Раздаточный узел отопления частного дома

Содержание
  1. Типовые схемы систем отопления и способы подключения радиаторов
  2. Разновидности разводки отопления
  3. Однотрубная схема отопительных систем
  4. Двухтрубная схема отопительных систем
  5. Двухтрубная классическая разводка
  6. Попутная схема или «петля Тихельмана»
  7. Веерная (лучевая)
  8. Разновидности подключения радиаторов
  9. Боковое подключение
  10. Диагональное подключение
  11. Нижнее подключение
  12. Коллекторная система отопления частного дома: основные узлы, монтаж, материалы
  13. Что такое коллекторная система отопления
  14. Принцип работы коллекторной системы
  15. Что входит в состав коллекторной системы
  16. Устройство подающей и обратной коллекторной гребенки
  17. Технические характеристики коллекторов, их плюсы и минусы
  18. Достоинства
  19. Недостатки
  20. Коллекторная система отопления — общие принципы проектирования схем разводки
  21. Что нужно учитывать при проектировании и монтаже
  22. Принципы составления схем разводки
  23. Коллекторы для радиаторов и теплого пола
  24. Гидрострелка и солнечный коллектор

Типовые схемы систем отопления и способы подключения радиаторов

Системами отопления являются искусственно созданные инженерные сети различных сооружений, основными функциями которых является обогрев зданий в зимнее и переходное время года, компенсация всех теплопотерь строительных конструкций, а также поддержание параметров воздуха на комфортном уровне.

Разновидности разводки отопления

В зависимости от способа подвода теплоносителя к радиаторам распространение получили следующие схемы систем обогрева зданий и сооружений:

Данные способы отопления принципиально различаются друг от друга, и каждый обладает как положительными свойствами, так и отрицательными.

Однотрубная схема отопительных систем

Однотрубная система отопления: вертикальная и горизонтальная разводка.

В однотрубной схеме систем отопления подвод горячего теплоносителя (подача) к радиатору и отвод остывшего (обратка) осуществляется по одной трубе. Все приборы относительно направления движения теплоносителя соединены между собой последовательно. Поэтому температура теплоносителя на входе в каждый последующий радиатор по стояку значительно снижается после снятия тепла с предыдущего радиатора. Соответственно теплоотдача радиаторов с удалением от первого прибора снижается.

Такие схемы используются, в основном, в старых системах центрального теплоснабжения многоэтажных зданий и в автономных системах гравитационного типа (естественная циркуляция теплоносителя) в частных жилых домах. Главным определяющим недостатком однотрубной системы является невозможность независимой регулировки теплоотдачи каждого радиатора в отдельности.

Для устранения этого недостатка возможно использование однотрубной схемы с байпасом (перемычкой между подачей и обраткой), но и в этой схеме первый радиатор будет на ветке всегда самый горячий, а последний самым холодным.

В многоэтажных домах используется вертикальная однотрубная система отопления.

В многоэтажных домах использование такой схемы позволяет экономить на длине и стоимости подводящих сетей. Как правило, отопительная система выполнена в виде вертикальных стояков, проходящих через все этажи здания. Теплоотдача радиаторов рассчитывается при проектировании системы и не может быть отрегулирована с помощью радиаторных вентилей или другой регулирующей арматуры. При современных требованиях к комфортным условиям в помещениях, эта схема подключения приборов водяного обогрева не удовлетворяет требованиям жителей квартир, находящихся на разных этажах, но присоединенных к одному стояку системы отопления. Потребители тепла вынуждены «терпеть» перегрев или недогрев температуры воздуха в переходный осенний и весенний период.

Отопление по однотрубной схеме в частном доме.

В частных домах однотрубная схема используется в гравитационных отопительных сетях, в которых циркуляция горячей воды осуществляется благодаря дифференциалу плотностей нагретого и остывшего теплоносителей. Поэтому такие системы получили название естественных. Главным плюсом этой системы является энергонезависимость. Когда, например, при отсутствии в системе циркуляционного насоса, подключаемого к сетям электроснабжения и, в случае перебоев с энергопитанием, система отопления продолжает функционировать.

Главным недостатком гравитационной однотрубной схемы подключения является неравномерное распределение температуры теплоносителя по радиаторам. Первые радиаторы на ветке будут самые горячие, а по мере удаления от источника тепла температура будет падать. Металлоемкость гравитационных систем всегда выше, чем у принудительных за счет большего диаметра трубопроводов.

Видео о устройстве однотрубной схемы отопления в многоквартирном доме:

Двухтрубная схема отопительных систем

В двухтрубных схемах подвод горячего теплоносителя к радиатору и отвод остывшего из радиатора осуществляются по двум разным трубопроводам отопительных систем.

Существует несколько вариантов двухтрубных схем: классическая или стандартная, попутная, веерная или лучевая.

Двухтрубная классическая разводка

Классическая двухтрубная схема разводки система отопления.

В классической схеме направление движения теплоносителя в подающем трубопроводе противоположно движению в обратном трубопроводе. Эта схема наиболее распространена в современных системах отопления как в многоэтажном строительстве, так и в частном индивидуальном. Двухтрубная схема позволяет равномерно распределять теплоноситель между радиаторами без потерь температуры и эффективно регулировать теплоотдачу в каждом помещении, в том числе автоматически путем использования термостатических клапанов с установленными термоголовками.

Такое устройство имеет двухтрубная система отопления в многоэтажном доме.

Попутная схема или «петля Тихельмана»

Попутная схема разводки отопления.

Попутная схема является вариацией классической схемы с тем отличием, что направление движения теплоносителя в подаче и обратке совпадает. Такая схема применяется в системах отопления с длинными и удаленными ветками. Использование попутной схемы позволяет уменьшить гидравлическое сопротивление ветки и равномерно распределить теплоноситель по всем радиаторам.

Веерная (лучевая)

Веерная или лучевая схема используется в многоэтажном строительстве для поквартирного отопления с возможностью установки на каждую квартиру прибора учета тепла (теплосчетчика) и в частном домостроении в системах с поэтажной разводкой трубопроводов. При веерной схеме в многоэтажном доме на каждом этаже устанавливается коллектор с выходами на все квартиры отдельного трубопровода и установленным теплосчетчиком. Это позволяет каждому владельцу квартиры учитывать и оплачивать только им потребленное тепло.

Веерная или лучевая система отопления.

В частном доме веерная схема используется для поэтажного распределения трубопроводов и для лучевого подключения каждого радиатора к общему коллектору, т. е. к каждому радиатору походит отдельная труба подачи и обратки от коллектора. Такой способ подключения позволяет максимально равномерно рассредоточить теплоноситель по радиаторам и уменьшить гидравлические потери всех элементов системы отопления.

Обратите внимание! При веерной разводке трубопроводов в пределах одного этажа монтаж осуществляется цельными (не имеющими разрывов и разветвлений) отрезками труб. При использовании полимерных многослойных или медных труб все трубопроводы могут быть залиты в бетонную стяжку, тем самым снижается вероятность разрыва или подтекания в местах состыковки элементов сети.

Разновидности подключения радиаторов

Основными способами подключения приборов отопительных систем является несколько типов:

  • Боковое (стандартное) подключение;
  • Диагональное подключение;
  • Нижнее (седельное) подключение.

Боковое подключение

Боковое подключение радиатора.

Подключение с торца прибора – подача и обратка находятся с одной стороны радиатора. Это наиболее распространенный и эффективный способ подключения, он позволяет снять максимальное количество тепла и использовать полностью теплоотдачу радиатора. Как правило, подача находится сверху, а обратка снизу. При использовании специальной гарнитуры возможно подключение снизу–вниз, это позволяет максимально спрятать трубопроводы, но снижает теплоотдачу радиатора на 20 – 30%.

Диагональное подключение

Диагональное подключение радиатора.

Читайте также:  Теплые полы rhe карбоновый стержневой

Подключение по диагонали радиатора – подача находится с одной стороны прибора сверху, обратка с другой стороны снизу. Такой тип подключения используется в тех случаях, когда длина секционного радиатора превышает 12 секций, а панельного 1200 мм. При установке длинных радиаторов с боковым подключением присутствует неравномерность прогрева поверхности радиатора в наиболее удаленной от трубопроводов части. Чтобы радиатор прогревался равномерно, применяют диагональное подключение.

Нижнее подключение

Нижнее подключение с торцов радиатора

Подключение с низа прибора – подача и обратка находятся внизу радиатора. Такое подключение используется для максимально скрытого монтажа трубопроводов. При монтаже секционного прибора отопления и подключения его нижним способом подающий трубопровод подходит с одной стороны радиатора, а обратный с другой стороны нижнего патрубка. Однако эффективность теплоотдачи радиаторов при такой схеме снижается на 15-20%.

Нижнее подключение радиатора.

В случае когда нижнее подключение используется для стального панельного радиатора, тогда все патрубки на радиаторе находятся в нижнем торце. Конструкция самого радиатора при этом выполнена таким образом, что подача поступает по коллектору сначала в верхнюю часть, а затем обратка собирается в нижнем коллекторе радиатора, тем самым теплоотдача радиатора не снижается.

Нижнее подключение в однотрубной схеме отопления.

Коллекторная система отопления частного дома: основные узлы, монтаж, материалы

Для отопления индивидуальных жилых домов широко применяют однотрубные и двухтрубные системы с естественной или принудительной циркуляцией теплоносителя. Каждая из них из них имеет свою область применения и определенные преимущества и недостатки — если однотрубные схемы развязки неплохо работают с радиаторными теплообменниками, то коллекторная система отопления незаменима при устройстве многоконтурных теплых полов.

Коллекторная (параллельная) развязка широко используется в схемах отопления индивидуальных домов для обогрева помещений и является наиболее дорогой, ее стоимость сопоставима с двухтрубной системой разводки. Тем не менее, без подобной схемы не может обойтись каждый дом, в котором для подачи тепла в помещения используется большое количество контуров теплообменных радиаторов и теплых полов.

Рис. 1 Коллекторная система отопления частного дома — пример монтажа

Что такое коллекторная система отопления

Коллектором в отоплении называют элемент водопроводной арматуры, предназначенный для раздачи по ветвям, сбора и смешения теплоносителя из множества параллельных теплообменных контуров.

Коллекторная схема обеспечивает одновременную подачу теплоносителя на контуры теплых полов и радиаторов отопления (их максимальное количество в одной гребенке достигает 12) с одинаковым напором и температурой, которую можно устанавливать терморегулятором. Коллекторная магистраль отличается от однотрубных и двухтрубных систем тем, что подходит к радиаторам отопления снизу.

Принцип работы коллекторной системы

Коллекторная система работает по следующему принципу: нагретый котлом теплоноситель при помощи циркуляционного электронасоса, установленного между подающей и обратной линией, поступает в коллекторную распределительную гребенку, к выходным штуцерам которой подключены контуры отопления. Общая температура теплоносителя во всех контурах устанавливается терморегулятором, размещенным на входном штуцере подающей гребенки, а каждый отвод к петле оснащен расходомером, с помощью которого вручную устанавливается объем проходящего по контуру теплоносителя.

После прохождения по контурам охлажденный теплоноситель поступает в обратную линию и проталкивается электронасосом к котлу, в котором происходит его нагрев. Циркулируя по кругу, нагретая жидкость снова возвращается в подающий коллектор, который распределяет ее по отдельным контурам отопления.

В большинстве конструкций распределительные узлы обратной линии оснащаются запорными клапанами — это позволяет устанавливать на них электрические сервоприводы для автоматической регулировки проходящего по контурам потока.

Рис. 2 Принцип устройства коллекторного отопления

Что входит в состав коллекторной системы

Коллектор является наиболее ответственным и сложным прибором отопительной системы, типовое устройство для подключения контуров теплых полов состоит из следующих основных узлов:

  • Подающая гребенка — представляет собой горизонтальную трубу с отводами для подключения контуров отопления, в зависимости от конструкции располагается выше или ниже обратного коллектора.
  • Обратная гребенка — изделие является зеркальным отображением предыдущей детали, имеет аналогичные размеры основного канала и количество входных штуцеров.
  • Расходомеры — элементы устанавливаются в отводы подающего коллектора, имеют прозрачный корпус, на стенки которого нанесены деления с цифровым обозначением. Помещенный внутри корпуса стержень с индикаторной головкой указывает на объем теплоносителя, проходящего по контуру.
  • Запорные клапаны — обычно элементы размещают в обратной гребенке и закрывают колпаками плавной регулировки.
  • Воздухоотводы — монтируют на подающей и выходной гребенках, при помощи устройств стравливают воздух из коллекторных планок в автоматическом или ручном режиме.
  • Терморегулятор — прибор с выносным датчиком, закрепленным на гибкой трубке, его размещают на входе в коллектор, где он обеспечивает возможность регулировать температуру теплоносителя, которая в контуре теплого пола не должна превышать 55 С.

Рис. 3 Коллектор — конструктивное устройство и основные узлы

  • Циркуляционный электронасос – входит в комплектацию некоторых моделей, прибор обеспечивает движение теплоносителя по трубопроводу коллекторной системы с определенным давлением. Агрегат устанавливается дополнительно с электронасосом, обеспечивающим циркуляцию по контуру отопления всего дома.
  • Температурные цифровые датчики — устанавливаются в отдельные модификации, измерительные приборы в подающей и обратной линии позволяют контролировать температуру. Это помогает оптимально настроить петлю для обеспечения наилучшей теплоотдачи и эффективности, которая наблюдается при разнице в 10 С.
  • Термодатчик — некоторые коллекторные схемы имеют в своем составе термостатический датчик, который при превышении температуры теплоносители более 55 С. размыкает цепь питания компрессионного электронасоса.
  • Байпас — иногда в коллекторную систему устанавливают перемычку, соединяющую подающую и отводную гребенки, элемент предназначен для подмешивания охлажденного теплоносителя к поступающей на вход коллектора горячей воде.

Рис. 4 Различные виды гребенок

Устройство подающей и обратной коллекторной гребенки

Гребенки является одними из основных элементов коллекторной схемы, их основная функция — распределение потока теплоносителя по контурам отопления. Элемент имеет различное конструктивное исполнение для линий подключаемых радиаторов и теплых полов, максимальное количество задействованных контуров на один коллектор не превышает 12.

По отношению к диаметрам выходных штуцеров, гребенка имеет большое сечение (1, 1 1/2 дюйма против 3/4) и подключается к магистрали посредством торцевого соединения с элементами сантехнической арматуры. Обычно трубопровод к выходным штуцерам подсоединяют с помощью компрессионных фитингов (Евроконусов) — таким методом можно подключать трубы из сшитого и термостойкого полиэтилена, металлопластика, наиболее часто используемые в коллекторных системах отопления. Гребенки выполняются из нержавеющей стали, латуни, пластика, некоторые модификации собираются из отдельных звеньев.

Технические характеристики коллекторов, их плюсы и минусы

Коллектор применяется в системах водяного радиаторного и напольного отопления, являясь распределительным узлом по различным контурам, его типовые характеристики для латуни или нержавейки имеют следующие показатели:

  • Стандартный диаметр условного прохода гребенок — 1″ или 1 1/2″ дюйма.
  • Типовой наружный размер выходных штуцеров — 3/4″ или 1/2″ дюйма.
  • Количество выходных штуцеров (подключаемых контуров) — от 3-х до 12.
  • Подключение труб при помощи компрессионного разъема Евроконус.
  • Типовое рабочее давление в системе из латуни — до 10 бар.
  • Максимальная температура рабочей среды — +120º С.
  • Максимальная длина контура — не более 90 метров (зависит от диаметра и материала изготовления труб), а их предельные отклонения по длинам не должны превышать 30%.
Читайте также:  Проект отопления для многоквартирного дома

Промышленность выпускает два вида коллекторов, имеющих значительные конструктивные отличия — для радиаторов отопления и теплых полов, в составе последних всегда присутствуют смесительный узел для подмешивания воды из обратной линии.

Рис. 5 Схема разводки радиаторных коллекторных систем отопления

Достоинства

Распределительный коллектор имеет следующие особенности при работе в тепловой системе:

  • Позволяет задействовать в отоплении большое количество независимых контуров подогреваемых полов и радиаторов (до 12), каждый из которых всегда можно отключить без остановки отопления и работы других теплообменников.
  • Обеспечивает постоянство параметров носителя во всех контурах, регулировку объема подачи (давления и температуры) в каждом из них — это повышает комфорт пользования отоплением.
  • Существенное преимущество коллекторной гребенки — возможность установки в нее электрических сервоприводов, которые перекрывают поток клапанами в зависимости от показаний подключенного к ним датчика, их можно установить в любом месте — в комнате, на радиаторе или у поверхности обогреваемого пола. Таким образом, достигается автоматическая регулировка температуры обогревающих контуров и осуществляется экономия энергоресурсов.
  • В системе используются гибкие трубы отопления малого диаметра из относительно недорогих полимерных материалов, имеющие малое сечение и скрытно проходящие под полами, подводка теплоносителя на верхние или нижние этажи происходит без стояков. Данная конструкция повышает эстетичный вид жилья, минимизирует финансовые затраты.
  • Длину коллектора довольно просто увеличить, присоединив к нему дополнительные звенья с выходными штуцерами для подключения новых контуров.
  • Надежность схемы довольно высока из-за минимального количества скрытых соединений, а при монтаже теплых полов они вообще отсутствуют — труба любой длины присоединяется к входу и выходу коллектора в точках прямой видимости и удобного доступа. То же можно сказать и о радиаторах, которые подключаются через хорошо доступные фитинги снизу недалеко от поверхности пола.
  • Высокая ремонтопригодность обеспечивается возможностью отключения любой ветки для ремонта или замены приборов без сбоя работы других контуров.

Рис. 6 Монтаж трубопроводов подачи и обратки в коллекторной системе — пример

Недостатки

К недостаткам коллекторов относят их следующие параметры:

  • Стоимость заводского коллекторного узла от проверенных производителей из коррозионно-устойчивых металлов довольно высока и может достигать 300 у.е., что является довольно существенной суммой для рядового потребителя. Расходы можно уменьшить, используя менее качественные и надежные модели из пластика, цена которых достигает 50 у.е.
  • Для эффективного отопления длину всех контуров делают по возможности минимальной, для этого используют лучевую разводку и стараются поместить коллектор как можно ближе к центру дома, чтобы добиться максимально одинаковой длины всех контуров. На практике размещение коллектора по центру дома не всегда удается реализовать по техническим причинам, к тому же такая установка портит эстетику внешнего вида помещения с установленной распределительной системой.
  • Сборка распределительной коллекторной системы частного дома своими руками неподготовленным домовладельцем довольно проблематична, проведение монтажных и настроечных работ по силам только высококвалифицированным специалистам с большим опытом работы. Оплата услуг профессионалов потребует существенных финансовых средств, что затруднительно для среднего обывателя.
  • Как отмечалось выше, трубы всех контуров проходят под полом, то есть придется делать стяжку не только в помещениях с теплыми полами, но и на всех этажах в доме для выравнивания уровня полов и сокрытия подходящих к контурам труб. Проведение данных работ также потребует значительных финансовых расходов не только на оплату труда рабочих, но и материалы (теплоизолятор, сетку, раствор для стяжки).
  • Коллекторная схема не является самотечной, то есть при отсутствии электроэнергии прекращается функционирование циркуляционного электронасоса в коллекторном узле, и движение потока теплоносителя останавливается вместе с отоплением помещений.

Рис. 7 Подключение приборов распределения потоков — примеры

Коллекторная система отопления — общие принципы проектирования схем разводки

Правильное проектирование и расчеты коллекторной системы по силам только квалифицированным специалистам, при выполнении проектных работ необходимо руководствуются следующими правилами:

  • Для определения длины контуров, параметров батарей отопления, температур теплоносителя, обязательно проведение расчета тепловых потерь в магистрали и контурах. Данная операция позволит определить оптимальные размеры тепловых приборов (количество их секций) и длин контуров теплых полов, в противном случае в комнатах будет слишком жарко или холодно при нормальном функционировании и потребуются дополнительные регулировки, снижающие КПД и производительность системы.
  • Запрещено подключение к коллекторам для теплых полов радиаторов отопления — они имеют разное гидравлическое сопротивление и температурные режимы работы (температура теплоносителя 40 — 55º С — для обогреваемых полов и 60º — 80º С — для радиаторов отопления).
  • Допустимая разница температур между линией подачи воды и обраткой — 5 — 15º С, оптимальная разница 10º С (55/45, 50/40, 45/35, 40/30 градусов).
  • Температура поверхности пола для жилых помещений и рабочих кабинетов 21 — 27º С, в жилых комнатах, коридорах, прихожих — 29 — 30º С, в ванных комнатах и бассейнах — 33º С, в домашних мастерских с активной физической деятельностью — около 17º С.
  • Расстояние между соседними витками труб в жилых комнатах частного дома лежит в диапазоне 150 — 300 мм, оно отлично для разных зон и изменяется с шагом в 50 мм:
  • Для краевых зон и около окон межтрубное расстояние равно 100 — 150 мм.
  • В центральной зоне комнат средней и большой площади стандартное межвитковое расстояние около 200 мм.
  • В санузлах, душевых и ванных комнатах используют расстояние между петлями в 150 мм.

Рис. 8 Теплопотребление коттеджа – пример расчета

  • Максимальная длина петель больших колец теплого пола диаметром 3/4 дюйма (16 мм) не должна превышать 70 — 90 метров, значение зависит от материала труб и возрастает с увеличением диаметра (для 20 мм труб допустимая длина — 120 метров.)
  • Электронасос должен иметь номинальльную мощность, рассчитанную математическим путем, ее превышение приводит к излишнему шуму, а низкая величина не обеспечивает оптимальную скорость движения теплоносителя.
  • Количество контуров, подключенных к одной гребенке, по строительным нормам не должно превышать 8, европейский стандарт допускает использование 12 ветвей.
  • В коллекторах теплых полов обязательно присутствие смесительных тройников или байпасных перемычек, обеспечивающих подмешивание остывшего теплоносителя из обратной магистрали к поступающей в гребенки горячей жидкости от котла. При отсутствии такого устройства теплый пол будет перегреваться, вызывая дискомфорт у жильцов, повышенный износ или деформацию некоторых видов трубопроводов.
Читайте также:  Встроенные конвекторы отопления керми

Рис. 9 Устройство коллекторной гребенки для радиаторов отопления и ее подключение

Что нужно учитывать при проектировании и монтаже

При проведении планирования и монтажных работ руководствуется следующими правилами:

  • При заливке стяжки под теплые полы обязательно устройство демпферных зазоров по периметру помещений — это предотвращает деформацию пола при тепловом расширении стяжки, позволяет избежать появления трещин.
  • Также стяжка должна иметь толщину, обеспечивающую ее равномерный нагрев и удержание тепла в течение определенного времени, обычно толщина слоя лежит в диапазоне 30 — 50 мм. Следует учитывать, что толстый слой будет долго нагреваться и медленно остывать, а тонкий при быстром нагреве удерживает тепло короткое время — это вызовет более частое включение и отключение оборудования, и соответственно его повышенный износ.
  • Под трубы теплых полов обязательна укладка тепловой изоляции, препятствующей уходу тепла в бетонную плиту, обычно для этих целей используют фольгированный пенофол (вспененный полиэтилен), уложенный алюминиевым слоем вверх для отражения теплового излучения.
  • Перед заливкой стяжки в трубы подают теплоноситель с удвоенным давлением, которое сбрасывают после ее застывания — таким образом, полученные в стяжке каналы не будут в дальнейшем сдавливать трубопровод при его расширении после заполнения теплоносителем.
  • Подводящие трубы не должны иметь стыковых соединений под стяжкой, участки, не относящиеся к контурам радиаторов и теплых полов, для уменьшения теплопотерь следует помещать в гофрированную изоляцию.
  • Напольное покрытие обогреваемых полов должно обладать высокой теплопроводностью, исключено применение дерева, линолеума, ковров, препятствующих теплоотдаче.

Рис. 10 Коллекторная разводка с гидрострелкой — схема

Принципы составления схем разводки

Оптимальное размещение коллекторного блока — выше уровня теплого пола, если производит обогрев двухэтажной дачи или коттеджа, его удобнее поместить на втором этаже по центру. В этом случае все контуры будут иметь приблизительно одинаковую длину в отличие от установки блока около наружных стен или в углах зданий.

Коллекторы для радиаторов и теплого пола

Отличие коллектора для полов от радиаторного состоит в конструктивном исполнении, связанным с разницей рабочих температур и более низким гидравлическим сопротивлением элементов радиаторов. Конструкция блока для подключения теплых полов намного сложнее, она включает в себя большое количество регулировочной водопроводной арматуры и циркуляционный насос для многоконтурных систем.

Стандартный коллекторный блок для бытовых радиаторов имеет простое исполнение: он состоит из подающего и обратного коллекторов большого сечения, из которых выходят штуцеры для подключения труб, идущих к радиаторам. Никаких регулировочных, настроечных вентилей и прочих сложных приборов устройство обычно не имеет, поэтому его подключение и установка не вызывает трудностей у большинства домовладельцев. Радиаторы отопления подсоединяются к блоку через трубы, проходящие в полу, и подключаются снизу в одной точке, для размещения прямого трубопровода необязательно делать стяжку, его можно уложить в штробу, вырезанную или выбитую в плите.

Типовой коллекторный блок является технически сложным элементом с большим количеством регулировок и настроек, часто в систему монтируется циркулярный электронасос. При установке блока следует различать гребенки прямой и обратной подачи, для удобства они промаркированы соответственно красной и синей красками. Также в прямой линии чаще всего размещаются регулируемые расходомеры с прозрачным колпачком и нанесенными делениями, указывающими объем проходящий через них жидкости, он отмечается внутренней индикаторной головкой красного цвета.

Обычно максимальное значение пропускаемого потока не превышает 5 кубических метров в час (соответствует делению 5 на колпаке), минимальная отметка 0,5. Если индикаторные головки находятся в верхней части, то при прохождении водного потока через подающую гребенку индикатор опускается и показывает объем проходящей жидкости. Иногда головки расположены снизу, в этом случае поток движется в обратном направлении из контура отопления в гребенку и соответственно расходомеры установлены в планку обратной подачи.

Если в коллекторный блок вмонтирован циркулярный электронасос, то его рабочее колесо направляет поток от выходной гребенки в корпус подающей — таким образом осуществляется подмешивание холодной воды из обратной линии в нагретый котлом теплоноситель для понижения его общей температуры.

В стандартном блоке предусмотрено место для расположения датчика терморегулятора, имеются выпускные клапаны для стравливания воздуха в подающей и обратной гребенке, установлены клапаны, на месте которых размещены посадочные места для сервоприводов, выполняющих автоматическое регулирование режимов работы.

Рис. 11 Коллекторная система отопления индивидуального дома, Гидрострелка — схема установки и подключения

Гидрострелка и солнечный коллектор

Гидрострелка и солнечный коллектор относятся к устройствам, выполняющим аналогичные водопроводным гребенкам функции — собирают в одном корпусе носитель из нескольких источников и распределяют его по контурам различного назначения.

Гидравлический распределитель устанавливают в тех случаях, когда для отопления используют значительные объемы теплоносителя, связанные с большим количеством контуров и площадями отапливаемых помещений. К стояковой гидрострелке подключают котел, гидроаккумулятор, коллекторы радиаторов отопления и теплых полов, бойлер, насосное оборудование с установкой циркуляционного насоса на каждое коллекторное звено.

Устройство предназначено для стабилизации давления и выравнивания температуры в подключенных контурах, обеспечивает удобство подсоединения распределительных узлов. Гидрострелка представляет собой вертикально (иногда используют горизонтальную установку) расположенную емкость (трубу большого диаметра) круглого или прямоугольного сечения с приваренными боковыми штуцерами, в верхней части которой находится клапан для развоздушивания, а снизу вмонтирован кран для слива теплоносителя.

Рис. 12 Плоский солнечный коллектор

Солнечные батареи применяют в районах с большим количеством солнечных дней в году, также для экономии энергоресурсов используют солнечные коллекторы дополнительного подогрева теплоносителя, используемого для отопления и других хозяйственных целей.

Если солнечные батареи преобразуют ультрафиолетовое излучение в электрическую энергию, то солнечные коллекторы предназначены для нагревания теплоносителя, которым является воздух или жидкость.

Наиболее простое и популярное в быту коллекторное устройство сконструировано и работает следующим образом. В металлическом корпусе под защитным стеклом размещается теплоприемник — пластина черного цвета с запрессованным змеевиком из меди или алюминия, покрытом черным абсорбентом, приемник солнечного излучения располагается на слое утеплителя. Охлажденный теплоноситель перемещается по змеевику с помощью циркуляционного насоса системы отопления и после нагревания солнечным излучением поступает в котел.

Описанная система имеет высокие тепловые потери, поэтому в более дорогих схемах используют покрытый абсорбирующим слоем трубопровод, помещенный в вакуум. Внешне устройство напоминает ряд стеклянных колб с откачанным воздухом, внутри которых размещены нагреваемые медные трубы с хладагентом, каждая труба подключена к распределительному солнечному коллектору. В подобных системах в качестве теплоносителя используется специальный хладагент, имеющий низкую температуру кипения, при нагревании он превращается в пар и передает свою энергию протекающему в теплообменном коллекторе носителю.

Оцените статью