Регулирование систем отопления виды регулирования

Регулирование системы отопления

Регулирование системы отопления подразумевает приведение процесса потребления тепловой энергии в соответствие с реальными потребностями в ней. Простой пример: чем холоднее на улице, тем интенсивнее должна работать отопительная система и, наоборот, при повышении температуры воздуха в доме выше предельного значения, температура теплоносителя в приборах отопления должна снижаться.

Самый простой способ регулирования системы отопления состоит в ручном управлении работой котла и отопительных приборов: жарко в доме, можно перекрыть вентиль подачи теплоносителя в прибор отопления, в результате чего обратная вода вернется в котел горячей, что приведет к отключению котла или к уменьшению расхода топлива.

Еще более простой способ регулирования системы отопления состоит во временном отключении котла и включении его в работу при снижении температуры в помещении. На сегодняшний день подобное «ручное управление» устарело и вести о нем речь можно только применительно к приборам отопления, не имеющим систем автоматического контроля, например, к дровяным печам или к некоторым видам дровяных котлов отопления.

Современные системы регулирования отопления решают одновременно две задачи:

позволяют создать действительно комфортные условия в доме, поддерживая в нем заданный уровень температуры

оптимизируют расход топлива, и, как следствие, снижают затраты на отопление

Регулировка системы отопления производится по одному из двух параметров

Температуре наружного воздуха

Температуре внутри помещения

Считается, что более комфортные условия в частном доме можно получить при изменении температуры теплоносителя в зависимости от условий внутри помещения. Объясняется это просто: тепловые потери не всегда линейно зависят от температуры наружного воздуха: необходимо учитывать скорость ветра и расположение строения относительно сторон света.

Для многоквартирных домов и систем центрального отопления важнее температура наружного воздуха, позволяющая получать усредненные результаты сразу для всех потребителей тепловой энергии.

Методы регулирования систем отопления

Как было сказано выше, основная задача регулирования системы отопления состоит в поддержании определенного уровня температуры в помещении. Сделать это можно несколькими способами:

Меняя скорость движения теплоносителя через прибор отопления с помощью запорной арматуры или с помощью циркуляционного насоса. При этом происходит изменение количества теплоносителя, проходящего через прибор отопления в единицу времени. Такой метод называется количественным.

Меняя температуру нагрева теплоносителя (изменяя его качество). Такой метод называется качественным.

Следует отметить, что оба метода неразрывно связаны друг с другом и в системах высокого качества используются одновременно.

Практическая реализация метода №1

Самый простой способ управления отоплением состоит в изменении режимов работы циркуляционного насоса в зависимости от температуры в помещении: холодно, насос работает с максимальной скоростью, что обеспечивает наиболее интенсивную теплоотдачу приборов отопления. Стало жарко: скорость движения теплоносителя минимальная. В ночное время или днем, когда все жильцы дома на работе или на учебе, может также использоваться режим экономии тепла, предусматривающий минимальную скорость движения воды в отопительной системе.

Недостатком управления отоплением с помощью циркуляционного насоса является общий подход ко всем помещениям в доме, независимо от реальных потребностей в тепловой энергии.

Более точное, локальное регулирование системы отопления можно получить, управляя работой отдельно взятого радиатора.

Как управлять работой радиатора отопления?

На практике менять расход теплоносителя можно с помощью автоматических головок, в конструкцию которых включается клапан и термодатчик, реагирующий на изменение температуры в помещении. Принцип действия устройства достаточно прост: полость головки заполнена жидкостью, объем которой зависит от температуры: при похолодании объем жидкости уменьшается, клапан открывается, увеличивая при этом расход теплоносителя. При повышении температуры в помещении напротив: объем жидкости увеличивается, клапан закрывается, перекрывая движение теплоносителя.

Недостатком автоматических головок является их невысокая надежность и частый выход из строя. Более совершенным и надежным является способ регулирования отопления с использованием сервопривода, приводимого в движение и перекрывающего подачу теплоносителя в радиатор также в зависимости от температуры в помещении.

И автоматическая головка, и сервопривод рассчитаны на изменение температуры теплоносителя не во всей системе отопления, а лишь в одном отдельно взятом радиаторе. Если в комнате несколько отопительных приборов, оборудовать подобными системами автоматического контроля придется каждый из них. Только в этом случае можно действительно регулировать отопление.

Все приборы отопления в доме могут быть объединены в одну систему автоматического управления отоплением.

Регулировка во время эксплуатации

Также известен и другой способ – эксплуатационное регулирование. Как следует из названия, регулирование системы отопления проводится во время ее работы. Это необходимо, чтобы производить настройку по мере необходимости. К примеру, если есть потребность увеличить количество тепла или уменьшить (в зависимости от температуры воздуха на улице и метеорологических условий). Изменение количества вырабатываемого системой тепла обеспечивается за счет регулировки температуры или же путем изменения расхода теплоносителя. Таким образом, можно условно разделить на «качественный» и «количественный» варианты осуществления контроля системы.

Качественное регулирование проводится прямо на тепловой станции. Бывает местное и групповое. Количественное имеет три подразделения: групповое, индивидуальное и местное.

Индивидуальное регулирование

Данный способ контролирования системы производится вручную при помощи клапанов и кранов, и автоматически при перемене температуры воздуха в квартире. В разветвленных системах необходимо изменить расход теплоносителя – это должно упростить задачу регулировки.

Читайте также:  Сшитый полиэтилен для теплого пола технология монтажа

Регулирование системы отопления в частных домах требует знаний об особенностях индивидуального водяного отопления. Основная задача системы заключается в обеспечении оптимального микроклимата для всей семьи. К сожалению, достаточно часто отопление выходит из-под контроля. Чаще всего, неправильная эксплуатация и несвоевременная корректировка параметров ведут к неэффективности показателей. Причинами также могут быть ошибки, допущенные при проектировании отопления, или плохое утепление.

Как показывает практика, во время проведения системы отопления люди не задаются вопросом расчетов. Специалисты, занимающиеся монтажом, предпочитают делать все оперативно, за счет чего страдает точность. Как результат, в одной комнате может быть прохладно, а в другой – чересчур жарко. Комфорта в таком случае можно не ждать.

При оценке качества работы системы и экономичности ее эксплуатации следует учитывать все параметры и особенности вашего отопления. Независимо от источника питания (электрический котел или газовый), система должна работать отлажено, поэтому правильное регулирование – залог теплого и уютного дома.

Самый простой способ отрегулировать циркуляцию воды – использовать термостат, расположенный на котле. Это своего рода рычажное устройство, которое позволит переключить теплозатраты и в таким образом произойдет снижение температуры в доме. Также при необходимости можно повысить уровень нагрева жидкости и за счет этого повысить температуру воздуха в доме.

Основы регулирования системы отопления

Данная статья открывает цикл материалов, который буден посвящен различным аспектам регулирования систем отопления — проектированию, расчетам, используемому оборудованию и сферам его применения. В этой статье остановимся на целях, общих принципах и особенностях регулирования систем водяного отопления.

Задачи регулирования в системах отопления.

Основной целью регулирования отопления является поддержание заданной температуры в помещении при изменяющихся внешних условиях. То есть, вне зависимости от уличной температуры, силы ветра, влажности и прочих условий, в нашем доме должен поддерживаться заданный тепловой комфорт.

Упрощенно, понятие процесса регулирования системы отопления можно охарактеризовать следующим образом:

Регулирование системы отопления – это комплекс мер по максимальному приближению теплоотдачи отопительных приборов к текущей потребности объекта в тепле для поддержания требуемой внутренней температуры при постоянном изменении внешних условий.

Так как в системах водяного отопления нужную нам температуру, как правило, обеспечивают приборы отопления (радиаторы, конвекторы, водяные теплые полы и т.д.), то для поддержания заданной температуры теплоотдача отопительных приборов должна иметь возможность изменяться в зависимости от изменений внешних условий. Если не рассматривать механическое ограничение теплоотдачи отопительного прибора, которое до сих пор иногда применяется в конструкции конвекторов (воздушная заслонка на конвекторе с кожухом), основными способами изменения теплоотдачи являются изменение расхода теплоносителя через прибор и/или изменение температуры теплоносителя.

Таким образом, главная цель регулирования — поддержание требуемой температуры в помещении трансформируется в две основные частные задачи:
— обеспечение расчетного расхода теплоносителя через приборы отопления;
— задание требуемой температуры теплоносителя.

Кроме того, нужно иметь в виду, что в процессе регулирования, как правило, меняются гидравлические режимы работы системы, что может приводить к нарушению стабильности работы и появлению нежелательных шумов. Поэтому в системе регулирования должны быть предусмотрены меры по предотвращению этих негативных явлений.

Суть процесса регулирования отопления.

В общих чертах, процесс регулирования заключается в том, что величина регулируемого параметра находится под постоянным контролем и сравнивается с каким-то заданным значением этого параметра или величиной другого параметра. И в зависимости от их значения подвергается регулированию. Назовем совокупность элементов и алгоритмов регулирования, участвующих в этом процессе регулировочным контуром. Стоит сразу отметить, что таких контуров в системе отопления может быть достаточно много. Примерами таких регулировочных контуров являются поддержание температуры в помещении с помощью отопительного прибора по комнатному термостату или с помощью термостатического клапана на радиаторе отопления, регулирование котловой температуры теплоносителя в зависимости от температуры наружного воздуха, поддержание заданной температуры теплоносителя в водяном теплом поле и так далее.

Замкнутый регулировочный контур

Рассмотрим простейший замкнутый регулировочный контур, состоящий из прибора отопления, комнатного термостата, выполняющего функции измерительного устройства и контроллера, а также сервопривода с термостатическим клапаном, в качестве исполнительного устройства.

Рис. Замкнутый процесс регулирования в системе отопления

В рассматриваемом контуре регулируемый параметр – температура воздуха в помещении (х), которая формируется под воздействием прибора отопления и некого возмущающего воздействия, например, открытого окна. Для примера, заданное на термостате значение температуры (w) примем равным 23°С, а значение временно сформировавшейся температуры – равным 21°С. Температура воздуха постоянно контролируется измерительным устройством, в качестве которого может служить датчик температуры, встроенный в комнатный термостат. Результат измерения передается на контроллер, который в нашем примере также встроен в термостат. Контроллер сравнивает измеренное значение (21°С) с заданным (23°С) и при наличии рассогласования, подаёт управляющий сигнал на сервопривод на открытие, либо закрытие термостатического клапана. Исполнительное устройство формирует управляющее воздействие (в нашем случае увеличение расхода теплоносителя) на радиатор отопления, вследствие чего его теплоотдача увеличивается и повышает температуру воздуха в помещении. Таким образом образовался замкнутый регулировочный контур, в котором температура в помещении является и регулируемым и контролируемым параметром, и в процессе регулирования влияет сама на себя.

Открытый регулировочный контур

Рассмотрим другой пример контура регулирования, достаточно распространенного в современных системах отопления. Это — так называемый, открытый контур.

Рис. Пример открытого регулировочного контура

Особенность открытого регулировочного контура заключается в том, что, в отличие от закрытого контура, контролируемая и регулируемая величины относятся к различным параметрам. В данном примере контролируемая величина — это температура наружного воздуха, регулируемая — температура теплоносителя, подаваемая в контур теплого пола.

Читайте также:  Тепловой узел для отопления с насосом

Принцип работы такой схемы регулирования заключается в следующем. Температура наружного воздуха (контролируемая величина) регистрируется датчиком (1), в результате чего формируется сигнал (Y), уровень которого зависит от измеренной температуры. Сигнал поступает на измерительный модуль контроллера (2) (в нашем примере контроллер встроен в котел отопления). Одновременно с помощью датчика (3) регистрируется температура теплоносителя в контуре теплого теплого пола (регулируемая величина), сигнал (х) от которого также передается в измерительное устройство. В контролерре происходит оценка того, насколько температуры (уровни сигналов) соответствуют настройкам. Обычно, соответствие контролируемой и регулируемой температур задается с помощью диаграмм. И в случае выявления несоответствия, подается управляющий сигнал (Z) на сервопривод трехходового клапана (4), в результате чего изменяются пропорции смешения горячего и остывшего теплоносителя и, таким образом, изменяется температура в контуре теплого пола.

Методы регулирования систем централизованного теплоснабжения

Количественное регулирование

Количественное регулирование характеризуется постоянной температурой подающей линии и переменным расходом теплоносителя в контуре теплого пола. Количественное регулирование теплоотдачи обычно осуществляется с помощью термостатических клапанов, клапанов с сервоприводами и ручных вентилей. При количественном регулировании в контур теплого пола подается теплоноситель с температурой подающей линии, регулируется лишь его количество.

Преимущество: Относительная простота и, как следствие, низкая стоимость.

Недостатки:

  1. Значительный перепад температур между подающей и обратной линией, неравномерность прогрева, ведущие к снижению срока эксплуатации конструкции.
  2. Сложность реализации плавного равномерного регулирования по всей поверхности пола, погодозависимого управления и обеспечения требуемого комфорта.
  3. Непропорциональность изменения температуры поверхности к изменению скорости протока.
  4. Переменный гидравлический режим работы системы.

Механизм регулирования может быть различным. В частности, регулирование может осуществляться путем полного перекрытия подачи при превышении температурного режима и возобновления протока при понижении температуры (теплоносителя или в помещении). Понятно, что в этом случае происходят резкие колебания температуры во всем контуре теплого пола.

Возможно также регулирование путем ограничения протока, например с помощью ручных вентилей. В этом случае возможен значительный перепад температуры теплоносителя вдоль контура теплого пола.

Нормативы температурного режима для помещений

В жилом доме температура в угловых комнатах не должна быть ниже 20 градусов, для внутренних помещений норматив составляет 18 градусов, для душевых — 25 градусов. При снижении температур наружного воздуха до -30 градусов норматив поднимается до 20−22 градусов соответственно.

Свои нормативы установлены для помещений, где находятся дети. Основной диапазон — от 18 до 23 градусов. Причём для помещений разного назначения показатель варьируется.

В школе температура не должна опускаться ниже 21 градуса, для спален в интернатах допускается не ниже 16 градусов, в бассейне — 30 градусов, на верандах детских садов, предназначенных для прогулок, — не ниже 12 градусов, для библиотек — 18 градусов, в культурно-массовых учреждениях температура — 16−21 градус.

При разработке нормативов для разных помещений принимается во внимание, сколько времени человек проводит в движении, поэтому для спортивных залов температура будет ниже, чем в классных комнатах.

Утверждены строительные нормы и правила РФ СНиП 41−01−2003 «Отопление, вентиляция и кондиционирование», регламентирующие температуру воздуха в зависимости от предназначения, этажности, высоты помещений. Для многоквартирного дома максимальная температура теплоносителя в батарее для однотрубной системы 105 градусов, для двухтрубной 95 градусов.

Рекомендуемый диапазон регулирования 80−90 градусов, так как при температуре 100 градусов, вода закипает.

В системе отопления частного дома

Оптимальная температура в индивидуальной системе отопления 80 градусов. Необходимо следить, чтобы уровень теплоносителя не снизился ниже 70 градусов. С газовыми котлами регулировать тепловой режим проще. Совсем по-другому работают котлы на твёрдом топливе. В этом случае вода очень легко может превратиться в пар.
Электрокотлы позволяют легко регулировать температуру в диапазоне от 30−90 градусов.

Качественное регулирование

Качественное регулирование характеризуется переменной температурой теплоносителя при постоянном массовым потоке в контуре теплого пола. Проще говоря, в контур теплого пола поступает теплоноситель заданной температуры. Регулирование водяного напольного отопление по температуре теплоносителя обычно осуществляется с помощью насосных смесительных узлов.

Преимущества:

  1. Равномерность нагрева поверхности пола.
  2. Гибкость регулирования и большие возможности автоматизации управления температурными режимами
  3. Постоянный гидравлический режим функционирования системы.

Недостатки:

  1. Повышенная стоимость оборудования.
  2. Повышенная тепловая инерционнность.

На практике, в системах напольного отопления оба способа регулирования комбинируют для достижения наибольшей эффективности. Подробнее схемы регулирования систем водяного теплого полы мы рассмотрим в следующих статьях.

Классификация теплоносителей

В зависимости от источника теплоэнергии различают централизованные и децентрализованные системы теплоснабжения. К первому типу относится производство тепла на основе комбинированного производства электроэнергии и теплоэнергии на тепловых электростанциях и отпуск тепла от районных отопительных котельных.
К децентрализованным системам теплоснабжения относятся котельные установки небольшой производительности и индивидуальные котлы.

По виду теплоносителя отопительные системы подразделяются на паровые и водяные.

Преимущества водяных теплосетей:

  • возможность транспортировки теплоносителя на большие расстояния,
  • возможность централизованного регулирования отпуска тепла в теплосети изменением гидравлического или температурного режима,
  • отсутствие потерь пара и конденсата, которые всегда бывают в паровых системах.

Управление температурой при зональной организации системы отопления: обзор решений производителей

Добрый день, уважаемые читатели. В статье, которую вы найдете ниже, я попытался сравнить решения для регуляции температуры в различных зонах системы отопления от популярных производителей. Основные отличия, преимущества, особенности и конечно цена – на все эти вопросы я постарался дать краткий и понятный ответ.

Читайте также:  Как понять квитанцию за отопление

Коротко о себе. Меня зовут Марковец Алексей. Мне 33 года, 10 из которых я занимаюсь технической стороной вопроса проектирования, монтажа и настройки системы отопления в частных и многоквартирных домах. Последние 3 года я работаю руководителем отдела клиентского сервиса в компании ХОГАРТ. В своих статьях я стараюсь делиться своим опытом и доступной мне информацией, как с профессионалами отрасли, так и с теми, для кого система отопления представляется полем для воплощения своих идей (с нашими замечательными заказчиками).

Тему сегодняшней статьи я выбрал не случайно. Вопрос зонального регулирования возникает практически на любом объекте. Как справиться с этой задачей? Я расскажу об одном из вариантов решения данного вопроса, о том, какие решения предлагают нам производители и чем эти решения друг от друга отличаются.

Сравнивать я буду оборудование двух компаний, известных на рынке отопления: Rehau и Salus.

Если о компании Rehau рассказывать практически ничего не нужно – на Российском рынке продукция этого концерна известна очень хорошо, причем с самой лучшей стороны, то про Salus пару слов сказать стоит.

Salus, а точнее «Salus Controls» является дочерней компанией Computime-Group Limited.

Это научно-исследовательская, инжиниринговая и производственная компания, разрабатывающая и предоставляющая инновационные решения в сфере автоматизации самых разных процессов. Соответственно основной упор при формировании своей линейки Salus в России, да и на всех остальных рынках делает на автоматику.

Теперь подробнее о самом оборудовании. Сегодня я хочу поговорить о системе Rehau Nea Smart и схожей по функционалу продукцией SALUS.

Сразу хочу оговориться о том, что Rehau выгодно отличается от многих поставщиков отопительного оборудования тем, что предлагает не какой-то конкретный список оборудования, а целую систему, которая должна решить ту ли иную проблему клиента. Поэтому я немного «выделю» из такого формата представления продукции то, что нас больше интересует.

Итак, основные элементы системы:

1. Температурный регулятор.

Этот элемент можно без преувеличения назвать «мозгом» системы. В нем «зашиты» основные возможности оборудования, программирование и прочее. Сравнивать я буду топовые компоненты, не забывая при этом упоминать и о более простых по функционалу, а значит и более доступных узлах.

Справедливости ради отмечу, что оба производителя предлагают пользователям в том числе и простые модели (с ручной регулировкой температуры, без функций программирования и т.д)

Из приятных мелочей – Salus разрешает своим клиентам подключать к температурному регулятору сервоприводы без использовании клеммной колодки + своим клиентам Salus предлагает модели терморегуляторов предназначенные для встраивания в стену.

2. Клеммная колодка

Этот элемент по сути своей является передаточным звеном между «мозгом» в виде терморегулятора и исполнительными элементами в виде сервоприводов. Оба производителя предлагают варианты, которые интегрируются в проводные и беспроводные системы управления. Поговорим о «стандартном» исполнении этих элементов.

Что касается стандартного (проводного) исполнения – небольшое преимущество здесь есть на стороне Salus – сама по себе колодка дешевле + есть модель для подключения 8 терморегуляторов. Однако ситуация меняется при переходе к беспроводному варианту – здесь коллеги из Rehau предлагают более широкий набор опций как по организации системы так и по расширению ее функционала.

3. Сервоприводы

В цепочке элементов управления системой сервоприводу отводится роль исполнительного элемента. Терморегулятор измеряет параметры помещения, сравнивает их с заложенными и дальше выдает сигнал на клеммную колодку, которая транслирует его на сервоприводы.

Сам по себе этот элемент достаточно прост.

В этом разделе ценовой перевес на стороне Salus. Rehau отвечает системным подходом. Ведь для своих систем немецкий концерн предлагает не только сервоприводы, но и коллекторы с насосными группами. Причем вся эта продукция идеально стыкуется. Может ли Salus предложить что-то в ответ? Об этом далее.

4. Распределительные коллекторы для систем отопления

В этом разделе репутационный перевес однозначно на стороне REHAU. Продукция немецкого концерна давно и хорошо зарекомендовала себя и точно не нуждается в дополнительной рекламе.

Что сможет противопоставить своим именитым коллегам Salus.

Ответом на подобный запрос рынка стала совместное использование Salus с оборудованием других (надежных) отопительных брендов. На сегодняшний день успешно проверена кооперация автоматики и приводов Salus с гидравлическими аксессуарами от компании Elsen. Сочетание недорогой автоматики и качественной гидравлики сулит этому тандему хорошие перспективы.

Пусть эти изображения не вводят вас в заблуждение. Отсечные краны для обоих типов коллекторов нужно докупать отдельно.

5. Насосно-смесительный узел

Данный тип оборудования не имеет прямого отношения к сравниваемым системам, но практически всегда является их неотъемлемым спутником. Поэтому мы будем не столько сравнивать, сколько показывать варианты. Вернемся к обзору Rehau и кооперации Elsen + Salus.

Комментировать данное сравнение трудно, так как в обоих узлах установлены насосы Wilo Yonos PARA + обе группы схожи по своим рабочим характеристикам.

Подведем итоги. Если провести простое суммирование по перечисленным пунктам, то у нас получится следующий результат:

REHAU: 1332.64 евро

SALUS(+ ELSEN): 1003,50 евро

Подобное «суммирование» конечно некорректно, потому как не учитывает количества тех же сервоприводов и тип выбираемого коллектора, но для понимания ситуации вполне достаточно. Выводы каждый будет делать сам, но от себя я замечу что оба сравниваемых продукта достойны друг друга. С одной стороны системный подход немецких инженеров, которые предложат широкий выбор своей номенклатуры для решения ваших проблем, с другой стороны тандем из двух молодых брендов, которые могут помочь вам сэкономить, не потеряв в качестве.

С наилучшими пожеланиями, руководитель отдела клиентского сервиса ХОГАРТ,

Оцените статью