Щит управления теплым полом

Управление водяным теплым полом: блок управления, автоматика

Структура водяного пола

Типовую систему пола с водяным обогревом можно условно разделить на две части, одну из которых составит непосредственно отопительный блок, а вторую – контрольно-управляющая инфраструктура. Рабочая часть с теплоносителем содержит следующие элементы:

  • Подложка на черновой поверхности, которая образует конструкционную основу для укладки контуров распределения тепла.
  • Гидроизоляция с демпферной лентой.
  • Теплоизоляция, которая препятствует уходу тепла в тыл.
  • Теплопроводящие трубы.
  • Финишный слой конструкционного покрытия.

Регуляция работы теплопроводящих контуров обеспечивается посредством узла управления водяным теплым полом, который также состоит из нескольких функциональных частей, заслуживающих отдельного внимания.

Устройство управляющего узла

В комплектации теплового пола с водяным трубопроводом поставляется смесительно-нагревательный узел, который в зависимости от конструкции может подключаться к одному или нескольким отопительным контурам. Его основу формирует нагревательный элемент мощностью от 1000 до 1500 Вт, коллекторная группа и циркуляционный насос. В дополнение к этому узлу можно подключать интеллектуальную систему управления водяным теплым полом.

Совет от специалистов: систему регуляции следует делать как можно более сегментированной с точки зрения уровней подключения запорной арматуры. Это значит, что управление должно обеспечиваться и механическими элементами контроля, и термостатом в комбинированном варианте. Причем запорно-пусковую арматуру желательно размещать по всем контурам в отдельном порядке, что сделает систему более громоздкой, но зато повысит надежность управления в аварийных режимах.

Автоматизация

Общие принципы

Автоматическая регулировка расхода теплоносителя с контролем температуры может быть:

  • Групповой. Автоматика выполняет согласование температуры теплоносителя на выходе котла или в системе ЦО с температурой подачи низкотемпературного отопления. Ей предстоит превратить 70-90 градусов в 35-45 и поддерживать это значение при непрерывном изменении теплоотдачи в контурах (оно неизбежно при изменениях погоды на улице).
  • Индивидуальной. Расход теплоносителя через отдельный контур меняется таким образом, чтобы его обратка или воздух в комнате постоянно были прогреты до заданного нами значения.

Любопытно: если при радиаторном отоплении комфортное значение температуры воздуха лежит в диапазоне +22 – 24 градуса, то при использовании систем теплого пола оно снижается до +20. Этим, среди прочего, обусловлена экономичность низкотемпературного отопления: снижение средней температуры в помещении всего на 2С обеспечивает экономию тепла до 20%.

Как правило, автоматическое управление низкотемпературным отоплением включает устройства из обеих категорий. Таким образом, обеспечивается и максимальная экономия тепловой энергии, и максимальный комфорт, и возможность гибкой настройки температурных зон.

Оборудование

Теперь настала очередь типов оборудования, которые используются для автоматизации управления. Разумеется, перечислить все возможные модификации устройств в небольшой статье невозможно; мы отберем лишь несколько представителей из разных классов устройств.

Групповой контроллер отопления

Как следует из названия, это устройство позволяет регулировать температуру воды, подающуюся к коллектору.

Рассмотрим возможности типичного представителя – контроллера Valtec K-100.

На фото – контроллер для систем теплого пола ValtecK-100 в базовой комплектации.

  • Устройство работает от напряжения в 24 вольта и может вполне безопасно использоваться в банях и саунах. Впрочем, защиты от повышенной влажности производитель не обещает. Адаптер для подключения к обычной сети (220 вольт переменного тока) прилагается.
  • Регулировка обеспечивается подачей управляющего сигнала с напряжением до 10 вольт на сервопривод, приводящий в движение клапан регулировки проходимости. Сам клапан в комплект не входит. Подразумевается, что он будет смонтирован перед перемычкой на подающем трубопроводе и будет управлять поступлением горячей воды во вторичный контур, включающий коллекторы.
  • Устройство комплектуется погружным датчиком для контроля температуры теплоносителя и выносным датчиком, измеряющим температуру воздуха. Максимальное количество подключаемых к прибору датчиков – 10.
  • Прибор – программируемый и может подключаться к компьютеру через интерфейс RS-485. Этот же интерфейс предусматривает обмен данных с другими устройствами – разумеется, при наличии у них соответствующего разъема.
  • Режим управления может быть не только автоматическим: благодаря возможности программирования его можно задать вручную. В частности, блок управления теплым полом способен отслеживать изменения температуры на уличном датчике и превентивно поднимать или опускать температуру теплоносителя.

Термостат

Выносное устройство способно измерять температуру в комнате и транслировать результат измерений блоку управления. Им же может осуществляется дистанционное управление заданной температурой (разумеется, при наличии управляемых клапанов с сервоприводами).

Термостаты могут быть проводными или соединяться с прочими устройствами по радиоканалу. Приборы монтируются с соблюдением уже упомянутых условий – вдали от сквозняков и прямых солнечных лучей.

Радиотермостат с возможностью программирования позволяет автоматически регулировать температуру контура теплого пола.

Клапан

Этот класс устройств предназначен уже для непосредственного управления потоком теплоносителя: клапан устанавливается в разрыв трубопровода или вместо тройника на перемычке. Он управляется сервоприводом, который приводит в движение шток. Как правило, эти устройства изготавливаются из латуни и рассчитаны на рабочее давление до 16 атмосфер.

Полезно: в зависимости от исходного состояния клапаны подразделяются на нормально открытые и нормально закрытые. В зависимости от количества каналов для подключения – на трехпроходные и двухпроходные.

Трехпроходной нормально закрытый клапан.

Сервопривод

Чтобы клапан открылся или закрылся, нужно нажать на его шток. Эта функция возлагается на сервопривод – несложный и довольно медлительный механизм, обеспечивающий, впрочем, довольно значительное для его размеров усилие в сотни ньютонов (10 и более кгс).

Внешний вид сервопривода производственникам, возможно, напомнит пульт, которым комплектуются электротельферы и другие ГПМ управляемые с пола – небольшая коробочка с длинным проводом.

Этот сервопривод развивает усилие в 110Н (11 кгс).

Читайте также:  Трубы для наружного водоснабжения 110

Термоголовка

Термостатическая головка по сравнению с перечисленными выше приборами для автоматизации отопления обеспечивает минимум возможностей: она не программируется и не управляется дистанционно. Однако устройство привлекает свой дешевизной и полной энергонезависимостью.

Как работает термоголовка? Она использует свойство жидкостей и газов расширяться при нагреве.

При увеличении температуры внутри корпуса рабочее тело увеличивается в объеме и при посредничестве клапана перекрывает поток теплоносителя; при уменьшении температуры процесс инвертируется. Устройство может использовать выносной термодатчик, соединяющийся с корпусом тонкой трубкой.

Несложный винтовой механизм позволяет регулировать заданную степень нагрева корпуса или термодатчика. В большинстве случаев термостатические головки можно видеть в качестве дросселирующей арматуры на коллекторе обратки: с их помощью задается оптимальная температура теплоносителя на выходе контура.

Понятно, что их функциональность проигрывает комплекту из термостата, клапан и сервопривода; зато прибор куда дешевле и проще в монтаже.

Здесь термоголовка с выносным датчиком использована в узле смешения.

Функция циркуляционного насоса

Рабочий процесс водяного пола начинается с доставки воды из центрального водопровода и повышения ее температуры в нагревателе. Далее уже готовый теплоноситель необходимо распределить по проложенным контурам. Эту задачу и выполняет циркуляционный насос. В системе управления водяным теплым полом у данного оборудования есть свои вспомогательные задачи, выходящие за рамки регуляции скорости распределения потоков. К примеру, насос может обеспечиваться датчиками расхода воды, фиксировать критические показатели давления и в некоторых конфигурациях выполнять задачи запорной арматуры. Этот набор функций зависит от устройства насоса и способа его размещения. К слову, комплексные системы, в которых один узел управления охватывает несколько отопительных систем (бойлеры, радиаторы, ГВС), имеют в составе несколько циркуляционных насосов для обеспечения достаточной мощности распределения в нескольких зонах доставки теплоносителя.

Управление с сервоприводом

Механическая контрольно-управляющая инфраструктура сегодня реализуется на базе сервопривода, позволяющего регулировать потоки теплоносителя путем закрытия и открытия коллекторных вентилей. Существует два типа данных регуляторов – с нормально закрытым и нормально открытым клапаном. Разница между ними заключается в принципе взаимодействия устройства с электрическим напряжением. В системе закрытого типа клапан открывается только при подаче напряжения, а нормально открытый механизм контроля закрывается, когда подается аналогичный электрический сигнал.

Наибольшее распространение получили системы управления водяным теплым полом сервоприводом с датчиком температуры, которые позволяют в одном механическом узле отслеживать и показатели нагрева. Однако дополнение опцией термометра носит скорее косметический характер, так как в автоматических термостатах такие же датчики реализуются с более широким функционалом. Сама по себе концепция механического регулятора с интегрированными приборами измерения устарела.

Но так ли хорош принцип управления водяным теплым полом с сервоприводом без датчика температуры? Несмотря на отсутствие функции температурного индикатора, приводной механизм вполне может выполнять основную задачу, принимая сигналы о температурных показаниях от термостата. Главное, что должен выполнять сервопривод – это точная механическая регуляция состояния клапанов.

Блок управления для водяного пола

Базовый электронный компонент управления, обеспечивающий эргономичное взаимодействие пользователя с функционалом водяного пола. В основу данного блока заложен принцип регуляции температуры воды, который реализуется за счет нагревательного элемента. В отзывах об управлении водяным теплым полом через температурные регуляторы многие подчеркивают удобство работы с моделями, обеспеченными ЖК-дисплеем и сенсорными кнопками. Обычно электронные термостаты критикуют за низкую точность регуляции даже по сравнению с механическими аналогами, однако современные модификации блока управления позволяют осуществлять настройку вплоть до 1 градуса.

Оптимальное место для установки

Терморегулятор размещается на стене. Выбирать необходимо место со свободным доступом, чтобы при настройке и установке температуры не было сложностей.

Ряд правил, которые надо придерживаться при определении места для термостата тёплого пола:

  1. Нельзя размещать его на сквозняке и напротив окна, на него не должен попадать прямой солнечный свет. Особенно это важно, при наличии встроенного терморегулятора.
  2. Не устанавливать на наружной стене, которая контактирует с улицей.
  3. Расстояние от поверхности до прибора не меньше 40 см. Верхний уровень не ограничен, но устанавливать выше роста человека нет смысла.
  4. При обустройстве тёплого пола в помещениях с повышенным уровнем влажности (ванна, баня), регуляторы лучше монтировать в соседней комнате, так как они надлежаще не защищены от влаги.
  5. Располагать вблизи электрической сети.
  6. На расположение регулятора также влияет размер провода от датчика. Его следует размещать на расстоянии не менее 50 см от стены.

Если терморегулятор встроенного типа, то в стене для него надо проделать углубление, где будет размещаться вся электрика. От гнезда к полу проделать штробы для проводов.

Глубина штроб должна равняться двум диаметрам гофро труб — 10 мм. В одной трубе будет силовой кабель, а во второй — от термодатчика.

Реализация автоматики

Системы автоматического управления являются своего рода надстройкой на электронных термостатах, расширяющей их базовые возможности. Ключевое отличие автоматической регуляции заключается в возможности автономной эксплуатации системы. В частности, современные регуляторы работают по принципу пропорционально-интегрального управления, что означает независимый учет и принятие решений об установке температурного режима на основе текущих исходных данных по температуре и давлению. Вместе с этим сохраняется и полный инструментарий контролирующих функций со стороны пользователя. Наряду с прямой механической или электронной регуляцией владелец может использовать средства дистанционного управления водяным теплым полом с телефона по каналу Wi-Fi или по сотовой связи. Сам же автоматический термостат может вести статистику показателей по сезонам, делая прогнозы о возможных будущих изменениях в настройках по заданным алгоритмам.

Схема подключения теплого пола к терморегулятору

Практически у всех регуляторов одинаковая схема подключения. В комплект магазинных приборов входит инструкция.

Терморегулятор представляет собой квадратную коробку с распиновкой выводов. На задней стенке есть схема — как подключить провода. Даже любитель может разобраться в инструкции, так как все клеммы пронумерованы:

  • № 1 — 2 — для питающего кабеля;
  • 3 — 4 — для нагревательных элементов;
  • 6 — 7 — для термодатчика тёплого пола.

Есть маркировка из букв:

  • L — фаза, для белого, чёрного, коричневого проводника;
  • N — ноль, для синего кабеля.
Читайте также:  Пжд для отопления гаража

Бывают модели, где для подключения заземления и экранированной оплётки есть отдельная клемма (земля — жёлто-зелёный провод). Современные приборы, имеющие дистанционное управление обладают дополнительной клеммой, чтобы подключать данные каналы.


Схема подключения терморегулятора

Управление в системе Fibaro

Компания Fibaro предлагает специализированное решение для управления функциями водяного пола в виде комплекта Z-Wave. Система включает в себя контрольную панель, термостатический блок и программный ПИД-регулятор, в котором можно настраивать график работы напольного обогревателя по дням и неделям в определенных режимах. Разумеется, никуда не девалась и функция интеллектуального контроля температурного режима, которая выполняется на основе информации комплектного датчика на проводе. К рабочим особенностям системы управления водяным теплым полом от Fibaro можно отнести расширенные возможности охлаждения и опцию «Антифриз», которая активизирует нагрев автоматически, даже если он был выключен принудительно. Эта возможность реализована из соображений безопасности, так как при определенных (крайне низких) температурах возможна заморозка контуров с теплоносителем.

Преимущества системы управления климатом с ПЛК

  • Не нужно управлять каждым устройством по отдельности: задаём желаемую температуру, а система её поддерживает, согласовывая работу всех систем
  • Управление всеми системами обогрева/охлаждения с одного пульта — смартфона или планшета
  • Работа климата по сценариям и по расписанию, возможность перевести весь дом или этаж в экономичный режим или в ночной режим
  • Удалённое управление и контроль температуры через интернет,
  • Управление климатом раздельно по каждой зоне. Например, в одной комнате любят, чтобы пол был потеплее, а воздух попрохладнее, а во второй — чтобы и пол и воздух были тёплыми.

Теперь о том, как это делается.

В каждой зоне (замкнутом помещении) ставятся датчики температуры воздуха и пола. Для работы в составе системы управления климатом с ПЛК используются датчики температуры воздуха (опционально ещё и влажности) с выносным сенсором температуры пола с выходным сигналом 0-10 вольт постоянного тока. Такой сигнал заходит на аналоговых вход контроллера. Если датчик работает с температурным диапазоном от 0 до +50 градусов, то выход 0 вольт соответствует 0 градусов, а 10 вольт соответствует +50 градусам, характеристика линейна. Есть датчики с диапазоном -50..+50 градусов для улицы или 0..+125 для сауны.

Подготовка для установки датчика воздуха с выносным сенсором пола выглядит так:

В одной рамке с выключателями (то есть, на высоте 900-1200мм) делается дополнительный подрозетник. В подрозетник из щита автоматики ведётся кабель FTP 5 категории (экранированная витая пара). По кабелю будет передано питание 12-24 вольта от блока питания на датчик (2 жилы) и сигнал от 0 до 10 вольт от датчика на контроллер на аналоговый вход. Поскольку ток потребления датчика очень мал, длина кабеля может составлять несколько сотен метров. Аналоговый сигнал может быть искажён наводками, поэтому кабель датчика, как и любой слаботочный кабель, следует монтировать на удалении от силовых трасс.

Выносной сенсор температуры пола подключается к плате датчика температуры воздуха и питается от неё. Сенсор пола опускается в пол в медной трубке или гладкой ПНД трубе диаметром 10-12мм. Гладкие внутренние стенки нужны для того, чтобы в случае необходимости датчик можно было заменить. На плате датчика температуры воздуха может быть также и сенсор влажности воздуха.

Датчики в своих проектах я использую эти. Компактные, устанавливаются в подрозетник с заглушкой, питание 12 вольт, на выходе от 0 до 10 вольт. Есть исполнения для улицы (-50..+50 градусов) и для сауны (0..+125 градусов), есть исполнения с датчиком освещённости или влажности воздуха.

Управление в системе Danfoss

Производитель отопительного оборудования и комплектующих Danfoss также предлагает специальные комплекты для управления напольным обогревом. В данном семействе особенно удачно реализуются механическая инфраструктура организации водяного отопления с узлом смешения и коллекторной группой. Это решение подойдет для домов, где планируется организовывать комплексный обогрев вместе с радиаторами. Техническую основу для управление водяным теплым полом Danfoss представляет распределительная гребенка, к которой подключается узел смешения. Такая конфигурация выгодна тем, что в процессе эксплуатации пола оптимальная температура работы теплоносителя составляет 35-40 ˚С. В процессе смешивания горячей воды от котла и отработанных охлажденных потоков от радиаторного блока достигается оптимальный режим нагрева, не требующий корректировки. Конкретные параметры пользователь также устанавливает с помощью электронного термостата, в том числе идущего в комплекте с водяным полом.

Управление через контроллер Arduino

Использование контроллеров себя оправдывает в домах, где предусматривается многофункциональное управление целыми группами отопительных систем. Программатор микроконтроллера Arduino является наиболее приемлемым для использования с бытовыми устройствами напольного обогрева. Посредством специальных настроек пользователь составляет алгоритм управления с учетом перечня входных показателей. В современных системах такого типа широко используются и возможности регуляции в удаленном режиме. Так, управление водяным теплым полом Arduino можно организовать через тот же смартфон, скачав соответствующее приложение для Android с графическим интерфейсом. В числе основных задач, которые можно решить посредством такого инструментария, следующие:

  • Установка температуры и ее регуляция.
  • Мониторинг данных, которые исходят от температурных датчиков.
  • Информирование о техническом состоянии системы.
  • Включение аварийных режимов с сигнализацией при обнаружении признаков утечки или нехарактерного изменения основных рабочих показателей.

Управление кондиционером

Есть два варианта управления кондиционерами: попроще и посложнее. Попроще — это управление инфракрасными командами через ИК-передатчик, работающий через RS-485. Например, много модели выпускают Icpdas и Wirenboard. Передатчик кладётся на внутренний блок кондиционера (его не видно), команды от него отражаются от стены и попадают на приёмник кондиционера.

После обучения необходимые команды передатчик отправляет на кондиционер. Плюс этого решения — невысокая стоимость и универсальность, подойдёт для любого кондиционера с инфракрасным приёмником. Минус решения — отсутствие обратной связи, то есть, если кондиционер выключен (на него не подаётся питание) или находится в состоянии аварии, то ПЛК не будет знать его состояние, не сможет знать установку температуры кондиционера. Таким образом управлять можно не только кондиционером, но и аудио-видео техникой, имеющей ИК-пульты.

Читайте также:  Чугунные радиаторы отопления какие лучше выбрать

От передатчика в щит тянем кабель FTP, по которому передаётся питание передатчика (обычно 12 или 24 вольта) и две жилы на RS485. Либо звездой (от щита на каждый блок отдельный кабель), либо шлейфом (от щита последовательно обходим все блоки кабелем). Я обычно предпочитаю звездой, так надёжнее. И удобнее вести кабель вместе с кабелями питания блоков от щита.

Более дорогое и качественное решение вопроса — использовать шлюз внутренней шины кондиционера на протокол RS485 ModBus. От каждого внутреннего блока кондиционера тянем управляющий кабель FTP для RS485. Но в этом случае обычно нужны ещё блоки-переходники с кондиционера на шину. Например, для кондиционеров Mitsubishi используется блок Intesis Box ME-AC-MBS-1, нужен для каждого внутреннего блока, стоит от 400 долларов. Есть аналогичные блоки на Daikin и другие кондиционеры. Иногда (обычно при использовании промышленных кондиционеров), можно поставить один модуль ModBus на все кондиционеры, например, есть блок на 48 блоков Mitsubishi Heavy, стоит от 4 тысяч долларов.

При связи контроллера с программным обеспечением EasyHome с кондиционером система кондиционирования включается в алгоритм терморегулирования, то есть, в зависимости заданной пользователем температуры и текущей температуры в помещении контроллер сам определяет режим работы кондиционера (обогрев или охлаждение), управляет мощностью. При полном управлении по ModBus будет также работать считывание ошибок кондиционеров.

На оба варианта управления кабель монтируется одинаково: витая пара до каждого внутреннего блока, ведь в обоих случаях управление по RS-485 либо кондиционерами, либо ИК-передатчиками.

Для систем Умного Дома, которые не поддерживают работу с ModBus, возможен только вариант управления через ИК-передатчики. Например, все беспроводные системы (включая Z-Wave, Fibaro).

40, всего, сегодня

Я занимаюсь проектированием инженерных систем для квартир и загородных домов: электрика, слаботочные системы, Умный Дом. Вопросы и задачи высылайте, пожалуйста, на почту
Нашли ошибку в тексте?
Выделите текст с ошибкой и нажмите Ctrl+Enter, она будет исправлена автором.

Похожие посты:

  1. Монтаж кабеля для Умного Дома Как я уже писал, самым неразумным способом экономии в строительстве…
  2. Умный Дом на ПЛК: управление освещением Что даёт управление освещением с ПЛК? Рассмотрим классическое управление светом…
  3. Управление климатом в доме на Z-Wave: подбор оборудования Рассмотрим конкретную задачу и её решение на оборудовании Z-Wave. Задача…
  4. Z-Wave контроллер RaZberry и управление светом и климатом Мне в руки попал ещё один контроллер Z-Wave, который я…
  5. Управление светом и климатом в Larnitech Написал ещё два обзора по системе Larnitech, по свету и…
  6. Умный Дом на центральном контроллере (ПЛК) Небольшой ликбез про построение системы Умный Дом на центральном контроллере…
  7. Умный Дом для однокомнатной квартиры на ОВЕН ПЛК Ошибается тот, кто считает, что Умный Дом ставится исключительно в…

Монтаж управляющего узла

Устройства регуляции желательно размещать как можно ближе к месту эксплуатации обогревательного трубопровода. Крепежные операции с помощью комплектного набора фиксаторов и монтажных панелей несложно выполнить без помощи специалистов, своими руками. Управление водяным теплым полом может осуществляться и от монтажного шкафа, и дистанционно. Поэтому важно заранее продумать наиболее удобные места установки с точки зрения доступа. При этом не рекомендуется монтировать узел с коллекторной группой прямо к несущим конструкциям, так как работа теплого пола способствует распространению вибраций и шума. Желательно крепить систему шурупами к установочной панели через демпферную прокладку, которая будет гасить колебания и звуковые эффекты.

Как расположить терморегулятор

В каком именно месте будет расположен терморегулятор, выбирает только хозяин помещения. Но при этом следует знать как правильно устанавливать систему.

  • Место, где устанавливается контролер, стоит выбрать самостоятельно. Потому, что высота расположения устройства абсолютно не влияет на работу датчиков. В большинстве случаев терморегулятор устанавливают недалеко от выключателя, или же на небольшом расстоянии от пола.
  • Ни в коем случае нельзя устанавливать терморегуляторы в тех помещениях, воздух которых имеет повышенную влажность. Таким помещением является ванная комната. В этом случае регулятор устанавливают в коридоре. Но при этом необходимо кабели, которые подключены к теплому полу, вывести через стену и подсоединить к терморегулятору.
  • Ко всем терморегуляторам прилагается инструкция, но, тем не менее, много чего в подключении является общим. А именно, у всех моделей есть специальные клеммы, с помощью которых они подсоединяются к нагревательным элементам, датчикам и источникам питания. Кроме этого, существуют модели, у которых кабели питания подсоединены и с легкостью подключаются к распределителю.


Правильное расположение

Но не смотря на схожесть установки системы, необходимо изучить все правила, указанные в инструкции и строго следовать им.

Проверка системы на герметичность

Перед первым пуском напольного обогревателя в работу следует испытать его на герметичность, то есть наличие возможных протечек. Для этого необходимо порядка 5-10 мин удерживать систему под давлением, в 1,5 раза превышающим нормальные рабочие показатели. При этом максимальное значение не должно превышать 3 бара. Если за этот промежуток времени давление не превысит 0,2 бар, это значит, что в соединениях нет течи. В зависимости от опционала конкретной системы управления водяным теплым полом, о критических перепадах давления может сообщать и автоматика через специальные индикаторы. Причем функции оповещения допускают и возможность включения в общие сигнализационные комплексы дома.

Какой терморегулятор выбрать

Механический аппарат подойдёт для небольших обогреваемых площадей, например ванная комната. Потребление электричества, для обогрева такого помещения, не значительное, при этом пол будет прогреваться быстро. Осуществлять программирование режимов нагрева в такой комнате не имеет смысла.

Если помещение просторное, то для его обогрева потребуется большой объём ресурса, важна возможность регулировки нагрева. То есть, чтобы тёплый пол грел тогда, когда в комнате находятся люди. В данном случае, рекомендованы цифровые или программированные модели, их высокая цена компенсируется сокращением затрат на электричество при эксплуатации.

Важно учитывать мощность прибора. Если есть вероятность превышения показателя максимальной мощности термостата, то следует брать программированный.

Оцените статью