Расчетное сопротивление системы отопления

Расчетное сопротивление системы отопления

Расчет гидравлического сопротивления в системе отопления.

Ниже будут реальные задачи.

Вы, конечно, можете воспользоваться специальными программами, для этого, но пользоваться программами весьма затруднительно, если вы не знаете основ гидравлики. Что касается некоторых программ, то в них не разжевываются формулы, по которым происходит гидравлический расчет. В некоторых программах не описываются некоторые особенности по разветвлению трубопроводов, и нахождению сопротивления в сложных схемах. И весьма затруднительно считать, это требует дополнительного образования и научно-технического подхода.

В этой статье я раскрываю для Вас абсолютный расчет (алгоритм) по нахождению гидравлического сопротивления.

Существуют местные гидравлические сопротивления, которые создают различные элементы систем, например: Шаровый кран, различные повороты, заужения или расширения, трайники и тому подобное. Казалось бы, с поворотами и сужениями понятно, а расширения в трубах тоже создают гидравлические сопротивления.

Протяженность прямой трубы тоже создает сопротивление движению. Вроде прямая труба без сужений, а все равно создает сопротивление движению. И чем длиннее труба, тем больше сопротивление в ней.

Эти сопротивления, хоть и отличаются, но для системы отопления они просто создают сопротивление движению, а вот формулы по нахождению этого сопротивления отличаются между собой.

Для системы отопления не важно, какое это сопротивление местное или по длине трубопровода. Это сопротивление одинаково действует на движение воды в трубопроводе.

Сопротивление будем измерять в метрах водяного столба. Также сопротивление можно обзывать как потеря напора в трубопроводе. Но только однозначно это сопротивление измеряется в метрах водяного столба, либо переводится в другие единицы измерения, например: Bar, атмосфера, Па (Паскаль) и тому подобное.

Что такое сопротивление в трубопроводе?

Чтобы понять это рассмотрим участок трубы.

Манометры, установленные на подающей и обратной ветке трубопроводов, показывают давление на подающей трубе и на обратной трубе. Разница между манометрами показывает перепад давления между двумя точками до насоса и после насоса.

Для примера предположим, что на подающем трубопроводе (справа) стрелка манометра указывает на 2,3 Bar, а на обратном трубопроводе (слева) стрелка манометра показывает 0,9 Bar. Это означает, что перепад давления составляет:

Величину Bar переводим в метры водяного столба, оно составляет 14 метров.

Очень важно понять, что перепад давления, напор насоса и сопротивление в трубе — это величины, которые измеряются давлением (Метрами водяного столба, Bar, Па и т.д.)

В данном случае, как указано на изображение с манометрами, разница на манометрах показывает не только перепад давления между двумя точками, но и напор насоса в данном конкретном времени, а также показывает сопротивление в трубопроводе со всеми элементами, встречающимися на пути трубопровода.

Другими словами, сопротивление системы отопления это и есть перепад давления в пути трубопровода. Насос создает этот перепад давления.

Устанавливая манометры на две разные точки, можно будет находить потери напора в разных точках трубопровода, на которые Вы установите манометры.

На стадии проектирования нет возможности создавать похожие развязки и устанавливать на них манометры, а если имеется такая возможность, то она очень затратная. Для точного расчета перепада давления манометры должны быть установлены на одинаковые трубопроводы, то есть исключить в них разность диаметров и исключить разность направление движения жидкости. Также манометры не должны быть на разных высотах от уровня горизонта.

Ученые приготовили для нас полезные формулы, которые помогают находить потери напора теоретическим способом, не прибегая к практическим проверкам.

Разберем сопротивление водяного теплого пола. Смотри изображение.

Труба металлопластиковая 16мм, внутренний диаметр 12мм.
длина трубы 40 м.
По условию обогрева, расход в контуре должен быть 1,6 л/мин
Поворотов 90 градусов соответствует: 30 шт.
Температура теплоносителя (воды): 40 градусов Цельсия.

Для решения данной задачи были использованы следующие материалы:

Первым делом находим скорость течения в трубе.

Q= 1,6 л/мин = 0,096 м 3 /ч = 0,000026666 м 3 /сек.

Читайте также:  Начисление отопления кому жаловаться

V = (4•0,000026666)/(3,14•0,012•0,012)=0,24 м/с

Находим число Рейнольдса

ν=0,65•10 -6 =0,00000065. Взято из таблицы. Для воды при температуре 40°С.

Δэ=0,01мм=0,00001м. Взято из таблицы, для металлопластиковой трубы.

Далее сверяемся по таблице, где находим формулу по нахождению коэффициента гидравлического трения.

У меня попадает на первую область при условии

4000 0,25 = 0,3164/4430 0,25 = 0,039

Далее завершаем формулой:

h=λ•(L•V 2 )/(D•2•g)= 0,039•(40•0,24•0,24)/(0,012•2•9,81)= 0,38 м.

Находим сопротивление на поворотах

h=ζ•(V 2 )/2•9,81=(0,31•0,24 2 )/( 2•9,81)= 0,00091 м.

Данное число умножаем на количество поворотов 90 градусов

В итоге полное сопротивление уложенной трубы составляет: 0,38+0,0273=0,4 м.

Теория о местном сопротивление

Хочу подметить процесс вычисления местных сопротивлений на поворотах и различных расширений и сужений в трубопроводе.

Потеря напора на местном сопротивление находится по этой формуле:

h-потеря напора здесь она измеряется в метрах.
ζ-Это коэффициент сопротивления, он будет находиться дополнительными формулами, о которых напишу ниже.
V — скорость потока жидкости. Измеряется [Метр/секунда].
g — ускорение свободного падения равен 9,81 м/с 2

В этой формуле меняется только коэффициент местного сопротивления, коэффициент местного сопротивления для каждого элемента свой.

Подробнее о нахождение коэффициента

Обычный отвод в 90 градусов.

Коэффициент местного сопротивления составляет примерно единице.

Формула для других углов:

Постепенный или плавный поворот трубы

Постепенный поворот трубы (отвод или закруглённое колено) значительно уменьшает гидравлическое сопротивление. Величина потерь существенно зависит от отношения R/d и угла α.

Коэффициент местного сопротивления для плавного поворота можно определить по экспериментальным формулам. Для поворота под углом 90° и R/d>1 он равен:

для угла поворота более 100°

Для угла поворота менее 70°

Для теплого пола, поворот трубы в 90° составляет: 0,31-0,51

где n степень сужения трубы.

ω1, ω2 — сечение внутреннего прохода трубы.

В формулу вставляется скорость течения в трубе с малым диаметром.

В формулу вставляется скорость течения в трубе с малым диаметром.

Также существуют и плавные расширения и сужения, но в них сопротивление потоку уже значительно ниже.

Внезапное расширение и сужение встречается очень часто, например, при входе в радиатор получается внезапное расширение, а при уходе жидкости из радиатора внезапное сужение. Также внезапное расширение и сужение наблюдается в гидрострелках и коллекторах.

Более детально о разветвлениях поговорим в других статьях.

Находим сопротивление для радиаторной системы отопления. Смотри изображение.

Труба металлопластиковая 16мм, внутренний диаметр 12мм.
Длина трубы 5 м.
По условию обогрева, расход в контуре радиатора должен быть 2 л/мин
Плавных поворотов 90 градусов соответствует: 2 шт.
Отводов 90 градусов: 2шт.
Внезапное расширение на входе в радиатор: 1шт.
Внезапное сужение на выходе из радиатора: 1шт.
Температура теплоносителя (воды): 60 градусов Цельсия.

Для начала посчитаем сопротивление по длине трубопровода.

Первым делом находим скорость течения в трубе.

Q= 2 л/мин = 0,096 м 3 /ч = 0,000033333 м 3 /сек.

V = (4•0,000033333)/(3,14•0,012•0,012)=0,29 м/с

Находим число Рейнольдса

ν=0,65•10 -6 =0,000000475. Взято из таблицы. Для воды при температуре 60°С.

Δэ=0,01мм=0,00001м. Взято из таблицы, для металлопластиковой трубы.

Далее сверяемся по таблице, где находим формулу по нахождению коэффициента гидравлического трения. У меня попадает на первую область при условии

4000 0,25 = 0,3164/7326 0,25 = 0,034

Далее завершаем формулой:

h=λ•(L•V 2 )/(D•2•g)= 0,034•(5•0,29•0,29)/(0,012•2•9,81)= 0,06 м.

Находим сопротивление на плавном повороте

h=ζ•(V 2 )/2•9,81=(0,31•0,292)/( 2•9,81)= 0,0013 м.

Данное число умножаем на количество поворотов 90 градусов

Находим сопротивление на коленном (прямом 90°) повороте

Там, где имеется сужение и расширение — это тоже будет являться гидравлическим сопротивлением. Я не стану считать сужение и расширение на металлопластиковых фитингах, так как далее мы все равно затронем эту тему. Потом сами посчитаете.

h=ζ•(V 2 )/2•9,81=(2•0,292)/( 2•9,81)= 0,0086 м.

Данное число умножаем на количество поворотов 90 градусов

Находим сопротивление на входе в радиатор.

Вход в радиатор — это ни что иное как расширение трубопровода, поэтому коэффициент местного сопротивления будем находить для трубы идущий на резкое расширение.

Читайте также:  Как правильно поставить радиатор отопления с кранами

Минимальный диаметр примем за 15мм, а максимальный диаметр у радиатора примем за 25мм.

Находим площадь сечения двух разных диаметров:

ω1 = π • D 2 /4 = 3.14 • 15 2 / 4 = 177 мм 2

ω2 = π • D 2 /4 = 3.14 • 25 2 / 4 = 491 мм 2

h=ζ•(V 2 )/2•9,81=(0,41•0,19 2 )/( 2•9,81)= 0,00075 м.

Находим сопротивление на выходе из радиатора.

Выход из радиатора — это ни что иное как сужение трубопровода, поэтому коэффициент местного сопротивления будем находить для трубы идущий на резкое сужение.

Площади уже известны

ω2 = π • D 2 /4 = 3.14 • 15 2 / 4 = 177 мм 2

ω1 = π • D 2 /4 = 3.14 • 25 2 / 4 = 491 мм 2

h=ζ•(V 2 )/2•9,81=(0,32•0,19 2 )/( 2•9,81)= 0,00059 м.

Далее все потери складываются, если эти потери идут последовательно друг для друга.

Чтобы в ручную не считать всю математику я приготовил специальную программу:

Гидравлический расчёт системы отопления с учетом трубопроводов.

При проведении дальнейших расчетов мы будем использовать все основные гидравлические параметры, в том числе расход теплоносителя, гидравлическое сопротивление арматуры и трубопроводов, скорость теплоносителя и т.д. Между данными параметрами есть полная взаимосвязь, на что и нужно опираться при расчетах. domisad.org

К примеру, если повысить скорость теплоносителя, одновременно будет повышаться гидравлическое сопротивление у трубопровода. Если повысить расход теплоносителя, с учетом трубопровода заданного диаметра, одновременно возрастет скорость теплоносителя, а также гидравлическое сопротивление. И чем больше будет диаметр трубопровода, тем меньше будет скорость теплоносителя и гидравлическое сопротивление. На основе анализа данных взаимосвязей, можно превратить гидравлический расчет системы отопления (программа расчета есть в сети) в анализ параметров эффективности и надежности работы всей системы, что, в свою очередь, поможет снизить расходы на использующиеся материалы.

Отопительная система включает в себя четыре базовых компонента: теплогенератор, отопительные приборы, трубопровод, запорная и регулирующая арматура. Данные элементы имеют индивидуальные параметры гидравлического сопротивления, которые нужно учесть при проведении расчета. Напомним, что гидравлические характеристики не отличаются постоянством. Ведущие производители материалов и отопительного оборудования в обязательном порядке указывают информацию по удельным потерям давления (гидравлические характеристики) на производимое оборудование или материалы.

Например, расчет для полипропиленовых трубопроводов компании FIRAT существенно облегчается за счет приведенной номограммы, в которой указываются удельные потери давления или напора в трубопроводе для 1 метра погонного трубы. Анализ номограммы позволяет четко проследить обозначенные выше взаимосвязи между отдельными характеристиками. В этом и состоит основная суть гидравлических расчетов.

Гидравлический расчет систем водяного отопления: расход теплоносителя

Думаем, вы уже провели аналогию между термином «расход теплоносителя» и термином «количество теплоносителя». Так вот, расход теплоносителя будет напрямую зависеть от того, какая тепловая нагрузка приходится на теплоноситель в процессе перемещения им тепла к отопительному прибору от теплогенератора.

Гидравлический расчет подразумевает определение уровня расхода теплоносителя, касательно заданного участка. Расчетный участок представляет собой участок со стабильным расходом теплоносителя и с постоянным диаметром.

Гидравлический расчет систем отопления: пример

Если ветка включает в себя десять киловаттных радиаторов, а расход теплоносителя рассчитывался на перенос энергии тепла на уровне 10 киловатт, то расчетный участок будет представлять собой отрезом от теплогенератора до радиатора, который в ветке является первым. Но только при условии, что данный участок характеризуется постоянным диаметром. Второй участок располагается между первым радиатором и вторым радиатором. При этом, если в первом случае высчитывался расход переноса 10-киловаттной тепловой энергии, то на втором участке расчетное количество энергии будет составлять уже 9 киловатт, с постепенным уменьшением по мере проведения расчетов. Гидравлическое сопротивление должно рассчитываться одновременно для подающего и обратного трубопровода.

Гидравлический расчет однотрубной системы отопления подразумевает вычисление расхода теплоносителя

для расчетного участка по следующей формуле:

Qуч –тепловая нагрузка расчетного участка в ваттах. К примеру, для нашего примера нагрузка тепла на первый участок будет составлять 10000 ватт или 10 киловатт.

с (удельная теплоемкость для воды) – постоянная, равная 4,2 кДж/(кг•°С)

Читайте также:  Водоснабжение мембранный или расширительный бак

tг –температура горячего теплоносителя в отопительной системе.

tо –температура холодного теплоносителя в отопительной системе.

Гидравлический расчет системы отопления: скорость потока теплоносителя

Минимальная скорость теплоносителя должна принимать пороговое значение 0,2 — 0,25 м/с. Если скорость будет меньше, из теплоносителя будет выделяться избыточный воздух. Это приведет к появлению в системе воздушных пробок, что, в свою очередь, может служить причиной частичного или полного отказа отопительной системы. Что касается верхнего порога, то скорость теплоносителя должна достигать 0,6 — 1,5 м/с. Если скорость не будет подниматься выше данного показателя, то в трубопроводе не будут образовываться гидравлические шумы. Практика показывает, что оптимальный скоростной диапазон для отопительных систем составляет 0,3 — 0,7 м/с.

Если есть необходимость рассчитать диапазон скорости теплоносителя более точно, то придется брать в расчет параметры материала трубопроводов в отопительной системе. Точнее, вам понадобится коэффициент шероховатости для внутренней трубопроводной поверхности. К примеру, если речь идет о трубопроводах из стали, то оптимальной считается скорость теплоносителя на уровне 0,25 — 0,5 м/с. Если трубопровод полимерных или медный, то скорость можно увеличить до 0,25 – 0,7 м/с. Если хотите перестраховаться, внимательно почитайте, какая скорость рекомендуется производителями оборудования для систем отопления. Более точный диапазон рекомендованной скорости теплоносителя зависит от материала трубопроводов применяемых в системе отопления а точнее от коэффициента шероховатости внутренней поверхности трубопроводов. Например для стальных трубопроводов лучше придерживаться скорости теплоносителя от 0,25 до 0,5 м/с для медных и полимерных (полипропиленовые, полиэтиленовые, металлопластиковые трубопроводы) от 0,25 до 0,7 м/с либо воспользоваться рекомендациями производителя при их наличии.

Расчет гидравлического сопротивления системы отопления: потеря давления

Потеря давления на определенном участке системы, которую также называют термином «гидравлическое сопротивление», представляет собой сумму всех потерь на гидравлическое трение и в локальных сопротивлениях. Данный показатель, измеряемый в Па, высчитывается по формуле:

ΔPуч=R* l + ( (ρ * ν2) / 2) * Σζ

где
ν — скорость используемого теплоносителя, измеряемая в м/с.

ρ — плотность теплоносителя, измеряемая в кг/м3.

R –потери давления в трубопроводе, измеряемые в Па/м.

l – расчетная длина трубопровода на участке, измеряемая в м.

Σζ — сумма коэффициентов локальных сопротивлений на участке оборудования и запорно-регулирующей арматуры.

Что касается общего гидравлического сопротивления, то оно представляет собой сумму всех гидравлических сопротивлений расчетных участков.

Гидравлический расчет двухтрубной системы отопления: выбор основной ветви системы

Если система характеризуется попутным движением теплоносителя, то для двухтрубной системы выбирается кольцо самого загруженного стояка через нижний прибор отопления. Для однотрубной системы – кольцо через самый загруженный стояк.

Если система характеризуется тупиковым движением теплоносителя, то для двухтрубной системы выбирается кольцо нижнего прибора отопления для самого загруженного из наиболее удаленных стояков. Соответственно, для однотрубной отопительной системы выбирается кольцо через наиболее загруженный из удаленных стояков.

Если речь идет о горизонтальной отопительной системе, то выбирается кольцо через наиболее загруженную ветвь, относящуюся к нижнему этажу. Говоря о загрузке, мы имеем в виду показатель «тепловая нагрузка», который был описан выше.

Датчик движения для включения света: разновидности, расположение, установка и настройка.

Правила заливки бетона — доставка, способы, уход, снятие опалубки.

Как правильно клеить обои во время ремонта, поклейка обоев своими руками.

Ремонт пластиковых окон и пвх профилей своими руками.

Какой ламинат лучше купить для пола, выбор хорошего покрытия.

Как правильно сделать капитальный ремонт в квартире самому?

Технология производства ( изготовление ) правильных пластиковых окон.

Выбираем бур для перфоратора по бетону, виды, наборы sds max и plus.

Как выбрать печь для русской бани, виды печек.

Что такое ламинат, его преимущества и недостатки, плюсы и минусы.

Не забывайте читать комментарии! Там тоже можно почерпнуть много полезной информации. А также, добавляйте свои, есть возможность прикрепить фото или картинку.

Оцените статью