- Расчет количества тепловой энергии на горячее водоснабжение
- Исходные данные
- Порядок расчета
- mlynok
- Библиотека статей на профессиональную тему
- Как правильно определять нагрузку на горячее водоснабжение?
- Расчет максимальной тепловой нагрузки
- ООО «Энергоэффективность и энергоаудит»
- ТЕХНИЧЕСКОЕ ЗАКЛЮЧЕНИЕ
- Расчет максимальной тепловой нагрузки
- Наименование объекта: Магазин продовольственных товаров
- Содержание:
- Расчет тепловой нагрузки • Согласование в МОЭК
- Исходные данные. Расчет максимальной тепловой нагрузки
- 1-ый этаж
- Схема расположения радиаторов отопления
- Расчет максимальной тепловой нагрузки на отопление
- Расчет панельных радиаторов
- Максимальный часовой расход на отопление
- Годовой расход за отопительный период
- Расчет тепловой нагрузки на горячее водоснабжение
- Вероятность действия санитарно-технических приборов.
- Вероятность использования санитарно-технических приборов.
- Phr h u x U/ 1000 x T = 10,2 x 4/ 1000 x 24 = 0,0017 м 3 /час
- Максимальный часовой расход воды.
- Тепловой поток.
- Техническое заключение • Расчет максимальной тепловой нагрузки
- Расчет тепловой нагрузки • Согласование в МОЭК
- Список нормативно-технической и специальной литературы
Расчет количества тепловой энергии на горячее водоснабжение
Количество тепловой энергии, потребляемой системами отопления, вентиляции и горячего водоснабжения здания, является необходимым показателем при определении тепловой эффективности зданий, проведении энергоаудита, деятельности энергосервисных организаций, сравнении фактического теплопотребления здания, измеренного теплосчетчиком, с требуемым исходя из фактических теплотехнических характеристик здания и степени автоматизации системы отопления и во многих других случаях. В этом номере редакция публикует пример расчета количества тепловой энергии на горячее водоснабжение жилого здания*.
Исходные данные
Объект (здание):
- количество этажей в здании – 16;
- количество секций в здании – 4;
- количество квартир в здании – 256.
Отопительный период:
- продолжительность отопительного периода, zht = 214 сут.;
- средняя за период температура внутреннего воздуха в здании, tint = 20 °C;
- cредняя за период температура наружного воздуха, tht = – 3,1 °C;
- расчетная температура наружного воздуха, text = – 28 °C;
- средняя за период скорость ветра, v = 3,8 м/с.
Горячее водоснабжение:
- тип системы горячего водоснабжения: с неизо-лированными стояками и с полотенцесушителями;
- наличие сетей горячего водоснабжения: при наличии сетей горячего водоснабжения после ЦТП;
- средний расход воды одним пользователем, g = 105 л/сут.;
- количество дней отключения горячего водоснабжения, m = 21 сут.
Порядок расчета
1. Средний расчетный за сутки отопительного периода объем потребления горячей воды в жилом здании Vhw определяют по формуле:
где g – средний за отопительный период расход воды одним пользователем (жителем), равный 105 л/сут. для жилых зданий с централизованным горячим водоснабжением и оборудованных устройствами стабилизации давления воды на минимальном уровне (регуляторы давления на вводе в здание, зонирование системы по высоте, установка квартирных регуляторов давления); для других потребителей – см. СНиП 2.04.01–85* «Внутренний водопровод и канализация зданий»;
mч – число пользователей (жителей), чел.
Vhw = 105 • 865 • 10 –3 = 91 м 3 /сут.
В случае проведения расчета для многоквартирного дома с учетом оснащенности квартир водосчетчиками из условия, что при квартирном учете происходит 40 %-е сокращение водопотребления, расчет потребления горячей воды будет производиться по формуле:
где Kуч – количество квартир, оснащенных водосчетчиками;
Kкв – количество квартир в заднии.
2. Среднечасовой за отопительный период расход тепловой энергии на горячее водоснабжение Qhw, кВт, определяют согласно СНиП 2.04.01–85*. Допускается определение среднечасового расхода Qhw по формуле:
(2)
где Vhw – средний расчетный за сутки отопительного периода объем потребления горячей воды в жилом здании, м 3 /сут.; определяют по формуле (1);
twc – температура холодной воды, °C, принимают twc = 5 °C;
khl – коэффициент, учитывающий потери теплоты трубопроводами систем горячего водоснабжения, принимают по табл. 1;
ρw – плотность воды, кг/л, ρw = 1 кг/л;
cw – удельная теплоемкость воды, Дж/ (кг • °C); cw = 4,2 Дж/ (кг • °C).
mlynok
Библиотека статей на профессиональную тему
Как правильно определять нагрузку на горячее водоснабжение?
На протяжении всего 2004 г. в нашу организацию поступали заявки на разработку технических предложений по котельным для теплоснабжения жилых и общественных зданий, в которых нагрузки на горячее водоснабжение сильно отличались (в меньшую сторону) от тех, которые запрашивались ранее для идентичных потребителей. Это послужило поводом для анализа методик определения нагрузок на горячее водоснабжение (ГВС), которые приведены в действующих СНиПах, и возможных ошибок, возникающих при их применении на практике.
Е.О. СИБИРКО
В настоящее время порядок определения тепловых нагрузок на ГВС регламентируется нормативным документом СНиП 2.04.01–85* «Внутренний водопровод и канализация зданий».
Методика определения расчетных расходов горячей воды (максимального секундного, максимального часового и среднего часового) и тепловых потоков (тепловой мощности) в течение часа при среднем и при максимальном водопотреблении в соответствии с разделом 3 СНиП 2.04.01–85* основывается на расчете соответствующих расходов через водоразборные приборы(или группы однотипных приборов с последующим усреднением) и определении вероятности их одновременного использования.
Все служебные таблицы с данными по различным удельным нормам расхода и т.п., приведенные в СНиПе, применяются только для расчета расхода через отдельные приборы и вероятности их действия. Они не применимы для определения расходов исходя из количества потребителей, путем умножения количества потребителей на удельный расход! Именно в этом заключается основная ошибка, допускаемая многими расчетчиками при определении тепловой нагрузки на ГВС.
Изложение методики расчета в 3мразделе СНиП 2.04.01–85* не отличается простотой. Введение многочисленных надстрочных и подстрочных латинских индексов (образованных от соответствующих терминов в английском языке) еще больше затрудняет понимание смысла расчета. Не совсем понятно, зачем это сделано в российском СНиПе, — ведь далеко не все владеют английским и с легкостью ассоциируют индекс «h» (от английского hot — горячий), индекс «c» (от английского cold — холодный) и «tot»(от английского total — итог) с соответствующими русскими понятиями.
Для иллюстрации стандартной ошибки, встречающейся в расчетах потребности тепла и топлива, приведу простой пример. Необходимо определить нагрузку ГВС для 45квартирного жилого дома при числе жителей 114 человек. Температура воды в подающем трубопроводе ГВС — 55°С, температура холодной воды в зимний период —5°С. Для наглядности предположим, что в каждой квартире установлено по две однотипных водоразборных точки (мойка на кухне и умывальник в ванной).
Вариант I расчета — неправильный(мы неоднократно сталкивались с таким способом расчета):
По таблице «Нормы расхода воды потребителями» обязательного Приложения 3 СНиП 2.04.01–85* определяем для«Жилых домов квартирного типа: с ваннами длиной от 1500 до 1700 мм, оборудованных душами» расход горячей воды на одного жителя в час наибольшего водопотребления равен qhhr, u = 10 л/ч.Далее все, казалось бы, совсем просто. Общий расход горячей воды на дом в час наибольшего водопотребления исходя из количества жителей 114 человек: 10 . 114 = 1140 л/ч.
Тогда, расход тепла в час наибольшего водопотребления будет равен:
где U — число жителей в доме; г —плотность воды, 1 кг/л; с — теплоемкость воды, 1 ккал/(кг•°С); th — температура горячей воды, 55°С; tс — температура холодной воды, 5°С.
Котельная, реально построенная на основании данного расчета, явно не справлялась с нагрузкой ГВС в моменты пиковых разборов горячей воды, о чем свидетельствуют многочисленные жалобы жителей этого дома. Где же здесь ошибка? Она заключается в том, что если внимательно прочитать раздел 3 СНиП 2.04.01–85*, то выясняется, что показатель q hhr, u, приведенный в Приложении 3, используется в методике расчета только для определения вероятности действия санитарно-технических приборов, а максимальный часовой расход горячей воды определяется совсем иначе.
Вариант расчета II — в строгом соответствии с методикой СНиПа:
1. Определяем вероятность действия прибора.
,
где qhhr,u = 10 л — согласно Приложению 3 для данного вида водопотребителей; U = 114 человек — число жителей в доме; qh0 = 0,2 л/с — в соответствии с п. 3.2 для жилых и общественных зданий, допускается принимать это значение при отсутствии технических характеристик приборов; N — число санитарно-технических приборов с горячей водой, исходя из принятых нами двух точек водоразбора в каждой квартире:
N = 45 . 2 = 90 приборов.
Таким образом, получаем:
Р = (10 x 114)/(0,2 x 90 x 3600) = 0,017.
2. Теперь определим вероятность использования санитарно-технических приборов (возможность подачи прибором нормированного часового расхода воды) в течение расчетного часа:
,
где P — вероятность действия прибора, определенная в предыдущем пункте, — P = 0,017; qh0 = 0,2 л/с — секундный расход воды, отнесенный к одному прибору (также уже использовался в предыдущем пункте); qh0,hr — часовой расход воды прибором, в соответствии с п. 3.6 при отсутствии технических характеристик конкретных приборов допускается принимать qh0,hr = 200 л/ч, тогда:
.
3. Так как Ph меньше 0,1, применяем далее табл. 2 Приложения 4, по которой определяем:
при .
4. Теперь мы можем определить максимальный часовой расход горячей воды:
.
5. И, наконец, определяем максимальную тепловую нагрузку ГВС (тепловой поток за период максимального водопотребления в течение часа максимального потребления):
,
где Qht — тепловые потери.
Учтем тепловые потери, приняв их за5% от расчетной нагрузки.
.
Мы получили результат более чем в два раза превышающий результат первого расчета! Как показывает практический опыт, этот результат намного ближе к реальным потребностям в горячей воде для 45квартирного жилого дома.
Можно привести для сравнения результат расчета по старой методике, которая приводится в большинстве справочной литературы.
Вариант III. Расчет по старой методике. Максимально часовой расход тепла на нужды горячего водоснабжения для жилых зданий, гостиниц и больниц общего типа по числу потребителей (в соответствии со СНиП IIГ.8–62) определялся следующим образом:
,
где kч — коэффициент часовой неравномерности потребления горячей воды, принимаемый, например, по табл. 1.14справочника «Наладка и эксплуатация водяных тепловых сетей» (см. табл. 1);n1 — расчетное число потребителей; б — норма расхода горячей воды на1 потребителя, принимается по соответствующим таблицам СНиПа IIГ.8–62и для жилых зданий квартирного типа, оборудованных ванными длиной от 1500до 1700 мм, составляет 110–130 л/сутки;65 — температура горячей воды, °С; tх — температура холодной воды, °С, принимаем tх = 5°С.
Таким образом, максимально часовой расход тепла на ГВС будет равен:
.
Легко заметить, что данный результат почти совпадает с результатом, полученным по действующей методике.
Применение нормы расхода горячей воды на одного жителя в час наибольшего водопотребления (например, для«Жилых домов квартирного типа с ваннами длиной от 1500 до 1700 мм» qhhr == 10 л/ч), приведенного в обязательном Приложении 3 СНиП 2.04.01–85* «Внутренний водопровод и канализация зданий», неправомерно для определения расхода тепла на нужды ГВС путем умножения его на количество жителей и разность температур (энтальпий) горячей и холодной воды. Данный вывод подтверждается как приведенным примером расчета, так и прямым указанием на это в учебной литературе. Например, в учебнике для ВУЗов «Теплоснабжение» под ред. А.А. Ионина (М.: Стройиздат, 1982)на стр. 14 читаем: «…Максимальный часовой расход воды Gч. max нельзя смешивать с приводимым в нормах расходом воды в час наибольшего водопотребления Gи.ч. Последний как некоторый предел применяется для определения вероятности действия водоразборных приборов и становится равным Gч. max только при бесконечно большом числе водоразборных приборов». Расчет по старой методике дает гораздо более точный результат при условии применения суточных норм расхода горячей воды по нижней границе диапазонов, приведенных в соответствующих таблицах старого СНиПа, чем «упрощенный» расчет, который выполняют многие расчетчики с использованием действующего СНиП.
Данные из таблицы Приложения 3СНиП 2.04.01–85* необходимо применять именно для расчета вероятности действия водоразборных приборов, как того требует методика, изложенная в разделе 3 данного СНиПа, а затем определять бhr и вычислять расход тепла на нужды ГВС. В соответствии с примечанием в пункте 3.8 СНиП 2.04.01–85*,для вспомогательных зданий промышленных предприятий значение qhr допускается определять как сумму расходов воды на пользование душем и хозяйственно-питьевые нужды, принимаемых по обязательному Приложению 3 по числу водопотребителей в наиболее многочисленной смене.
Расчет максимальной тепловой нагрузки
ООО «Энергоэффективность и энергоаудит»
ТЕХНИЧЕСКОЕ ЗАКЛЮЧЕНИЕ
Расчет максимальной тепловой нагрузки
Наименование объекта: Магазин продовольственных товаров
Содержание:
Расчет тепловой нагрузки • Согласование в МОЭК
Исходные данные. Расчет максимальной тепловой нагрузки
Настоящий расчет выполнен с целью определения фактической тепловой нагрузки на отопление и горячее водоснабжение нежилых помещений.
Заказчик | Магазин продовольственных товаров |
Адрес объекта | г. Москва |
Договор теплоснабжения | есть |
Этажность здания | 17 этажей |
Этаж, на котором расположены обследуемые помещения | 1 этаж |
Высота этажа | 3,15 м. |
Система отопления | независимая |
Тип розлива | нижний |
Температурный график | 95/70 °С |
Расчетный температурный график для этажей на которых находятся помещения | 95/70 °С |
ГВС | Централизованное |
Расчетная температура внутреннего воздуха | 18 °С |
Представленная техническая документация | 1. Копия договора теплоснабжения 2. Копия плана помещения. 3. Копия экспликации помещений. 4. Справка о численности персонала. |
№ помещения | № отопительного прибора на плане | Фото отопительного прибора | Технические характеристики отопительного прибора |
11 | 1 | PURMO Plan Ventil Compact Длина 700 мм | |
1 | 2 | PURMO Plan Ventil Compact Длина 700 мм | |
6 | 3 | PURMO Plan Ventil Compact Длина 1200 мм | |
4 | 4 | PURMO Plan Ventil Compact Длина 1300 мм | |
3 | 5 | PURMO Plan Ventil Compact Длина 1300 мм |
Схема расположения радиаторов отопления
Расчет максимальной тепловой нагрузки на отопление
Расчет панельных радиаторов
Технические характеристики панельных радиаторов PURMO Plan Ventil Compact FCV 22 | |
Температура теплоносителя, не более, град. С | 110 |
Избыточное рабочее давление, не более, МПа (г/кв. см) | 1,0 |
Высота H, мм | 300 |
Длина L, мм | 700, 1200, 1300 |
Номинальная тепловая мощность при Тгр. 75/65/20°C, Вт | 656, 1124, 1312 |
Температурный режим отопительной системы – 95/70/18.
Для определения фактической тепловой мощности системы, для каждого отопительного прибора, установленного в помещениях определённого функционального назначения учитывается поправочный коэффициент К, определяемый как:
Где: Тнапор.н – номинальный температурный напор принятый заводом изготовителем для определения теплоотдачи отопительного прибора при номинальных условиях;
Тнапор.ф – фактический температурный напор, ºС:
Где: tвх, tвых, – температура теплоносителя на входе и выходе из отопительного прибора, tвн.в – проектная температура внутреннего воздуха, ºС;
С учётом значения температуры теплоносителя на входе и выходе из отопительного прибора, рассчитывается значение температурного напора и коэффициента К:
Тепловая мощность панельного радиатора при индивидуальной температуре в системе отопления;
где: QS – номинальная тепловая мощность панельного радиатора;
Панельные радиаторы PURMO Plan Ventil Compac FCV 22:
Q = (QS · К) ·n= (656 · 1,29) ·2 = 1692,48 (Вт) · 0,863 = 1460,61 (Ккал/ч)
Q = (QS · К) ·n= (1124 · 1,29) ·1 = 1449,96 (Вт) · 0,863 = 1251,32 (Ккал/ч)
Q = (QS · К) ·n= (1312 · 1,29) ·2 = 3384,96 (Вт) · 0,863 = 2921,22 (Ккал/ч)
где: n – количество панельных радиаторов марки PURMO Plan Ventil Compact FCV 22, шт.
Суммарная тепловая нагрузка панельных радиаторов:
Qр.от.= 1460,61 + 1251,32 + 2921,22 = 5633,15 Ккал/ч
Максимальный часовой расход на отопление в трубопроводах
Кривые для определения теплопередачи 1м вертикальных гладких труб различных диаметров | ||
трубы Ду 20 | tтр. = + 82,5 о C | tв = + 18 о C |
Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.), стр. 56, рис. 12.2 |
Qпод.тр.Ду20 ´ l1 = 57,31 ´ 0,75 = 42,9825 ккал/ч (0,000043 Гкал/ч)
Qпод.тр.Ду20 = 57,31 ккал/ч – потери тепловой энергии в подающем трубопроводе на один погонный метр;
l1 = 0,75 м – длина подающего трубопровода;
Максимальный часовой расход на отопление
Qo max = Qр.от. + Qтр.= 5633,15 + 42,98 = 5676,13 ккал/ч (0,00567613 Гкал/ч).
Годовой расход за отопительный период
Qo год = Qo max´ ((ti – tm)/(ti – tо))´ 24´ Zo´ 10 -6 = 5676,13 ´ [(18 +3,1)/(18 +28)] ´ 24 ´ 214 ´ 10 -6= = 13,3722 Гкал/год, где:
tm = -3,1 °С – средняя температура наружного воздуха за расчетный период;
ti = 18 °С – расчетная температура внутреннего воздуха в помещениях;
tо = -28 °С – расчетная температура наружного воздуха;
24 час. – продолжительность работы системы отопления в сутки;
Zo = 214 сут. – продолжительность работы системы отопления за расчетный период.
Расчет тепловой нагрузки на горячее водоснабжение
Вероятность действия санитарно-технических приборов.
P = (q h hr,u x U) / (q h 0 x N x 3600) = (1,7 x 4) / (0,2 х 2 х 3600) = 0,00472,
U = 4 человека – количество персонала;
q h 0 = 0,2 л/с;
N = 2 – число санитарно-технических приборов с горячей водой.
Вероятность использования санитарно-технических приборов.
Phr = (3600 х P х q h 0) / q h 0,hr = (3600 х 0,00472x 0,2) / 200 = 0,016992,
где:q h 0,hr = 200;
Phr h u x U/ 1000 x T = 10,2 x 4/ 1000 x 24 = 0,0017 м 3 /час
где: q h u = 10,2 л/час
Максимальный часовой расход воды.
qhr = 0,005 х q h 0,hr х аhr = 0,005 х 200 х 0,207 = 0,207 м 3 /час
Тепловой поток.
а) в течении среднего часа
Q h T = 1,16 х q h T х (65 – t c ) + Q ht = 1,16 х 0,0017 х (65 – 5) + 0,017748= 0,136068 кВт x 859,8 = 116,9913 ккал /ч (0,0001169913 Гкал/ч)
б) в течении часа максимального потребления
Q h hr = 1,16 х q h hr х (65 – t c ) + Q ht = 1,16 х 0,207 х (65 – 5) + 2,16108= 16,56828 кВт x 859,8 = 14245,407 ккал /ч (0,014245407 Гкал/ч)
Qh год = gum h ´ m ´ с ´ r ´ [(65 – tс з )´ Zз]´ (1+ Kт.п) ´ 10 -6 = 10,2 ´ 4 ´ 1 ´ 1 ´ [(65 – 5) ´ 365] ´ (1+ 0,3) ´ 10 -6 = 1,16158 Гкал/год
где: gum h = 10,2 л/сутки
Техническое заключение • Расчет максимальной тепловой нагрузки
В результате выполненных расчетов тепловой нагрузки на отопление и горячее водоснабжение нежилого помещения получены такие результаты:
№ п.п. | Тепловые нагрузки, Гкал/ч | Годовое потребление, Гкал/год | ||||
Договорные | Расчетные | |||||
Средние | Макси- мальные | Дого- ворное | Расчетное | |||
1 | 2 | 3 | 4 | 5 | 6 | 7 |
1 | Отопление | 0,057 | 0,00567613 | 135,857 | 13,3722 | |
2 | ГВС | 0,0029 | 0,000117 | 0,014245 | 22,787 | 1,1616 |
3 | Вентиляция | – | – | – | – | – |
4 | Производстве- нные нужды | – | – | – | – | – |
Итого: | 0,0599 | 0,000117 | 0,01992113 | 158,644 | 14,5338 |
Расчет тепловой нагрузки • Согласование в МОЭК
Список нормативно-технической и специальной литературы
Расходы тепла подсчитаны согласно и с учетом требований следующих документов:
- Методических указаний по определению расходов топлива, электроэнергии и воды на выработку теплоты отопительными котельными коммунальных теплоэнергетических предприятий (ГУП Академия коммунального хозяйства им. К.Д. Памфилова, 2002 г.);
- СНиП 23-01-99* «Строительная климатология»;
- Расчет систем центрального отопления (Р.В. Щекин, В.А. Березовский, В.А. Потапов, 1975 г.);
- Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.);
- СП30.13330 СНиП 2.04.-85* «Внутренний водопровод и канализация зданий».
- «Технический регламент о безопасности зданий и сооружений».
- СНиП 23-02-2003 «Тепловая защита зданий»
- СНиП 23-01-99* «Строительная климатология»
- СП 23-101-2004 «Проектирование тепловой защиты зданий»
- ГОСТ Р 54853-2011. Здания и сооружения. Метод определения сопротивления теплопередаче ограждающих конструкций с помощью тепломера
- ГОСТ 26602.1-99 «Блоки оконные и дверные. Методы определения сопротивления теплопередаче»
- ГОСТ 23166-99 «Блоки оконные. Общие технические условия»
- ГОСТ 30971-2002 «Швы монтажные узлов примыканий оконных блоков к стеновым проемам. Общие технические условия»
- Федеральный закон Российской Федерации от 23 ноября 2009 г. N 261-ФЗ “Об энергосбережении и о повышении энергетической эффективности, и о внесении изменений в отдельные законодательные акты Российской Федерации”.
- Приказ Минэнерго России от 30.06.2014 N 400 “Об утверждении требований к проведению энергетического обследования и его результатам и правил направления копий энергетического паспорта, составленного по результатам обязательного энергетического обследования”.