- Выбираем регистры отопления из гладких труб
- Разновидности отопительных регистров
- Материалы для изготовления
- Конструктивное исполнение
- Технические характеристики
- Расчет регистров отопления из гладких труб
- Преимущества и недостатки
- Заключение
- Сергей Башук / Инженер теплотехник — автор сайта
- Регистр отопления гост 10704 91
- Сортамент
Выбираем регистры отопления из гладких труб
Отопление помещений для технических целей требует наличия недорогих, неприхотливых в эксплуатации отопительных приборов. Для таких помещений, как склады, мастерские, гаражи, производственные цеха, обогреватели из гладких труб просто незаменимы. Также они очень полезны в помещениях с высокими требованиями к чистоте, так как легко очищаются от пыли, всевозможных загрязнений.
Принимая решение об установке регистров отопления, необходимо внимательно изучить их технические характеристики и особенности применения. Самые простые конфигурации этих устройств можно изготовить самостоятельно, более сложные модели витиеватой формы требуют заводских условий изготовления. В любом случае для обеспечения оптимального температурного режима параметры регистра должны определяться на основе теплотехнических расчетов.
Разновидности отопительных регистров
Отопительные регистры представляют собой группу трубопроводов, расположенных параллельно друг другу и сообщающихся между собой. Они могут отличаться по материалу, по форме и конструктивному исполнению.
Материалы для изготовления
Чаще всего регистры отопления изготавливаются из гладких стальных труб по ГОСТ 3262-75 или ГОСТ 10704-91. Применение электросварных труб предпочтительнее из-за способности выдерживать более высокое давление. Тем не менее, на практике довольно распространены также водогазопроводные трубы, которые эксплуатируются не менее успешно. Такие отопительные приборы спокойно выдерживают всевозможные механические повреждения и нагрузки, а также работу с любым теплоносителем.
Существуют еще модели из нержавеющей стали. Их устанавливают в помещениях с повышенными требованиями к эстетичности и долговечности. В связи с повышенной стоимостью применение регистров из нержавеющей стали наиболее оправдано в ванных комнатах. Высокая стойкость к коррозии и разнообразие конфигураций полотенцесушителей из нержавеющей стали позволяют применять их даже в самых современных интерьерах санузлов.
Более эффективными с точки зрения теплоотдачи являются алюминиевые и биметаллические регистры. Они отличаются легкостью и эстетичностью, прекрасно работают в системах индивидуального отопления с хорошо организованной водоподготовкой. В остальных случаях низкое качество теплоносителя приводит к быстрому выходу приборов из строя.
Иногда можно встретить регистры из меди. Обычно их применяют в системах, где основная разводка медная. С ними удобно работать, они весьма симпатичны и долговечны. Кроме того, теплопроводность меди примерно в 8 раз выше, чем стали, что позволяет значительно уменьшить размер нагревательной поверхности. Общий недостаток всех приборов из цветных металлов — чувствительность к условиям эксплуатации — ограничивает сферу применения медных регистров.
Конструктивное исполнение
Наиболее характерные конструкции традиционных стальных регистров можно разделить на 2 типа:
Для первого свойственно горизонтальное расположение трубопроводов и применение вертикальных узких перемычек между ними. Второй предусматривает использование прямых и дугообразных элементов одного диаметра, которые соединяются змейкой с помощью сварки. При использовании нержавейки или цветных металлов трубы просто изгибаются для придания требуемой конфигурации.
Существует три варианта исполнения присоединительных патрубков:
Они могут располагаться как с одной стороны прибора, так и с разных. Выход теплоносителя предусматривается под подачей или по диагонали от нее. Иногда встречается нижнее подключение магистралей, но в этом случае существенно снижается теплоотдача.
В секционных регистрах выделяют 2 вида соединений в зависимости от способа расстановки перемычек:
- «Нитка»;
- «Колонка».
Регистры из гладких труб могут использоваться как регистры основной системы отопления или как отдельные обогреватели. Для автономной работы внутрь прибора устанавливается ТЭН необходимой мощности и выполняется подключение к сети. В качестве теплоносителя для переносных электрических регистров из стали часто используют антифриз или масло, т.к. оно не замерзает при хранении либо аварийном отключении электроэнергии.
При использовании отдельно от общей системы отопления обязательно дополнительное размещение расширительного бачка в верхней части прибора. Это позволяет избежать повышения давления вследствие увеличения объема при нагреве. Размер емкости подбирается, исходя из возможности вместить около 10 % общего количества жидкости в нагревателе.
Для автономного использования регистра из стальных труб к нему привариваются ножки высотой 200-250 мм. Если же прибор является частью контура отопления, его перемещение не планируется и стены достаточно крепкие, то используется стационарное крепление с помощью кронштейнов. Иногда для очень массивных регистров применяют комбинированный вариант установки, т.е. прибор ставится на стойки и дополнительно фиксируется на стене.
Технические характеристики
Технические требования к отопительным приборам, в том числе и к трубчатым радиаторам нормируются ГОСТ 31311-2005. Согласно этому стандарту для их изготовления должны применяться трубы по ГОСТ 3262, ГОСТ 8734, ГОСТ 10705, ГОСТ 10706 с толщиной стенки не меньше 1,25 мм. При этом полотенцесушители разрешается производить из углеродистой стали со стенкой не меньше 3 мм, нержавеющей стали, а также латуни (медно-цинковых сплавов) по ГОСТ 15527.
Допускается использовать и другие материалы, если отопительные приборы будут соответствовать всем положениям стандарта и иметь необходимые характеристики прочности. Конструкция приборов не нормируется и остается на усмотрение производителя при соблюдении основных требований. Это дает полную свободу для творчества и позволяет создавать уникальные дизайнерские конфигурации трубчатых радиаторов, что значительно расширяет сферу их применения.
Характеристики регистров отопления из гладких труб зависят от выбранного материала, размера и конфигурации. Они определяются по специальным формулам, таблицам или материалам производителя.
Рассмотрим основные параметры обычных стальных регистров. Для них характерно применение труб большого диаметра, преимущественно в диапазоне 32-219 мм. Они выдерживают рабочее давление до 100 Па (10 кгс/м²). Теплоносителем могут быть как разнообразные жидкости — вода, антифриз, масло — так и пар высокой температуры.
Имея подробный чертеж, регистр из гладких стальных труб может изготовить своими руками любой мастер с навыками выполнения сварочных работ. Для этого достаточно найти исходный материал, сварочный аппарат и угловую шлифмашинку. Можно также заказать регистр на заводе по индивидуальным чертежам.
Необходимо выдерживать не только длину, диаметр и количество труб, но и расстояние между ними. Слишком близкое расположение существенно снижает теплоотдачу прибора из-за взаимного влияния элементов. Если же расстояние сделать слишком большим, то высота прибора может выйти огромной и не удобной в установке и использовании. Оптимальным шагом расположения рядов отопительного регистра считается 1,5 радиуса, но не менее 50 мм.
Для получения наилучших результатов все параметры необходимо определять на основании теплотехнических расчетов, исходя из требуемой теплоотдачи и особенностей помещения. Без грамотного расчета даже хорошо сделанный регистр может не справиться с обогревом имеющейся площади.
Расчет регистров отопления из гладких труб
Расчет регистров отопления выполняется для определения количества тепла, поступающего от существующего регистра, а также для определения требуемых размеров прибора для обеспечения необходимой тепловой мощности.
Перед тем как приступать к расчету параметров регистра следует четко определиться с температурным режимом и теплопотерями помещения. Методика их расчета — это отдельная тема, но если нужно качественное отопление, то стоит разобраться в этом вопросе, чтоб потом не переделывать.
Количество тепла (Вт), поступающее от трубы определяется по формуле:
Q=K ·F · ∆t,
K — коэффициент теплопередачи, Вт/(м² ·°С), принимается в зависимости от материала трубы и параметров теплоносителя;
F — площадь поверхности трубы, м², рассчитываемая как произведение π·d·l,
где π = 3,14, а d и l — диаметр и длина трубы соответственно, м;
∆t — температурный перепад, °С, определяемый в свою очередь по формуле:.
где: t1 и t2 — температуры на входе в котел и выходе из него соответственно;
tк — температура в отапливаемой комнате.
Для одиночной стальной трубы, наполненной водой, коэффициент теплопередачи к воздуху в общем случае равен 11,3 Вт/(м² · °С). Для регистра с несколькими рядами ориентировочно принимается понижающий коэффициент 0,9 на каждую нитку.
Значения коэффициентов теплопередачи для стальных гладкотрубных регистров приведены в таблице.
Для определения размеров регистра необходимая тепловая мощность делится на теплоотдачу погонного метра трубы. Это даст примерную суммарную длину ниток. Далее с учетом габаритов помещения принимается ширина прибора и рассчитывается количество рядов.
Так как увеличение диаметров ниток и их количества снижает эффективность прибора, то теплоотдачу регистра следует увеличивать в первую очередь за счет увеличения его длины.
Для более быстрых расчетов можно воспользоваться онлайн-калькулятором, но есть большой риск получения ошибочного результата. Поэтому перед тем как пользоваться автоматическим расчетом, стоит хотя бы один выполнить вручную и сверить результаты.
Незамерзающие жидкости имеют меньшую теплоемкость и отдают меньше тепла, чем вода. Таким образом, регистры с антифризом должны иметь повышенную площадь поверхности по сравнению с работающими на воде. Для их расчета необходимо учитывать свойства самой жидкости.
Преимущества и недостатки
Регистры отопления из гладких труб имеют массу преимуществ:
- Для помещений большой площади являются одним из лучших вариантов отопительных приборов. За счет значительной протяженности они обеспечивают равномерный прогрев и создают комфортные условия. Обогрев получается не локальным, а обширным.
- Гидравлическое сопротивление очень маленькое по сравнению с чугунными или стальными радиаторами. Это позволяет заметно уменьшить потери давления в системе, а соответственно и затраты на перекачку теплоносителя. Эта же особенность дает возможность применять для больших помещений открытую систему отопления с естественной циркуляцией.
- Прямые участки труб больших диаметров менее подвержены заиливанию и зарастанию в отличие от радиаторов сложной формы. Поэтому регистры отопления практически не нуждаются в промывке.
- Простая конструкция может быть изготовлена своими руками из доступных материалов с получением существенной экономии.
- Срок службы достаточно большой, минимум 25 лет. Степень надежности зависит в основном от качества сварных швов.
- Гладкая поверхность обеспечивает удобство очистки. Эта особенность позволяет использовать регистры в помещениях с повышенными санитарными нормами.
- Удобны для сушки полотенца, белья и одежды.
К недостаткам регистров из гладких труб можно отнести:
- Малая поверхность нагрева на единицу длины, что заставляет применять приборы больших габаритов;
- Большая металлоемкость;
- Большие диаметры заставляют использовать большой объем теплоносителя, что делает систему очень инерционной и трудно регулируемой;
- Непривлекательный внешний вид бюджетных моделей и огромная цена нестандартных дизайнерских конфигураций.
Заключение
Регистры отопления из гладких труб являются долговечными «неубиваемыми» приборами с хорошими эксплуатационными характеристиками. Они имеют относительно простую конструкцию, их расчет и сборку вполне можно выполнить самостоятельно.
Особенности гладкотрубных регистров обуславливают их сферу применения. Эти отопительные приборы можно встретить в общественных зданиях, лечебных учреждениях, складах, мастерских, гаражах, оранжереях, теплицах, ангарах, промышленных цехах. Трубные радиаторы являются идеальным решением для ванных комнат, больших помещений и нестандартных архитектурных форм. В отдельных случаях может быть оправдана их установка для отопления частного дома.
Сергей Башук / Инженер теплотехник — автор сайта
Мои обязанности: проектирование наружных и внутренних санитарно-технических систем; сборка, монтаж, обслуживание тепловых машин и теплового оборудования; внедрение передовых технологических решений.
Регистр отопления гост 10704 91
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
ТРУБЫ СТАЛЬНЫЕ ЭЛЕКТРОСВАРНЫЕ ПРЯМОШОВНЫЕ
ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
ТРУБЫ СТАЛЬНЫЕ ЭЛЕКТРОСВАРНЫЕ ПРЯМОШОВНЫЕ
Сортамент
Electrically welded steel line-weld lubes. Range
Дата введения 01.01.93
1. Настоящий стандарт устанавливает сортамент стальных электросварных прямошовных труб.
2. Размеры труб должны соответствовать табл. 1 .
3. По длине трубы изготовляют: немерной длины:
при диаметре до 30 мм — не менее 2 м;
при диаметре св. 30 до 70 мм — не менее 3 м;
при диаметре св. 70 до 152 мм — не менее 4 м;
при диаметре св. 152 мм — не менее 5 м.
По требованию потребителя трубы групп А и В по ГОСТ 10705 диаметром свыше 152 мм изготовляют длиной не менее 10 м; трубы всех групп диаметром до 70 мм — длиной не менее 4 м;
при диаметре до 70 мм — от 5 до 9 м;
при диаметре св. 70 до 219 мм — от 6 до 9 м;
при диаметре св. 219 до 426 мм — от 10 до 12 м.
Трубы диаметром свыше 426 мм изготовляют только немерной длины. По согласованию изготовителя с потребителем трубы диаметром свыше 70 до 219 мм допускается изготовлять от 6 до 12 м;
кратной длины кратностью не менее 250 мм и не превышающей нижнего предела, установленного для мерных труб. Припуск для каждого реза устанавливается по 5 мм (если другой припуск не оговорен) и входит в каждую кратность.
Наружный диаметр, мм
Теоретическая масса 1 м труб, кг, при толщине стенки, мм
Продолжение табл. 1
Наружный диаметр, мм
Теоретическая масса 1 м труб, кг, при толщине стенки, мм
Продолжение табл. 1
Наружный диаметр, мм
Теоретическая масса 1 м труб, кг, при толщине стенки, мм
Продолжение табл. 1
Наружный диаметр, мм
Теоретическая масса 1 м труб, кг, при толщине стенки, мм
Продолжение табл. 1
Наружный диаметр, мм
Теоретическая масса 1 м труб, кг, при толщине стенки, мм
Продолжение табл. 1
Наружный диаметр, мм
Теоретическая масса 1 м труб, кг, при толщине стенки, мм
Продолжение табл. 1
Наружный диаметр, мм
Теоретическая масса 1 м труб, кг, при толщине стенки, мм
Продолжение табл. 1
Наружный диаметр, мм
Теоретическая масса 1 м труб, кг, при толщине стенки, мм
1. При изготовлении труб по ГОСТ 1 0706 теоретическая масса увеличивается на 1 % за счет усиления шва.
2. По согласованию изготовителя с потребителем изготовляют трубы размерами 41,5 ґ 1,5-3,0; 43 ґ 1,0; 1,53,0; 43,5 ґ 1,5-3,0; 52 ґ 2,5; 69,6 ґ 1,8; 111,8 ґ 2,3; 146,1 ґ 5,3; 6,5; 7,0; 7,7; 8,5; 9,5; 10,7; 152,4 ґ 1,9; 2,65; 168 ґ 2,65; 177,3 ґ 1,9; 198 ґ 2,8; 203 ґ 2,65; 299 ґ 4,0; 530 ґ 7,5; 720 ґ 7,5; 820 ґ 8,5; 1020 ґ 9,5; 15,5; 1220 ґ 13,5; 14,6; 15,2 мм, а также с промежуточной толщиной стенки и диаметров в пределах табл. 1.
3. Размеры труб, заключенные в скобки, при новом проектировании применять не рекомендуется.
3.1. Трубы мерной и кратной длины изготовляют двух классов точности подлине:
I — с обрезкой концов и снятием заусенцев;
II — без заторцовки и снятия заусенцев (с порезкой в линии стана).
3.2. Предельные отклонения по длине мерных труб приведены в табл. 2.
Предельные отклонения по длине мерных труб,
мм, классов
3.3. Предельные отклонения по общей длине кратных труб не должны превышать:
+ 15 мм — для труб I класса точности;
+ 100 мм — для труб II класса точности.
3.4. По требованию потребителя трубы мерной и кратной длины II класса точности должны быть с заторцованными концами с одной или двух сторон.
4. Предельные отклонения по наружному диаметру трубы приведены в табл. 3.
Наружный диаметр труб, мм
Предельные отклонения по наружному диаметру при точности изготовления
Св. 10 до 30 включ.
Примечание. Для диаметров, контролируемых измерением периметра, наибольшие и наименьшие предельные значения периметров округляются с точностью до 1 мм.
5. По требованию потребителя трубы по ГОСТ 10705 изготовляют с односторонним или смещенным допуском по наружному диаметру. Односторонний или смещенный допуск не должен превышать суммы предельных отклонений, приведенных в табл. 3.
6. Предельные отклонения по толщине стенки должны соответствовать:
± 10 % — при диаметре труб до 152 мм;
ГОСТ 19903 — при диаметре труб свыше 152 мм для максимальной ширины листа нормальной точности.
По согласованию потребителя с изготовителем допускается изготовлять трубы с односторонним допуском по толщине стенки, при этом односторонний допуск не должен превышать суммы предельных отклонений по толщине стенки.
7. Для труб диаметром свыше 76 мм допускается утолщение стенки у грата на 0,15 мм.
8. Трубы для трубопроводов диаметром 478 мм и более, изготовленные по ГОСТ 10706, поставляют с предельными отклонениями по наружному диаметру торцов, приведенными в табл. 4.
Наружный диаметр труб
Предельные отклонения по наружному диаметру торцов для точности изготовления
От 478 до 720 включ.
9. Овальность и равностепенность труб диаметром до 530 мм включительно, изготовленных по ГОСТ 10705, должны быть не более предельных отклонений соответственно по наружному диаметру и толщине стенки.
Трубы диаметром 478 мм и более, изготовленные по ГОСТ 10706, должны быть трех классов точности по овальности. Овальность концов труб не должна превышать:
1 % от наружного диаметра труб для 1-го класса точности;
1,5 % от наружного диаметра труб для 2-го класса точности;
2 % от наружного диаметра труб для 3-го класса точности.
Овальность концов труб с толщиной стенки менее 0,01 наружного диаметра устанавливается по согласованию изготовителя с потребителем.
10. Кривизна труб, изготовленных по ГОСТ 10705, не должна превышать 1,5 мм на 1 м длины. По требованию потребителя кривизна труб диаметром до 152 мм должна быть не более 1 мм на 1 м длины.
Общая кривизна труб, изготовленных по ГОСТ 10706, не должна превышать 0,2 % от длины трубы. Кривизна на 1 м длины таких труб не определяется.
11. Технические требования должны соответствовать ГОСТ 10705 и ГОСТ 10706.
Примеры условных обозначений:
Труба с наружным диаметром 76 мм, толщиной стенки 3 мм, мерной длины, II класса точности по длине, из стали марки Ст3сп, изготовленная по группе В ГОСТ 10705-80:
То же, повышенном точности по наружному диаметру, длиной, кратной 2000 мм, 1 класса точности подлине, из стали марки 20, изготовленная по группе Б ГОСТ 10705-80:
Труба с наружным диаметром 25 мм, толщиной стенки 2 мм, длиной, кратной 2000 мм, II класса точности подлине, изготовленная по группе Д ГОСТ 10705-80;
Труба с наружным диаметром 1020 мм, повышенной точности изготовления, толщиной стенки 12 мм, повышенной точности по наружному диаметру торцов, 2-го класса точности по овальности, немерной длины, из стали марки Ст3сп, изготовленная по группе В ГОСТ 10706-76
Примечание. В условных обозначениях труб, прошедших термическую обработку по всему объему, после слов «труба» добавляется буква Т; труб, прошедших локальную термообработку сварного шва, — добавляется буква Л.
1. РАЗРАБОТАН И ВНЕСЕН Министерством металлургии СССР
В. П. Сокуренко, канд. техн. наук; В. М. Ворона, канд. техн. Наук; П. Н. Ившин, канд. техн. Наук; Н. Ф. Кузенко, В. Ф. Ганзина
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Комитета стандартизации и метрологии СССР от 15.11.91 № 1743
3. ВЗАМЕН ГОСТ 10704-76
4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначение НТД, на который дана ссылка