, все становится намного сложнее. Воду такой температуры нельзя подавать, поэтому она должна быть уменьшена. Именно в этом и состоит функция элеваторного узла отопления. Заметим также и то, что охлаждение воды таким образом – это самый простой и дешевый способ.
Примеры номограмм
При выборе параметров труб и материала для разработки, специалисты ориентируются на технологические и конструктивные требования, предъявляемые в конкретной ситуации. Для стандартизации габаритов их классифицируют и унифицируют, с учетом допустимого для эксплуатации давления.
При расчете системы водоснабжения или отопления вы сталкиваетесь с задачей подбора диаметра трубопровода. Для решения такой задачи нужно сделать гидравлический расчет вашей системы, а для еще более простого решения – можно воспользоваться
гидравлическим расчетом онлайн
, что мы сейчас и сделаем.
Порядок работы:
1. Выберите подходящий метод расчета (расчет по таблицам Шевелева, теоретическая гидравлика или по СНиП 2.04.02-84) 2. Выберите материал трубопроводов 3. Задайте расчетный расход воды в трубопроводе 4. Задайте наружный диаметр и толщину стенки трубопровода 5. Задайте длину трубопровода 6. Задайте среднюю температуру воды Результатом расчета будет график и приведенные ниже значения гидравлического расчета. График состоит из двух значений (1 – потери напора воды, 2 – скорость воды). Оптимальные значения диаметра трубы будут написаны зеленым под графиком. Потери давления в трубопроводе показывают потерю давления на заданном участке трубопровода. Чем выше потери, тем больше придется совершить работы, чтобы доставить воду в нужное место. Характеристика гидравлического сопротивления показывает, насколько эффективно подобран диаметр трубы в зависимости от потерь давления.
Для справки:
— если Вам необходимо узнать скорость жидкости/воздуха/газа в трубопроводе различного сечения – воспользуйтесь этим калькулятором
От автора:
Если данный
гидравлический расчет трубопроводов
был Вам полезен, то не забывайте делиться им с друзьями и коллегами.
Принцип работы централизованного отопления
Общая схема достаточно проста: котельная или ТЭЦ нагревает воду, подает ее в магистральные теплопроводные трубы, а затем на тепловые пункты – жилые здания, учреждения и так далее. При перемещении по трубам вода несколько охлаждается и в конечном пункте температура ее ниже. Чтобы компенсировать охлаждение, котельная нагревает воду до более высокого значения. Величина нагрева зависит от температуры на улице и температурного графика.
- Например, при графике 130/70 при температуре на улице 0 С, параметр воды, подаваемой в магистраль, составляет 76 градусов. А при -22 С – не менее 115. Последнее вполне укладывается в рамки физических законов, так как трубы представляют собой закрытый сосуд, а теплоноситель перемещается под давлением.
Очевидно, что столь перегретая вода не может подаваться в систему, так как возникает эффект перетопа. При этом сильно изнашиваются материалы трубопроводов и радиаторов, поверхность батарей перегревается вплоть до риска получения ожогов, а пластиковые трубы в принципе не рассчитаны на температуру теплоносителя выше 90 градусов.
Для нормального обогрева необходимо соблюдением еще нескольких условий.
- Во-первых, давление и скорость движения воды. Если она невелика, то в ближайшие квартиры поставляется перегретая вода, а в дальние, особенно угловые – слишком холодная, в результате чего дом отапливается неравномерно.
- Во-вторых – для правильного прогрева необходим определенный объем теплоносителя. Из магистрали тепловой узел получает около 5–6 кубометров, в то время как для системы необходимо 12–13.
Именно для решения всех вышеперечисленных вопросов и используется элеватор отопления. На фото представлен образец.