- Расчет экономической эффективности системы горячего водоснабжения с использованием плоского солнечного коллектора
- Библиографическое описание:
- Расчеты систем солнечного горячего водоснабжения
- Как рассчитать систему с солнечными коллекторами?
- Как правильно расположить солнечные коллекторы?
- Солнечные системы теплоснабжения
- Лента статей RSS:
- Поиск статей:
- Солнечные системы теплоснабжения
- Расчет основных характеристик солнечных установок.
- Влияние климатических условий на выбор режима работы солнечной установки
- Классификация систем солнечного теплоснабжения.
- Какие типы систем могут быть использованы для решения этих задач?
- Комплектация системы солнечного теплоснабжения.
- Принципиальная схема двухконтурной ССТ
- ЗАКАЗАТЬ РАСЧЁТ
- Заинтересовались?
Расчет экономической эффективности системы горячего водоснабжения с использованием плоского солнечного коллектора
Рубрика: Технические науки
Дата публикации: 07.01.2019 2019-01-07
Статья просмотрена: 627 раз
Библиографическое описание:
Аллаёрова, Г. Х. Расчет экономической эффективности системы горячего водоснабжения с использованием плоского солнечного коллектора / Г. Х. Аллаёрова, Б. М. Тошмаматов, Г. Н. Узаков. — Текст : непосредственный // Молодой ученый. — 2019. — № 2 (240). — С. 15-16. — URL: https://moluch.ru/archive/240/55286/ (дата обращения: 20.04.2021).
В статье показан расчет систем горячего водоснабжения с использованием солнечной энергии на основе теоретических исследований преимуществ систем горячего водоснабжения.
Ключевые слова: анализ, теплоснабжение, горячее водоснабжение, солнечная радиация, солнечная энергия, солнечный коллектор.
Во многих районах республики Узбекистан с большим числом солнечных дней и жарким климатом использование солнечной энергии для нагрева воды оправдано.
Общая продолжительность возможного солнечного сияния на равнинах Узбекистана составляет 4455–4475 часов в год. Фактически годовое число солнечного сияния здесь достигает 3000–3100 часов, что составляет 65–70% от возможного. Зимой над территорией Узбекистана формируются воздушные фронты умеренных широт, в результате чего умеренные воздушные массы сталкиваются с тропическими массами, образуются циклоны, а затем выпадают осадки. В связи с этим, представляет интерес реализация горячего водоснабжения потребителей на основе солнечных коллекторов.
В настоящее время несколько миллионов жилых домов и предприятий уже используют солнечные системы нагрева воды. Это достаточно экономичный и надежный вид горячего водоснабжения [1]. Горячее водоснабжение — наиболее распространенный вид прямого применения солнечной энергии. Типичная установка состоит из одного или более коллекторов, в которых жидкость нагревается на солнце, а также бака для хранения горячей воды, нагретой посредством жидкости-теплоносителя. КПД тепловых солнечных систем достигает в настоящее время 50–90%.
Коллекторы, бак-аккумулятор и соединительные трубопроводы системы заполнены холодной водой. Солнечное излучение, проходя через прозрачное покрытие (остекление) коллектора нагревает его поглощающую панель и воду в её каналах. При нагреве плотность воды уменьшается, и нагретая жидкость начинает перемещаться в верхнюю точку коллектора и далее по трубопроводу — в бак-аккумулятор. В баке нагретая вода перемещается в верхнюю точку, а более холодная вода размещается в нижней части бака, т. е. наблюдается расслоение воды в зависимости от температуры. Более холодная вода из нижней части бака по трубопроводу поступает в нижнюю часть коллектора.
Расчет экономической эффективности солнечной установки основан на оценке средних значений солнечной радиации в месте установки системы, а также на правильном определении требуемой производительности, схемно-структурного состава установки, и стоимости отдельных элементов [2]. В условиях Узбекистана в качестве индивидуальной установки плоского горячего водоснабжения чаще всего применяется несколько установок. На рис. 1. представлен плоский солнечный коллектор.
Рис. 1. Экспериментальная установка системы горячего водоснабжения с использованием плоского солнечного коллектора
Для расчета системы горячего водоснабжения необходимо задать исходные данные, определяющие требования к системе горячего водоснабжения индивидуального жилого дома [3]. Для дома, расположенного в г. Карши, в котором проживает семья из 6-х человек, можно принять следующие исходные данные:
Количество жильцов 1 дома, 6 чел; Среднее суточное потребление горячей воды, N/сут-50 л/чел; Коэффициент запаса kз-1,5; Температура горячей воды, tгор=60 0 С; Средняя температура холодной воды в зимний период, tхол=10 0 С; Географическое положение (г. Карши) – географическая широта – 39 0 с.ш.; Сезонность работы установки — полдень:
Нахождение объема теплообменного бака и температурного перепада:
Объем бойлера определяется по формуле
и для 6-ти человек составляет V = 1,5 · 6 · 50= 300 л
Температурный перепад, т. е. разность температур воды на входе и на выходе теплообменного бака находится по формуле
и составляет Δt = 60–10 = 50 0 С
Определение количества энергии для нагрева воды: Для нагрева 1 литра воды на 1 градус необходимо затратить энергию, равную 1 Ккал, а для нагрева V литров на Δt градусов нужно затратить
Q = V · Δt = 300 · 50 = 15000 кВт
Для перевода килокалорий в киловатт-часы воспользуемся соотношением 1 кВт · ч = 859,8 Ккал, поэтому
Q= 15000/859,8=17,445 кВт/ч
Зная количество энергии, нужной для нагрева воды 17,445 кВт/ч в 0,5 суток, найдем годовое потребление 17,445 кВт/ч · 365 дней /0,5 = 12734,85 кВт/ч.
Исходя из этих данных определим, сколько мы экономим в год
1 кВт = 250 сум; 12734,85 кВт/ч за год · 250 сум = 3183712,5 сум в год.
Определим количество условного топлива, нужного для обогрева
12734,85 кВт/ч за год *0,3445 = 4387,1 тонн условного топлива.
Предложена упрощенная методика для оценочного расчета экономической эффективности установки горячего водоснабжения. После проведения оценочного расчета экономической эффективности и грубого определения параметров солнечной установки горячего водоснабжения следует провести теплотехнический расчет этой установки и уточнить ее технические параметры.
- Бекман У., Клейн С., Даффи Дж. Расчет систем солнечного теплоснабжения. — М.: Энергоиздат, 1982. — 80 с.
- Баскаков А. П., Мунц В. А. Нетрадиционные и возобновляемые источники энергии: учебник для вузов.— М.: Издательский Дом «БАС TET», 2013.— 368 с. (Высшее проф. образование: Бакалавриат).
- Роза А. Возобновляемые источники энергии. Физико-технические основы: учеб. пособие/пер. с англ. под ред. С. П. Малышенко, О. С. Попеля. — Долгопрудный: Интеллект; М.: Изд. дом МЭИ, 2010. — 704 с.
Расчеты систем солнечного горячего водоснабжения
Нагреть 1 кг воды на 1 градус можно, затратив 1,16 Вт*ч. Значит, нагреть тонну воды на 30 градусов (от 20 до 50) можно, затратив 1,16х1000х30=34800 Вт*ч.
Считается, что минимальная мощность, при которой еще более-менее будет работать гелиосистема — это 100 Вт/м². Летом в средней полосе России приход солнечной энергии составляет примерно 5 кВт*ч/м², с учётом среднего КПД солнечного коллектора около 60% получаем 3 кВт*ч энергии с 1 м² солнечного коллектора.
В среднем от вакуумного коллектора в течение года можно получить до 15-30% больше энергии, чем от плоского, причём эта добавка будет за счет более эффективной работы при низких температурах (т.е. как раз тогда, когда нужно поддерживать систему отопления и тепло нужнее всего). С другой стороны, при этом увеличивается стоимость системы. Целесообразность установки вакуумных или плоских коллекторов решается в каждом конкретном случае.
Одна сертификационная европейская лаборатория собрала параметры разных солнечных коллекторов в достаточно удобную форму для анализа. Основным итоговым корректным показателем для сравнения является удельный параметр — КОЛИЧЕСТВО ВЫРАБОТАННОЙ ЭНЕРГИИ ЗА ГОД приведенный к АПЕРТУРНОЙ площади солнечного коллектора (апертурная площадь — это площадь проекции внутреннего габарита коллектора или суммы проекций внутреннего размера вакуумных трубок или рефлектора на горизонтальную поверхность).
Сайт на английском, но при желании можно разобраться. Приведены данные по разным типам коллекторов разных производителей, показана конструкция коллекторов и их основные параметры, включая удельную выработку:
— для горячего водоснабжения,
— преднагрев (когда греется много воды до невысокой температуры),
— отопление.
Последние годы по всему миру стала популярной европейская система сертификации солнечных коллекторов Solar Keymark. Практически все серьезные производители получили такой сертификат на свою продукцию. В интернете есть онлайн база данных по всем сертифицированным Solar Keymark коллекторам.
Каждый тип коллекторов имеет свои области применения. В последнее время появилось много продавцов вакуумных коллекторов китайского производства сомнительного качества. Мы тоже продаем вакуумные китайские коллекторы, но при этом мы, путем проб и ошибок, выбрали одного из лучших производителей. Очень часто продавцы коллекторов вводят в заблуждение покупателей, завышая показатели выработки тепла и возможности солнечных коллекторов. Нужно понимать, что приход солнечной энергии в зимнее время на большей части территории России недостаточен для отопления (исключение составляют южные регионы европейской части России и некоторые регионы Восточной Сибири и Дальнего Востока.
Вакуумный солнечный коллектор на крыше
На сайте SintSolar есть перевод документа о сравнительном тестировании немецких плоских и вакуумных солнечных коллекторов. Там же можно почитать про особенности использования коллекторов с вакуумными трубками. Однако, нужно учитывать, что это сравнение тенденциозное, и делалось продавцом плоских коллекторов. Какая-то доля правды там есть, но выводы о нецелесообразности использования вакуумных коллекторов неверные. Обсуждение этой статьи можно почитать здесь и здесь.
Для того, чтобы сделать правильный выбор, мы рекомендуем проанализировать различные коллекторы из баз данных результатов испытаний Institut für Solartechnik и Solar Keymark.
Для целей отопления необходимо примерно 2 кВт*ч энергии на 1 м²отапливаемой площади дома в сутки. Эта цифра средняя для энергоэффективного дома и температуры окружающего воздуха до -20°С. То есть за месяц для среднего дома площадью 200 м² нужно около 12000 кВт*ч энергии.
Как рассчитать систему с солнечными коллекторами?
В осенне-весенний среднемесячный приход солнечной радиации на 1м² наклонной поверхности составляет от 20 до 80 кВт*ч/месяц. Летом в пике приход солнечной радиации может доходить до 160 кВт*ч/месяц, но обычно летом не нужно нагревать здание. Даже если мы хотим получить четверть требуемой для отопления энергии (аккумулировать солнечную энергию для отопления не имеет смысла, поэтому обычно солнечное тепло добавляется в систему отопления в режиме «онлайн», т.е. только когда светит и греет солнце), нам нужно около 3000 кВт*ч тепловой энергии. При зимнем КПД системы с солнечными коллекторами максимум 50% (с учетом потерь как в самом коллекторе, так и в трубопроводах от коллектора до потребителя) для сбора такого количества энергии необходимо 3000/50*0,5=120 м² площади солнечных коллекторов. Один 20-ти трубочный вакуумный коллектор имеет полезную площадь около 1,8 м² и занимает площадь около 3м². Таким образом, потребуется 40 таких коллекторов.
Летом эти коллекторы будут выдавать в 5-8 раз больше тепловой энергии, т.е. до 24 000 кВт*ч. Для сравнения, для целей горячего водоснабжения на 1 человека при норме в 100 л/сутки горячей воды температурой 40°С требуется примерно 100*1,16*30=3,48 кВт*ч. На семью из 4-5 человек потребуется до 15-20 кВт*ч энергии. Необходимо предусмотреть, куда девать остальные 20000 кВт*ч энергии. Хорошо , если есть бассейн, который нужно греть. В противном случае нужно будет накрывать большую часть коллекторов. Хорошим решением является сезонное аккумулирование в конструкциях здания или в земле, но такие решения, естественно, потребуют дополнительных капитальных затрат.
Поэтому мы рекомендуем рассчитывать систему солнечного теплоснабжения в расчете на горячее водоснабжение, можно раза в 2 увеличить количество коллекторов для того, чтобы гарантированно обеспечить ГВС в весенне-осенний период и иметь заметную добавку к генерации тепла в зимний период. Если увеличить количество коллекторов в 3-5 раз, то можно ощутить добавку солнечного тепла в отопительный баланс в межсезонье. Большее количество солнечных коллекторов в нашем климате использовать нецелесообразно.
В зависимости от солнечной радиации и температуры окружающей среды, КПД солнечного коллектора может быть от 20-70%. Таким образом, при ярком солнце может сниматься до 650 Вт/м², а в пасмурную — 10 Вт/м². А когда в баке 50°С, при этом в пасмурную погоду в коллекторе 40°С, то в данный момент КПД коллектора = 0. Эту ситуацию можно исправить путем применения тепловых насосов, но такое решение также повышает общую стоимость системы.
Очень немногие продавцы солнечных коллекторов могут правильно (и правдиво) рассчитать систему солнечного теплоснабжения — как для целей горячего водоснабжения, так и для отопления. Мы утверждаем, что использовать солнечные коллекторы (как вакуумные, так и плоские) для ГВС в весенне-осенний период удобно и выгодно. Мы можем подобрать оптимальный состав системы для ваших конкретных целей. Опасайтесь тех, кто обещает вам за счет солнечной энергии обеспечить дом теплом зимой — в нашем климате это практически невозможно. Заполните форму заявки на подбор оборудования на нашем сайте, наши специалисты помогут вам сделать правильное решение.
Как правильно расположить солнечные коллекторы?
Солнечные коллекторы нужно ориентировать по возможности строго на юг. Однако, без существенного падения производительности можно отклониться от южного направления на 30 градусов. Для фотоэлектрических панелей можно без существенного ухудшения отклоняться до 45 градусов. Превышение этих рекомендуемых цифр сильно ухудшить эффективность системы солнечного тепло или электроснабжения.
Солнечные системы теплоснабжения
Лента статей RSS:
Поиск статей:
Солнечные системы теплоснабжения
Системы солнечного теплоснабжения (ССТ) становятся все более популярными во многих странах мира. Особенно впечатляют успехи солнечной теплоэнергетики в Европе, где ежегодный прирост оборота отрасли в течение последних десяти лет составлял 11–12%.
Общая площадь солнечных коллекторов (СК), установленных к настоящему времени в европейских странах, составляет более 11 млн м2. В последнее десятилетие наиболее быстро рынок ССТ развивался в Германии, Австрии и Греции. Удельная площадь солнечных коллекторов к 2004 году составляла в Греции 264 м2 на 1000 человек, в Австрии – 203 м2, а в среднем по странам Европейского сообщества – 26 м2 на 1000 жителей. Развитие этого сектора рынка в Европе сопровождается организацией специальных кампаний по продвижению новых технологий, а также финансовым и законодательным регулированием и поддержкой.
Резкий рост стоимости органических энергоресурсов в последнее время дал развитию солнечной теплоэнергетики дополнительный импульс. Даже те страны Европы (Италия, Испания), в которых, несмотря на большой климатический потенциал для использования солнечной энергии, эта отрасль развивалась вяло, в 2004–2005 годах приняли дополнительные программы по её использованию.
Мировой опыт применения СК показывает, что солнечные системы теплоснабжения могут быть эффективными и надежными для обеспечения горячего водоснабжения и отопления жилых и общественных зданий, подогрева воды в бассейнах и даже солнечного кондиционирования и опреснения воды.
Более подробно успехи зарубежных стран в освоении и использовании солнечной энергии описываются в специализированных изданиях, которые, к сожалению, практически недоступны широким кругам инженерной общественности.
Как же обстоят дела с созданием систем солнечного теплоснабжения в России в настоящее время? В значительной мере успехи этой отрасли в Европе объясняются мощной законодательной и финансовой поддержкой во всех странах европейского сообщества. В нашей стране как та, так и другая поддержки полностью отсутствуют, и поэтому достижения в этой области минимальны, хотя небольшое количество систем все же создано и успешно работает.
Перед тем как рассматривать конкретные схемы солнечных систем, необходимо уточнить, пригодны ли вообще климатические условия России для их создания и развития и какие комплексы наиболее перспективны в наших условиях.
Расчет основных характеристик солнечных установок.
Под солнечным теплоснабжением понимается использование солнечной энергии для обеспечения горячего водоснабжения и отопления в жилищно-коммунальной, бытовой или производственной сферах. Для определения эффективности солнечного теплоснабжения в том или ином пункте или регионе недостаточно только информации о климатических условиях. Необходимо иметь количественные данные, характеризующие эффективность применения солнечных установок (как правило, с плоскими СК).
Существующие методы расчета активных систем позволяют на основе использования климатической информации и с учетом характеристик применяемого оборудования определять их основные параметры, которыми являются:
- коэффициент замещения тепловой нагрузки объекта (доля солнечной энергии в покрытии нагрузки) f за некоторый рассматриваемый период времени (месяц, сезон, год);
- полезная теплопроизводительность установки Q за этот период;
- площадь СК в установке F.
Удобной величиной для сравнения различных вариантов использования установок является удельная теплопроизводительность q, отнесенная к 1 м2 площади СК в установке.
В работе [1] проведены расчеты по определению указанных основных характеристик в различных регионах России по 39 расчетным пунктам, относительно равномерно расположенным на территории страны.
В расчетном плане рассматривались следующие режимы работы установок:
- 1) участие в покрытии нагрузки отопления и ГВС (режим теплоснабжения);
2) участие в покрытии нагрузки только ГВС в течение всего года (режим круглогодичного горячего водоснабжения);
3) участие в покрытии нагрузки только ГВС и только в неотопительный период (режим сезонного горячего водоснабжения).
Первые два режима требуют исполнения установки по двухконтурной схеме, когда в первом коллекторном контуре теплоносителем является антифриз, а тепло к потребителю в бак-аккумулятор (БА) отводится через теплообменник. Сезонные установки могут быть и одноконтурными, заполненными водой.
Одним из параметров расчета является тепловая нагрузка. Нагрузка ГВС унифицирована СНиП и определяется в расчете на одного человека. Соответственно и расчет параметров солнечной установки ГВС удобно производить исходя из удельной нагрузки (в расчете на одного человека). При этом результаты будут универсальными, так как значения f и Q, полученные в расчете на одного человека, остаются постоянными при любом количестве людей, обеспечиваемых горячей водой, и лишь площадь коллекторов увеличивается кратно этому количеству.
Гораздо более сложным является определение отопительной нагрузки, которая, помимо климатических характеристик, зависит от объема здания, его конфигурации, термического сопротивления стен и перекрытий и других факторов. Какой-либо универсальный подход здесь невозможен, и отопительная нагрузка должна определяться для каждого конкретного объекта (или однотипных объектов).
Другую группу параметров, вводимых в расчет как исходная информация, составляют климатические данные, а именно – средние за месяц значения суммарной и рассеянной радиации на горизонтальную поверхность и среднемесячная температура воздуха. В качестве исходных данных в расчет закладываются и тепловые характеристики СК, используемых в данной установке.
Для расчета параметров установок применяется так называемый f-метод [2].
Реальным положительным эффектом от использования солнечной установки (кроме экологического) является экономия топлива. При определении таковой в результате использования солнечной установки существенно знать КПД замещаемого топливного устройства. В условиях децентрализованного теплоснабжения (мелкие котельные и индивидуальные отопительно-водогрейные котлы) этот КПД можно принимать равным 0,5. При этом в зависимости от режима использования установки и климатических условий в данном пункте удельная годовая (сезонная) экономия топлива (согласно расчетам) составляет от 0,05 до 0,2 т. у. т.
Влияние климатических условий на выбор режима работы солнечной установки
Анализ массива расчетных результатов в работе [1], полученных по всем пунктам, позволяет сделать следующие выводы по применению солнечных установок в России.
1.При использовании солнечной установки в режиме теплоснабжения, то есть при участии её в покрытии нагрузки отопления и ГВС, площадь СК должна составлять не менее 0,4 от отапливаемой площади для достижения коэффициента замещения годовой тепловой нагрузки по большинству пунктов 0,25–0,40. В этом режиме удельная среднегодовая теплопроизводительность установки невелика вследствие недоиспользования её тепловой мощности в летнее время. Поэтому применение солнечных установок в данном режиме в большинстве районов России (её европейской части, Западной и Средней Сибири) нецелесообразно. Исключение составляют районы Забайкалья (особенно южного), юга Хабаровского и Приморского краев. В этих районах в силу особенностей климата работа установки в режиме теплоснабжения может быть достаточно эффективной.
2.Использование солнечной установки в режиме круглогодичного ГВС обеспечивает высокие значения удельной теплопроизводительности, следовательно, и удельной годовой экономии топлива, так как в этом режиме тепловая мощность установки используется наиболее полно. Естественно, что более высокая годовая теплопроизводительность достигается в климатически наиболее благоприятных районах, таких как южная часть европейской территории РФ (южнее Самары), южная часть Западной и Средней Сибири, Забайкалья и Дальнего Востока. В целом использование солнечных установок в данном режиме с той или иной степенью эффективности может быть рекомендовано повсеместно южнее 60° с. ш. как в европейской, так и в азиатской части России. Рекомендуемая площадь СК составляет при этом 1,0– 1,5 м2 на одного человека.
3.Использование солнечных установок в режиме сезонного ГВС имеет существенное преимущество с точки зрения простоты схемы (используется одноконтурная схема без промежуточного теплообменника, нет необходимости в применении антифриза и т. п.), но связано со снижением удельной теплопроизводительности в сравнении с режимом круглогодичного ГВС. Это снижение, естественно, тем больше, чем короче неотопительный период, то есть время использования установки в годичном цикле. Применение солнечных установок в режиме сезонного ГВС нецелесообразно там, где неотопительный период составляет менее пяти месяцев. Рекомендуемая площадь СК в данном режиме составляет 1 м2 на одного человека.
Классификация систем солнечного теплоснабжения.
Итак, ясно, что наиболее массовыми в условиях России могут быть установки ГВС. Определяющим фактором выбора, очевидно, будут экономические показатели, которые должны опираться на предварительные тепловые расчеты системы, выполненные с учетом данных каждого конкретного объекта, его расположения, характеристик, климатического района и стоимости замещаемого энергоресурса.
Какие типы систем могут быть использованы для решения этих задач?
Традиционной схемой большинства ССТ является схема с использованием солнечных коллекторов (СК) с аккумуляцией полученной энергии в баке-накопителе.
ССТ могут быть классифицированы по различным критериям:
- а) по назначению:
- – системы горячего водоснабжения (ГВС);
– системы отопления;
– комбинированные системы;
б) по виду используемого теплоносителя:
- – жидкостные;
– воздушные;
в) по продолжительности работы:
- – круглогодичные;
– сезонные;
г) по техническому решению схемы:
- – одноконтурные;
– двухконтурные;
– многоконтурные.
Вне зависимости от варианта исполнения системы в мировой практике наиболее часто применяется градация систем по их производительности, которая определяет принципиальную схему и вариант конструктивного исполнения системы. Ориентировочные диапазоны производительности и применяемые для их реализации варианты систем приведены в таблице.
Таблица. Ориентировочные диапазоны производительности и применяемые для их реализации варианты систем
Производительность по горячей воде в день | Тип системы | Описание системы |
---|---|---|
большая многоконтурная («промышленная») |