Схема обвязки теплообменника для отопления

Схема обвязки теплообменника для отопления

Мы постарались представить в этом разделе общую информацию, предназначенную преимущественно для проектировщиков. О том какие бывают схемы подключения теплообменников ГВС, их преимущества и недостатки, как совместить две ступени в моноблок, расположение патрубков, и некоторые другие вопросы освещены в этом разделе. Свои пожелания и предложения по улучшению статьи направляйте This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Итак, рассмотрим основные схемы подключения теплообменников ГВС к тепловым сетям. Также некоторую информацию Вы можете почерпнуть из статьи, расположенной в разделе Скачать.

Существуют 3 основные схемы присоединения:

Рассмотрим каждую схему по отдельности:

1. Параллельная. Обязательна установка регулятора температуры.

Подключение теплообменника ГВС по параллельной схеме (с циркуляцией)


+ самая простая и наиболее дешевая схема;

+ занимает мало места;

— не экономичная схема (нет подогрева холодной воды);

Расположение патрубков на теплообменнике см. раздел Схемы сборки

1 – пластинчатый теплообменник;

2 – регулятор температуры прямого действия:

2.2 – термостатический элемент;

3 – циркуляционный насос ГВС;

4 – счетчик горячей воды;

5 – электро-контактный манометр (защита от «сухого хода»)

2. Двухступенчатая смешаная. Обязательна установка регулятора температуры.

Подключение теплообменника ГВС по двухступенчатой смешаной схеме

+ экономичная схема, т.к. используется тепло обратной воды после системы отопления в теплообменнике 1 ступени;

— почти в 2 раза дороже параллельной;

— специфика при подборе теплообменников;

Расположение патрубков на теплообменнике см. раздел Схемы сборки

1 – пластинчатый теплообменник;

2 – регулятор температуры прямого действия:

2.2 – термостатический элемент;

3 – циркуляционный насос ГВС;

4 – счетчик горячей воды;

5 – электро-контактный манометр (защита от «сухого хода»)

С целью удешевления этой схемы возможно применение теплообменника — моноблока, который объединяет в себе 1 и 2 ступени:

Подключение теплообменника ГВС по двухступенчатой смешаной схеме (моноблок)


+ экономичная схема, т.к. используется тепло обратной воды после системы отопления в теплообменнике 1 ступени;

+ занимает мало места;

— Несколько дороже параллельной, но существенно дешевле (1ст + 2ст);

— специфика при подборе теплообменников;

Расположение патрубков на теплообменнике см. раздел Схемы сборки

1 – пластинчатый теплообменник;

2 – регулятор температуры прямого действия:

2.2 – термостатический элемент;

3 – циркуляционный насос ГВС;

4 – счетчик горячей воды;

5 – электро-контактный манометр (защита от «сухого хода»)

3. Двухступенчатая последовательная. Обязательна установка регулятора температуры.

Подключение теплообменника ГВС по двухступенчатой последовательной схеме

+ экономичная схема, т.к. используется тепло обратной воды после системы отопления в теплообменнике 1 ступени;

— почти в 2 раза дороже параллельной;

Читайте также:  Автоматизированные системы теплоснабжения отопления

— специфика при подборе теплообменников;

Расположение патрубков на теплообменнике см. раздел Схемы сборки

1 – пластинчатый теплообменник;

2 – регулятор температуры прямого действия:

2.2 – термостатический элемент;

3 – циркуляционный насос ГВС;

4 – счетчик горячей воды;

5 – электро-контактный манометр (защита от «сухого хода»)

С целью удешевления этой схемы также возможно применение теплообменника — моноблока:

Подключение теплообменника ГВС по двухступенчатой последовательной схеме (моноблок)


+ экономичная схема, т.к. используется тепло обратной воды после системы отопления в теплообменнике 1 ступени;

+ занимает мало места;

— несколько дороже параллельной, но существенно дешевле (1ст + 2ст);

— специфика при подборе теплообменников;

Расположение патрубков на теплообменнике см. раздел Схемы сборки

1 – пластинчатый теплообменник;

2 – регулятор температуры прямого действия:

2.2 – термостатический элемент;

3 – циркуляционный насос ГВС;

4 – счетчик горячей воды;

5 – электро-контактный манометр (защита от «сухого хода»)

Пластинчатый теплообменник: схема и принцип работы

Эффективный и экономичный нагрев или охлаждение рабочей среды в современной промышленности, жилищно-коммунальной сфере пищевой и химической отраслях осуществляется с помощью теплообменников (ТО). Существует несколько типов теплообменных агрегатов, однако наибольшее распространение получили пластинчатые теплообменники.

В статье будут подробно рассмотрены конструкция, область применения и принцип работы пластинчатого теплообменника. Особое внимание будет уделено конструктивным особенностям различных моделей, правилам эксплуатации и особенностям технического обслуживания. Кроме того, будет представлен перечень ведущих отечественных и зарубежных производителей пластинчатых ТО, продукция которых пользуется повышенным спросом у российских потребителей.

Устройство и принцип работы

Конструкция разборного пластинчатого теплообменника включает в себя:

  • стационарную переднюю плиту на которой монтируются входные и выходные патрубки;
  • неподвижную прижимную плиту;
  • подвижную прижимную плиту;
  • пакет теплообменных пластин;
  • уплотнения из термостойкого и устойчивого к воздействию агрессивных сред материала;
  • верхнюю несущую базу;
  • нижнюю направляющую базу;
  • станину;
  • комплект стяжных болтов;
  • Набор опорных лап.

Такая компоновка агрегата обеспечивает максимальную интенсивность теплообмена между рабочими средами и компактные габариты устройства.

Конструкция разборного пластинчатого теплообменника

Чаще всего, теплообменные пластины изготавливаются методом холодной штамповки из нержавеющей стали толщиной от 0,5 до 1 мм, однако, при использовании в качестве рабочей среды химически активных соединений, могут использоваться титановые или никелевые пластины.

Все пластины, входящие в состав рабочего комплекта, имеют одинаковую форму и устанавливаются последовательно, в зеркальном отражении. Такая методика установки теплообменных пластин обеспечивает не только формирование щелевых каналов, но и чередование первичного и вторичного контуров.

Каждая пластина имеет 4 отверстия, два из которых обеспечивают циркуляцию первичной рабочей среды, а два других изолируются дополнительными контурными прокладками, исключающими возможность смешивания рабочих сред. Герметичность соединения пластин обеспечивается специальными контурными уплотнительными прокладками, изготовленными из термостойкого и устойчивого к воздействию активных химических соединений материала. Устанавливаются прокладки в профильные канавки и фиксируются с помощью клипсового замка.

Читайте также:  Грязевой фильтр для системы отопления вертикальный

Принцип работы пластинчатого теплообменника

Оценка эффективности любого пластинчатого ТО осуществляется по следующим критериям:

  • мощности;
  • максимальной температуре рабочей среды;
  • пропускной способности;
  • гидравлическому сопротивлению.

Исходя из этих параметров подбирается необходимая модель теплообменника. В разборных пластинчатых теплообменниках регулировать пропускную способность и гидравлическое сопротивление можно, изменяя количество и тип пластинчатых элементов.

Интенсивность теплообмена обусловлена режимом течения рабочей среды:

  • при ламинарном течении теплоносителя интенсивность теплообмена минимальна;
  • для переходного режима характерно увеличение интенсивности теплообмена за счет появления завихрений в рабочей среде;
  • максимальная интенсивность теплообмена достигается при турбулентном движении теплоносителя.

Рабочие характеристики пластинчатого ТО рассчитываются для турбулентного течения рабочей среды.

В зависимости от расположения канавок, различают три типа теплообменных пластин:

  1. с «мягкими» каналами (канавки расположены под углом 60 0 ). Для таких пластин характерна незначительная турбулентность и небольшая интенсивность теплообмена, однако «мягкие» пластины обладают минимальным гидравлическим сопротивлением;
  2. со «средними» каналами (угол рифления от 60 до 30 0 ). Пластины являются переходным вариантом и отличаются средними показателями турбулентности и интенсивности теплопередачи;
  3. с «жесткими» каналами (угол рифления 30 0 ). Для таких пластин характерна максимальная турбулентность, интенсивный теплообмен и значительное увеличение гидравлического сопротивления.

Для увеличения эффективности теплообмена движение первичной и вторичной рабочей среды осуществляется в противоположном направлении. Процесс теплообмена между первичной и вторичной рабочими средами происходит следующим образом:

  1. Теплоноситель подается на входные патрубки теплообменника;
  2. При перемещении рабочих сред по соответствующим контурам, сформированным из теплообменных пластинчатых элементов, происходит интенсивная теплопередача от нагретой среды нагреваемой;
  3. Через выходные патрубки теплообменника нагретый теплоноситель направляется по назначению (в отопительные, вентиляционные, водопроводные системы), а остывший теплоноситель снова попадает в рабочую зону теплогенератора.

Принцип работы пластинчатого теплообменного аппарата

Для обеспечения эффективной работы системы необходима полная герметичность теплообменных каналов, которая обеспечивается уплотнительными прокладками.

Требования к прокладкам

Для обеспечения полной герметичности профильных каналов и предотвращения утечки рабочих сред, уплотнительные прокладки должны обладать необходимой термостойкостью и достаточной устойчивостью к воздействиям агрессивной рабочей среды.

В современных пластинчатых теплообменниках применяются следующие виды прокладок:

  • этиленпропиленовые (EPDM). Применяются при работе с горячей водой и паром в температурном диапазоне от -35 до +160 0 С, непригодны для жирных и масляных сред;
  • NITRIL прокладки (NBR) используются для работы с маслянистыми рабочими средами, температура которых не превышает 135 0 С;
  • VITOR прокладки рассчитаны на работу с агрессивными рабочими средами при температуре не более 180 0 С.

На графиках представлена зависимость срока службы уплотнений от условий эксплуатации:

Что касается крепления уплотнительных прокладок, существует два способа:

Первый способ из-за трудоемкости и длительности укладки применяется редко, кроме того, при использовании клея значительно усложняется техническое обслуживание агрегата и замена уплотнений.

Читайте также:  Как лучше монтаж теплого пола с плиткой

Клипсовый замок обеспечивает быстрый монтаж пластин и простоту замены вышедших из строя уплотнений.

Виды пластинчатых теплообменных аппаратов и их применение

По способу соединения теплообменных пластин теплообменник может быть:

Конструкция и принцип работы разборных пластинчатых ТО были описаны выше. Рассмотрим более подробно особенности конструкции и область применения паяных, полусварных и сварных теплообменников.

Паяный пластинчатый теплообменник

Агрегат широко используется для:

  • нагрева и охлаждения рабочих сред;
  • испарения;
  • конденсации;
  • утилизации и рекуперации тепловой энергии.

Теплообменные пластины ППТО изготавливаются из нержавеющей стали. Сборка пакета осуществляется аналогично с разборными теплообменниками, после чего производится пайка медным или никелевым припоем, в зависимости от агрессивности рабочей среды: для более агрессивных сред используется никель.

К наиболее существенным преимуществам паяных ПТО можно отнести:

  • высокую надежность;
  • возможность работы в широком температурном диапазоне;
  • легкость и небольшие габариты;
  • надежность конструкции;
  • простоту монтажа и технического обслуживания;
  • доступную стоимость.

Особенно хорошо паяные ПТО зарекомендовали себя в холодильных и замкнутых отопительных системах.

Полусварные пластинчатые теплообменники

Главной конструктивной особенностью полусварных теплообменников является попарное сваривание штампованных пластин, в результате чего формируется отдельный герметичный модуль. Сборка ПСПТО осуществляется также, как и разборного теплообменника, различие состоит в том, что вместо отдельных пластин используются готовые сварные модули.

Между первичными и вторичными модулями устанавливаются прокладки из термостойкой резины. Отсутствие внутренних прокладок позволяет существенно увеличить рабочее давление в системе и температуру рабочей среды.

Благодаря высоким эксплуатационным характеристикам ПСПТО получили широкое распространение следующих областях:

  • в системах вентиляции и кондиционирования;
  • в химическом и фармацевтическом производстве;
  • в пищевой промышленности;
  • в системах рекуперации;
  • в отопительных системах;
  • в системах централизованной подачи горячей воды.

Среди наиболее значимых преимуществ данной конструкции можно выделить:

  • широкий диапазон рабочих температур;
  • отсутствие герметизирующих прокладок;
  • инертность к агрессивным рабочим средам;
  • простоту монтажа и технического обслуживания.

В отличии от сборных ПТО, полусварные агрегаты практически полностью исключают возможность неправильной сборки.

Сварные пластинчатые теплообменники

Отсутствие уплотнений является главной особенностью конструкции сварных теплообменных аппаратов. Гофрированные пластины сварены в один блок, в котором рабочая среда протекает по внутренним каналам, а нагреваемая – по внешним.

Применяются СПТО при работе с агрессивными средами при повышенных температурах и высоком давлении рабочих сред.

Конструктивные особенности сварных теплообменников обеспечивают следующие преимущества:

  • компактность;
  • высокий коэффициент теплопередачи;
  • незначительные теплопотери;
  • простоту технического обслуживания.

Отсутствие уплотнений в сварных ПТО обеспечивает полную герметичность рабочих каналов, что позволяет работать в экстремальных условиях.

Технические характеристики

Как правило, технические характеристики пластинчатого теплообменника определяются количеством пластин и способом их соединения. Ниже приведены технические характеристики разборных, паяных, полусварных и сварных пластинчатых теплообменников:

Оцените статью