- Калькулятор расчета мощности обогрева теплицы
- Цены на обогреватели для теплицы
- Калькулятор расчета мощности обогрева теплицы
- Пояснения по проведению расчетов
- Как рассчитать необходимую мощность отопления теплицы?
- Потери тепла теплицы
- Правильное водяное отопление теплицы своими руками – расчет и схема
- Виды отопления теплиц
- Тепловой насос
- Изготовление
- Отопление водяное и его схема работы
- Калькулятор расчета мощности обогрева теплицы
- Цены на обогреватели для теплицы
- Калькулятор расчета мощности обогрева теплицы
- Пояснения по проведению расчетов
- Водяное отопление теплицы своими руками
- Еще по этой теме на нашем сайте:
- Как сделать зимнюю теплицу
- Виды отопления
- Требования к отопительной системе теплицы
Калькулятор расчета мощности обогрева теплицы
Наличие загородного участка очень часто предполагает ведение на нем тех или иных сельскохозяйственных работ. Согласитесь, любому человеку приятно иметь на своем столе овощи, фрукты или ягоды, выращенные собственноручно и гарантированно «чистые». Но вот правда летний «огородный» сезон во многих регионах – довольно короток. Поэтому рачительные хозяева строят специальные агротехнические сооружения – теплицы и парники. А чтобы довести период сельхозработ до возможного максимума, или даже вообще перейти на круглогодичный цикл, обязательно потребуется оборудовать теплицу системой обогрева.
Калькулятор расчета мощности обогрева теплицы
Система отопления теплицы может быть разной – печи длительного горения, водяные или электрические контуры, заглубленные в грунт по принципу «теплого пола», конвекторы, обеспечивающие перемещения масс теплого воздуха, инфракрасный обогрев. Но любая из выбранных систем должна выполнять главную задачу – создавать и поддерживать в помещении требуемую для выращиваемых культур температуру, то есть, обладать определенной тепловой мощностью. А вот какой? – в этом вопросе нам поможет калькулятор расчета мощности обогрева теплицы.
Цены на обогреватели для теплицы
Ниже, под калькулятором, приведены пояснения и необходимые справочные данные.
Калькулятор расчета мощности обогрева теплицы
Пояснения по проведению расчетов
Мощности системы обогрева теплицы должно быть достаточно для обеспечения компенсации теплопотерь, а они, при больших площадях остекления этих сооружений – весьма немалые.
Расчет необходимой тепловой мощности строится исходя из следующего соотношения:
Qт = Sw × Kinf × Δt × τw
Qт – рассчитываемая мощность обогрева.
Sw – площадь остекления теплицы. Именно она принимается в расчет, так как через прозрачные стены проходит не только инсоляция (проникновение энергии солнечных лучей), но и максимальный объем теплопотерь.
Площадь рассчитывается самостоятельно, по известным геометрическим формулам.
Для тех, у кого возникли сложности с вычислением площади…
Некоторые геометрические фигуры не желают напрямую «подчиняться» простым формулам, и их приходится разбивать на участки. Как рассчитать площадь – в том числе и для сложных случаев, с примерами и калькуляторами – в специальной публикации нашего портала.
Kinf – так называемый коэффициент инфильтрации. Он зависит от примерного режима эксплуатации теплицы, то есть от необходимой температуры внутри сооружения, и возможного уровня температур снаружи, на улице. Естественно, желательно брать в расчет наиболее неблагоприятные возможные условия, чтобы обеспечить необходимый эксплуатационный запас мощности.
Значения коэффициента инфильтрации можно взять из таблицы ниже:
Планируемая температура воздуха в помещении теплицы | Возможная температура воздуха снаружи | ||||
---|---|---|---|---|---|
0 °С | — 10 °С | — 20 °С | — 30 °С | — 40 °С | |
+ 18 °С | 1.08 | 1.13 | 1.18 | 1.24 | 1.30 |
+ 25 °С | 1.11 | 1.16 | 1.21 | 1.27 | 1.33 |
Δt – максимальная амплитуда температуры, то есть разница между нормальным значением в помещении, и минимальным – на улице, в самую холодную неделю в период эксплуатации теплицы. В калькуляторе значении Δt будет подсчитана по указанным значения снаружи и внутри.
— Как правило, + 18 ºС бывает достаточно для выращивания большинства овощей. Для рассады или цветов требуется порядка + 25 ºС. При выращивании некоторых экзотических растений температурный режим предполагает и более высокие показатели.
— В поле ввода внешних температур указывается уровень минимальной отрицательной температуры воздуха, характерный для данного региона, в период эксплуатации теплицы.
τw – показатель теплопроводности материала остекления теплицы.
Разные материалы (по составу и по строению) имеют собственную теплопроводность – она уже учтена в алгоритме калькулятора. Вариант теплицы с пленочным покрытием не рассматривается, так как воспринимать его всерьез в качестве «зимнего» сооружения – было бы преувеличением.
Полученное значение, в киловаттах, станет ориентиром при выборе наиболее подходящей системы обогрева теплицы.
Сложно ли построить теплицу самостоятельно?
Вопрос неоднозначный, так как теплицы могут существенно различаться размерами, принципиальной конструкцией, своей оснащенностью и другими характеристиками. Тем не менее, это вполне выполнимо, и ряд полезных рекомендаций по данной проблеме можно получить в специальной статье портала – про строительство теплицы своими руками .
Как рассчитать необходимую мощность отопления теплицы?
Для того, что бы определить количество энергии, необходимой для отопления жилого дома, необходимо взять 1 кВт энергии на 10 м2. Когда речь идет о теплицах, тут необходимо в расчет брать проводные характеристики самой конструкции теплицы. Стены намного лучше сохраняют тепло. В отличие от жилых помещений, теплицы требуют в разы больше энергии.
При нормальных условиях, отопление должно в полной мере восполнять потери тепла. Регулируется система с помощью автоматических или ручных контроллеров.
Потери тепла теплицы
Основные потери теплицы:
- 20-25% тепла уходит через щели, вентиляцию, зазоры, в местах соединения теплицы и фундамента
- 3-5% тепла уходит через грунт, чем дальше от центра теплицы — тем больше потери
- львиная доля тепловых потерь идет через ограждающие конструкции (цоколь, обшивку и т.д.)
Необходимо обратить внимание на теплопроводность обшивочного материала.
Для более удобного расчета количества необходимой энергии, нужно произвести расчеты по формуле:
Q сист.отоп. = kт х Sогр х (Твн – Тнар) х kинф
Коэффициент инфильтрации | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Планируемая температура воздуха в помещении теплицы | Возможная температура воздуха снаружи | ||||
0 °С | — 10 °С | — 20 °С | — 30 °С | — 40 °С | |
+ 18 °С | 1.08 | 1.13 | 1.18 | 1.24 | 1.30 |
+ 25 °С | 1.11 | 1.16 | 1.21 | 1.27 | 1.33 |
Δt – максимальная амплитуда температуры, то есть разница между нормальным значением в помещении, и минимальным – на улице, в самую холодную неделю в период эксплуатации теплицы. В калькуляторе значении Δt будет подсчитана по указанным значения снаружи и внутри.
— Как правило, + 18 ºС бывает достаточно для выращивания большинства овощей. Для рассады или цветов требуется порядка + 25 ºС. При выращивании некоторых экзотических растений температурный режим предполагает и более высокие показатели.
— В поле ввода внешних температур указывается уровень минимальной отрицательной температуры воздуха, характерный для данного региона, в период эксплуатации теплицы.
τw – показатель теплопроводности материала остекления теплицы.
Разные материалы (по составу и по строению) имеют собственную теплопроводность – она уже учтена в алгоритме калькулятора. Вариант теплицы с пленочным покрытием не рассматривается, так как воспринимать его всерьез в качестве «зимнего» сооружения – было бы преувеличением.
Полученное значение, в киловаттах, станет ориентиром при выборе наиболее подходящей системы обогрева теплицы.
Сложно ли построить теплицу самостоятельно?
Вопрос неоднозначный, так как теплицы могут существенно различаться размерами, принципиальной конструкцией, своей оснащенностью и другими характеристиками. Тем не менее, это вполне выполнимо, и ряд полезных рекомендаций по данной проблеме можно получить в специальной статье портала – про строительство теплицы своими руками.
Водяное отопление теплицы своими руками
Самым выгодным обогревом парников является водяное отопление. Сделать самостоятельно данный обогрев парника, а точнее сам электрический водяной нагреватель, можно поэтапно:
- Отрезаем верх старого огнетушителя;
- Внутри на дне монтируем ТЭН с необходимой мощностью 1 кВт. Как вариант им может быть тэн из самовара;
- Необходимо сделать съемную крышку, для дальнейшего залива воды;
- К корпусу агрегата прикрепляем 2 трубки, которые связаны непосредственно с радиатором. При работе с трубами нужно обязательно использовать прокладки, что бы ни было утечки. Если желаете, чтобы агрегат работал автоматически, нужно привлечь реле переменного тока и напряжение 220 В.
При проведении работ по монтажу отопительной системы парника главным является соблюдение правил и норм инструкций и техники безопасности.
Еще по этой теме на нашем сайте:
- Правильный расчет отопления в многоквартирном доме и в квартире Хотя обычные люди считают, что им незачем знать, по какой именно схеме обустроено отопление многоквартирного дома, ситуации в жизни действительно могут быть различными. К примеру,…
- Ну, что сказать, водяная отопительная система была всегда очень сильно распространена в различных регионах для отопления строений — причиной тому являются её доступность и простота в плане…
- Самотечная система отопления двухэтажного дома является единственным выходом в условиях, когда отсутствуют газ и электричество. Естественно, подобных проблем в современном мире просто не существует. Однако…
- Перед тем, как приступить к строительству частного дома, нужно определиться с системой отопления. Детально проработанный проект отопления двухэтажного дома обеспечит хорошее распределение тепла по всему…
Как сделать зимнюю теплицу
Что такое тепловой баланс
Когда определяют потребности частного дома в тепловой энергии, пользуются простым правилом: на каждые 10 квадратных метров площади должно приходиться около 1 кВт мощности теплогенератора. При рассмотрении сооружений защищённого грунта такой подход не годится, потому что слишком сильно отличаются теплотехнические характеристики ограждающих конструкций — потребности в энергии будут в разы больше.
Нормально работающее отопление (не важно, дом это или теплица) должны в полной мере восполнять потери тепла. Тогда после достижения необходимого температурного режима пользователь сможет вручную или при помощи
автоматики поддерживать этот баланс.
Итак, найдём точные данные о теплопотерях — узнаем, какой мощности нужно отопление.
Как теплица теряет тепло
До 20-30 процентов полезной энергии может уходить с тёплым воздухом через щели, зазоры (форточки, дверь…), вентиляцию. Происходит инфильтрация — снизу (например, под дверью, или в зоне примыкания обшивки к фундаменту) подсасываются холодные воздушные массы, а вверху тёплый воздух уходит наружу.
Практика показывает, что, если нет искусственного подогрева грунта, то около 2-5 процентов тепла уходит через него. Интересно, что это происходит неравномерно, чем ближе к центру сооружения, тем потери меньше. Больше всего теплопередача наблюдается по периметру.
Формула расчета отопительной системы
Q сист.отоп. = kт х Sогр х (Твн – Тнар) х kинф
kт — это коэффициент теплопередачи обшивки (выбираем из списка выше). Sогр — общая площадь стен площадь кровли. Твн – Тнар — это дельта температур, суммарный перепад между наружной и проектной внутренней. Данные о сезонных температурах можно взять из нормативных документов по отоплению зданий, например, СНиП 23-01-99 «Строительная климатология».
kинф — коэффициент инфильтрации, отображающий потери тепла через неплотные примыкания и зазоры (в среднем равняется 1,25). Для качественных фабричных теплиц он может не применяться.
ЧИТАТЬ ДАЛЕЕ: Калькулятор расчета сухой строительной смеси для самовыравнивающегося пола — планируем ремонт
Коэффициент инфильтрации | |||||
t вн | t нар | ||||
0° | -10° | -20° | -30° | -40° | |
18° | 1,08 | 1,13 | 1,18 | 1,24 | 1,30 |
25° | 1,11 | 1,16 | 1,21 | 1,27 | 1,33 |
Попробуем рассчитать на примере. Предположим, у нас имеется теплица с суммарной площадью обшивки 150 м2. В качестве укрывочного материала используется поликарбонат толщиной 8 мм (3,3 Вт/м2 •°С). Внутри нам нужно иметь температуру более 16 градусов, минимальная пиковая температура для конкретного региона может достигать -30 градусов (дельта составит 46). Инфильтрация возможна, поэтому коэффициент используем.
Q сист.отоп. = 3,3 х 150 х 46 Х 1,25 = 28,5 кВт
Для аналогичной теплицы из одинарного стекла потребуется котёл или, например, дровяная печь-булерьян мощностью 51,75 кВт (Q сист.отоп. = 6 х 150 х 46 Х 1,2). Соответственно, плёночное сооружение будет ещё «прожорливее» — необходимо создать систему производительностью порядка 83 киловатт.
Если теплогенератор у вас в наличие имеется — используя формулу, можно высчитать, какого максимального размера (или из какого материала) теплицу можно строить под него. В свою очередь, если есть котёл, и есть теплица — можем высчитать, при какой минусовой температуре можно будет эксплуатировать сооружение.
Некоторые пояснения к теплотехническому расчету теплицы
Очевидно, что не все нюансы учтены. Некоторые моменты упрощаются или принимаются по умолчанию.
- Не принимается во внимание тепло, полученное от солнца, то есть рассчитывается исключительно «ночной режим», как самый критичный.
- Наружная минусовая температура берётся самая низкая за зимние месяцы.
- Редко когда считают потери тепла через почву, особенно для крупных блочных теплиц. Также не считают аккумулируемое грунтом или другими массивами тепло.
- Внутренняя температура воздуха указывается средняя по объёму, а почвы — средняя по площади. В большинстве случаев температура почвы принимается равной температуре воздуха.
- Не принимается во внимание влажность воздуха и процент содержания в нём углекислого газа.
- Рассматривается исключительно естественная вентиляция.
- Расчёты производятся «без растений» (за исключением номинальной внутренней температуры, которая нужна для роста конкретных культур).
- Не учитываются технические особенности отопления, конфигурация системы считается оптимальной.
Выбирая котёл или другое отопительное устройство, рекомендуется предусмотреть запас мощности около 20% сверх расчётной, больше — тоже нерационально. Желательно, отказаться от универсальных многотопливных агрегатов (обычно они менее эффективны). Используйте погодозависимую автоматику — она реально позволяет экономить энергоносители.
Для того, что бы определить количество энергии, необходимой для отопления жилого дома, необходимо взять 1 кВт энергии на 10 м2. Когда речь идет о теплицах, тут необходимо в расчет брать проводные характеристики самой конструкции теплицы. Стены намного лучше сохраняют тепло. В отличие от жилых помещений, теплицы требуют в разы больше энергии.
При нормальных условиях, отопление должно в полной мере восполнять потери тепла. Регулируется система с помощью автоматических или ручных контроллеров.
Основные потери теплицы:
- 20-25% тепла уходит через щели, вентиляцию, зазоры, в местах соединения теплицы и фундамента
- 3-5% тепла уходит через грунт, чем дальше от центра теплицы — тем больше потери
- львиная доля тепловых потерь идет через ограждающие конструкции (цоколь, обшивку и т.д.)
Необходимо обратить внимание на теплопроводность обшивочного материала.
Для более удобного расчета количества необходимой энергии, нужно произвести расчеты по формуле:Q сист.отоп. = kт х Sогр х (Твн – Тнар) х kинф
ЧИТАТЬ ДАЛЕЕ: Можно ли подключить розетку к выключателю света?
Коэффициент инфильтрации | |||||
t вн | t нар | ||||
0° | -10° | -20° | -30° | -40° | |
18° | 1,08 | 1,13 | 1,18 | 1,24 | 1,30 |
25° | 1,11 | 1,16 | 1,21 | 1,27 | 1,33 |
Характеристики основных материалов ( Вт/м2 х °С):
- однокамерный сотовый поликарбонат 4 мм — 3,9
- однокамерный сотовый поликарбонат 8 мм — 3,3
- двухкамерный сотовый поликарбонат 16 мм — 2,3
- стекло одинарное 3 мм — 6
- стеклопакет однокамерный — 2
- плёнка полиэтиленовая одинарная — 10
- плёнка полиэтиленовая двойная — 5,8
- плёнка двойная дутая — 3,5
- фундамент/цоколь железобетонный — 2
kт — это коэффициент теплопередачи обшивки (выбираем из списка выше). Sогр — общая площадь стен площадь кровли. Твн– Тнар — это дельта температур, суммарный перепад между наружной и проектной внутренней. Данные о сезонных температурах можно взять из нормативных документов по отоплению зданий, например, СНиП 23-01-99 «Строительная климатология».
Q сист.отоп. = 3,3 х 150 х 46 Х 1,25 = 28,5 кВтДля аналогичной теплицы из одинарного стекла потребуется котёл или, например, дровяная печь-булерьян мощностью 51,75 кВт (Q сист.отоп. = 6 х 150 х 46 Х 1,2). Соответственно, плёночное сооружение будет ещё «прожорливее» — необходимо создать систему производительностью порядка 83 киловатт.
- Рассчитывается исключительно естественная вентиляция
- При расчете используется самая низкая температура за зиму
- Средняя температура рассчитывается средней по объему а температура почвы — по площади
- Растения, которые будут выращиваться в теплице в расчет не берутся
- Тепло от солнца в расчет не идет
- Потеря тепла через почву минимальная, как правило в расчет не берут
Рекомендуется использовать котлы на 20% больше, с запасом.
Зимние теплицы в последнее время завоевывают не меньшую популярность, чем их летние аналоги. И неудивительно: ведь овощи, зелень и ягоды в «несезон» стоят дороже, и обладают большей ценностью сами по себе, так как являются редкостью. Устройство зимней теплицы отличается от летнего аналога более толстыми стенами, прочностью, надежностью, герметичностью и, конечно же, наличием отопления.
Чаще всего такие сооружения сейчас делают из современного материала — сотового поликарбоната, обладающего гибкостью, долговечностью,экологичностью, и прочими важными характеристиками. В статье рассмотрим особенности зимней теплицы из поликарбоната с отоплением: узнаем, какие виды отопления теплиц бывают, и как правильно рассчитать его необходимую мощность. Кроме того, выясним, как сделать такую теплицу собственными силами.
Этот материал в настоящее время широко применяется в строительстве различных конструкций. Идеально подходит он и для сооружения теплиц: как летних, так и зимних их вариантов.
К заслуживающим внимания особенностям поликарбоната можно отнести его прочность, которая сочетается с легкостью. К тому же поликарбонат — эластичный материал, дающий возможность сооружать из него различной формы конструкции.
Арки любой степени изогнутости, разнообразные геометрические формы: все это вполне доступно сделать при помощи поликарбоната.
ЧИТАТЬ ДАЛЕЕ: Калькулятор расчета необходимой мощности электрообогревателя
Материал замечательно пропускает свет. Согласно исследованиям разработчиков, поликарбонат пропускает примерно 85% солнечного света. К тому же этот уникальный материал — замечательный теплоизолятор, и растениям в такой теплице вполне комфортно. Благодаря теплоизолирующим свойствам, владельцы теплицы затрачивают меньше дорогостоящих ресурсов на отопление: получается довольно существенная экономия.
Виды отопления
Узнаем, какие разновидности отопления используются сейчас в тепличном бизнесе.
Выясним основные моменты изготовления собственными руками зимней теплицы из поликарбоната, оснащенную отоплением. Необходимо знать, что постройка в данном случае будет стационарной: не разборной, и не мобильной. Поэтому сразу же найдите для теплицы оптимальное и удобное место.
Строению понадобится прочный фундамент и основательный каркас: благодаря им сооружение получится прочным, надежным и устойчивым. Лучше всего сделать фундамент из камня или кирпича. Дерево в данном случае не годится, так как периодически его придется менять из-за гниения. Форма фундамента — ленточная: это и просто, и не слишком дорого.
Требования к отопительной системе теплицы
Чтобы обогревательные устройства в теплице работали правильно и безопасно, необходимо провести следующие мероприятия:
- закрыть все места утечки тепла;
- создать микроклимат (температура, влажность);
- создать систему аэрации (открывающиеся окна, фрамуги);
- чтобы не допустить перегрева, предусмотреть шторы на окна и крышу;
- контролировать предельно допустимое количество углекислого газа СО2, азота, газоанализатором;
- находиться и работать в теплице можно только после ее проветривания;
- устройства обогрева (печи на твердом топливе, газовые теплогенераторы, воздушные калориферы) установить в отдельном помещении;
- применяя теплогенераторы на газе, обеспечить его полное сгорание;
- если теплоноситель воздух, то перепад температуры не должен превышать 3-4˚С. скорость движения ≤1,0 м/сек;
- открывание окон и фрамуг автоматизировать или механизировать.