Схема центрального теплового отопления

Содержание
  1. Обеспечение теплом многоквартирных домов: централизованная система отопления
  2. Структура системы центрального отопления
  3. Классификация систем централизованного отопления
  4. По режиму потребления тепловой энергии
  5. По виду используемого теплоносителя
  6. По способу подключения отопительной системы к теплоснабжающей
  7. По способу присоединения к системе теплоснабжения горячего водоснабжения
  8. Устройство централизованной системы отопления и принцип работы ее узлов в многоквартирном доме
  9. Стояки и розливы централизованной системы отопления
  10. Достоинства и недостатки центральной системы отопления
  11. Схемы теплового пункта системы отопления
  12. Зависимая схема с двухходовым клапаном и насосами в подающем трубопроводе
  13. Схему применяют если:
  14. Описание схемы теплового пункта и принцип её работы:
  15. Особенности схемы
  16. Зависимая схема с двухходовым клапаном и насосами в обратном трубопроводе
  17. Схему применяют если:
  18. Особенности схемы
  19. Зависимая схема с трёхходовым клапаном и циркуляционными насосами
  20. Данную схему в ИТП применяют при соблюдении условий:
  21. Описание работы схемы ИТП с трёхходовым клапаном
  22. Независимая схема индивидуального теплового пункта
  23. Независимую схему подключеня ИТП применяют при:
  24. Принцип работы теплового пункта подключенного по независимой схеме

Обеспечение теплом многоквартирных домов: централизованная система отопления

Опубликовано 14 декабря 2014 в 1:58

Как известно, обеспечение теплом значительной доли жилого фонда осуществляется централизованно. И, не смотря на то, что в последние годы появляются и внедряются более современные схемы теплоснабжения, центральное отопление остается востребованным, если не у собственников, то у застройщиков многоквартирного жилья. Однако следует отметить, что многолетний зарубежный и отечественный опыт использования такого варианта обогрева доказал его эффективность и право на существование в дальнейшем при условии безотказной и качественной работы всех элементов.

Отличительным признаком такой схемы является выработка тепла за пределами обогреваемых зданий, доставка которого от источника тепла осуществляется посредством трубопроводов. Другими словами, централизованное отопление – сложная инженерная система, распределенная по значительной площади, обеспечивающая теплом одновременно большое количество объектов.

Структура системы центрального отопления

Основными структурными элементами системы центрального отопления являются:

      Источник тепловой энергии, в качестве которого могут выступать крупные котельные или теплоэнергоцентрали (ТЭЦ); в них осуществляется нагрев теплоносителя за счет использования какого-либо вида источника энергии.
      При этом в котельных для передачи тепловой энергии до потребителей используется вода, тогда, как в ТЭЦ она сначала нагревается до состояния пара, имеющего более высокие энергетические показатели и направляющегося в паровые турбины для выработки электроэнергии. И уже отработанный пар используется для нагрева той воды, которая поступает в систему отопления многоквартирного дома.

    Одна теплоэнергоцентраль способна заменить несколько котельных, в результате чего не только снижаются расходы на строительство и высвобождаются значительные площади, но и значительно улучшается общая экологическая обстановка.

    Необходимо отметить, что крупные централизованные схемы теплоснабжения имеют, как правило, несколько источников теплоты, связанные резервными магистралями и обеспечивающие надежность и маневренность их функционирования.

    Рисунок 1 – Общая схема центрального отопления

    Классификация систем централизованного отопления

    Существующее на сегодня многообразие схем организации центрального отопления позволяет произвести их ранжирование по некоторым классификационным признакам.

    По режиму потребления тепловой энергии

    • сезонные, обеспечение теплом требуется только в холодный период года;
    • круглогодичные, нуждающиеся в постоянном теплоснабжении.

    По виду используемого теплоносителя

    • водяные – это самый распространенный вариант отопления, используемый для обогрева многоквартирного дома; такие системы просты в эксплуатации, позволяют транспортировать теплоноситель на большие расстояния без ухудшения качественных показателей и регулировать температуру на централизованном уровне, а также характеризуются хорошими санитарно-гигиеническими качествами.
    • воздушные – эти системы позволяют осуществлять не только отопление, но и вентиляцию зданий; однако вследствие высокой стоимости такая схема не находит широкого применения;

    Рисунок 2 – Воздушная схема отопления и вентиляции зданий

    • паровые – считаются самыми экономичными, т.к. для отопления дома используются трубы небольшого диаметра, а гидростатическое давление в системе мало, что облегчает ее эксплуатацию. Но такая схема теплоснабжения рекомендуется для тех объектов, которым помимо тепла требуется и водяной пар (в основном это промышленные предприятия).

    По способу подключения отопительной системы к теплоснабжающей

    • независимые, в которых циркулирующий по теплосетям теплоноситель (вода или пар) нагревает в теплообменнике подаваемый в систему отопления теплоноситель (воду);

    Рисунок 3 – Независимая система централизованного отопления

    • зависимые, в которых нагретый в теплогенераторе теплоноситель подается непосредственно к потребителям тепла по сетям (см. рисунок 1).

    По способу присоединения к системе теплоснабжения горячего водоснабжения

    • открытые, горячая вода забирается непосредственно из теплосети;

    Рисунок 4 – Открытая система отопления

    • закрытые, в таких системах забор воды предусмотрен из общего водопровода, а ее нагрев осуществляется в сетевом теплообменнике централи.

    Рисунок 5 – Закрытая система центрального отопления

    Устройство централизованной системы отопления и принцип работы ее узлов в многоквартирном доме

    Понятно, что для обеспечения теплом многоквартирного дома его нужно подключить к теплосети, идущей от котельной или ТЭЦ. Для этих целей в ведущих к зданию трубах устанавливают входные задвижки, от которых запитан один или два тепловых узла.

    После задвижек, как правило, устанавливаются грязевики, предназначенные для осаждения образующихся в трубопроводе при длительном контакте с горячей водой окислов и солей металлов. К слову, эти устройства позволяют продлить срок безремонтной работы системы отопления.

    Далее в домовом контуре расположены врезки горячего водоснабжения: одна на подаче, вторая на обратке. Как известно, центральное отопление функционирует на перегретой воде (температура теплоносителя с ТЭЦ составляет 130-150 0С, а чтобы жидкость не превращалась в пар, в системе создается давление 6-10 кгс). Поэтому в холодный период года ГВС подключается с обратки, где температура воды не превышает обычно 70 0С. В летний период, когда температура теплоносителя в теплосети относительно низкая, горячее водоснабжение подключается с подачи.

    После задвижек ГВС находится самый главный узел системы – элеватор отопления, основное предназначение которого заключается в охлаждении перегретой (поступающей с ТЭЦ) воды до нормативных показателей, необходимых для подачи непосредственно к отопительным приборам многоквартирного дома.

    Это устройство состоит из стального корпуса, в котором расположено сопло, из которого поступающая с теплоэнергоцентрали вода выходит с пониженным давлением и высокой скоростью. В результате этого создается разрежение, вызывающее подсос теплоносителя из обратки в элеватор, где и происходит смешивание воды, т.е. изменение ее температуры.

    Рисунок 6 – Устройство элеватора отопления

    Следует отметить, что регулирование системы отопления, т.е. определение реального перепада температур в ней, а также уровня нагрева рабочей водяной смеси и, соответственно, отопительных приборов, осуществляется изменением диаметра сопла элеватора.

    За элеватором обычно расположены задвижки на отопление подъездов или многоквартирного дома в целом.

    Домовые задвижки позволяют подключать и отсекать отопительный контур здания от теплоцентрали: зимой они открыты, летом перекрываются.

    Далее центральное отопление предусматривает монтаж так называемых сбросов, представляющих собой вентили для перепускания или осушения системы. Иногда их соединяют с трубопроводом холодного водоснабжения с целью заполнения радиаторов водой в летний период.

    В последние годы в соответствии с требованиями по обязательной установке приборов учета, на вводе в подъезды или дом устанавливаются теплосчетчики.

    Рисунок 7 – Схема устройства теплового узла центральной системы отопления

    Стояки и розливы централизованной системы отопления

    Схема организации циркуляции воды в системе многоквартирного дома представляет собой, как правило, однотрубный вариант подачи теплоносителя с верхним или нижним розливом. При этом трубы подачи и обратки могут разводиться либо обе в подвале, либо подача на чердаке или техэтаже, а обратка в подвале.

    Стояки, в свою очередь, бывают с:

    • попутным движением теплоносителя;
    • движением воды верху вниз;
    • встречным движением снизу вверх.

    При использовании схемы с нижним розливом каждая пара стояков соединяется посредством перемычек, которая может располагаться либо в квартирах на последнем этаже, либо на чердаке. При этом в верхней точке перемычки обязательно должен быть смонтирован воздухоотводчик (воздушник).

    Кран Маевского — самый простейший по конструкции, но отказоустойчивый воздушник.

    Основным недостатком этого варианта является завоздушивание системы после каждого сброса воды, что требует стравления воздуха из каждой перемычки.

    Рисунок 8 – Возможные схемы центральной системы отопления с нижним розливом

    Система отопления с верхним розливом предусматривает установку на техэтаже многоэтажного дома расширительного бака с вентилем-воздухоотводчиком, а также отдельные вентили, позволяющие отсекать каждый стояк.

    Правильный уклон при прокладке розлива обеспечивает при открытии воздушников полный слив воды из системы за очень короткое время. Но такой вариант имеет ряд особенностей, которые необходимо учитывать при проектировании.

    1. Температура отопительных приборов уменьшается по мере движения теплоносителя вниз. Понятно, что на нижних этажах она будет значительно ниже, чем на верхних, что обычно компенсируется увеличением количества секций радиаторов или площади конвекторов.
    2. Процесс запуска отопления довольно прост. Для этого требуется заполнить систему, открыть имеющиеся домовые задвижки и на короткое время воздушник на расширительном баке. После этого центральное отопление и вся система начинают функционировать в полной мере.
    3. Сброс теплоносителя из конкретного стояка, наоборот, имеет некоторые сложности. Для этого требуется сначала найти и перекрыть нужный стояк на техэтаже многоэтажного дома, затем найти и отключить его вентиль в подвале, и только после этого можно будет открыть сбросник.

    Рисунок 9 – Схема однотрубной системы отопления с верхним розливом

    Достоинства и недостатки центральной системы отопления

    Центральная система отопления имеет следующие достоинства:

    • возможность использования недорогих видов топлива;
    • надежность, обеспеченная регулярным контролем работоспособности и технического состояния со стороны специальных служб;
    • применение экологичного оборудования;
    • простота в эксплуатации.

    Среди недостатков такой схемы обогрева многоквартирного дома следует отметить:

    • система функционирует по строгому сезонному графику;
    • невозможность индивидуального регулирования температуры приборов отопления;
    • частые перепады давления в системе;
    • значительные теплопотери в процессе транспортировки и отопления в многоквартирном доме;
    • высокую стоимость оборудования и его монтажа.

    Схемы теплового пункта системы отопления

    Зависимая схема с двухходовым клапаном и насосами в подающем трубопроводе

    Зависимая схема подключения теплового пункта системы отопления к тепловой сети с двухходовым клапаном регулятора теплового потока и циркуляционно-смесительными насосами в подающем трубопроводе системы отопления.

    Схему применяют если:

    1 Расчётный температурный график источника тепла превышает расчётный температурный график системы отопления (например, на вводе тепловой сети 120/70, а в системе отопления необходимо поддерживать 95/70).

    2 Рабочее давление в обратном трубопроводе тепловой сети и статическое давление в тепловой сети — превышают статическое давление системы отопления, как минимум, на 5м.вод.ст.. Статическое давление системы отопления равняется высоте водяного столба в метрах от отметки расположения теплового пункта до отметки верхней точки системы отопления. Конвертер величин давлений в м.вод.ст. из исходных данных выданных теплоснабжающей организацией указанных в других единицах измерения (бар, МПа или кгс/м&sup2);.

    3 Давление в подающем и обратном трубопроводах тепловой сети, а также статическое давление в тепловых сетях не превышают максимально допустимого давления для системы отопления определяемого пределом прочности наиболее слабого её элемента (радиаторы, трубы).

    4 В тепловом пункте необходимо реализовать автоматическое качественное управление температурой теплоносителя в зависимости от температуры наружного воздуха и/или по суточному, недельному графику работы системы.

    Описание схемы теплового пункта и принцип её работы:

    Управляет работой теплового пункта программируемый контроллер, к которому подключены: датчик температуры наружного воздуха, датчик температуры теплоносителя поступающего в систему отопления и двухходовой регулирующий клапан (РК) с элктроприводом.

    В контроллер вносят температурный график системы отопления отображающий зависимость температуры воды поступающей в систему от температуры наружного воздуха, дня недели и времени суток. Контроллер замеряет температуру наружного воздуха, определяет необходимую температуру воды на входе в систему отопления и сравнивает её с температурой замеренной датчиком t11, при отклонении — посылает закрывающий или открывающий сигнал регулирующему клапану на подающем трубопроводе тепловой сети.

    Регулирующий клапан может как полностью открыть подачу теплоносителя, так и полностью закрыть подающий трубопровод. Подмес воды из обрата не прекращается даже при полном открытии регулирующего клапана так как вода приходящая из тепловой сети условно «перегрета», то есть с температурой превышающей необходимую температуру для системы отопления. В режиме полного перекрытия подающего трубопровода весь теплоноситель поступающий в систему отопления будет отбираться через перемычку из обратного трубопровода.

    Независимо от степени закрытия регулирующего клапана объём воды, поступающий в систему отопления, стабилен и определяется характеристикой циркуляционного насоса, изменяются только пропорции двух потоков воды в смеси — потока отбираемого из обратного трубопровода и потока из подающего.

    При выходе из строя рабочего насоса циркуляция воды в системе остановится, поэтому в схеме предусмотрено два насоса – рабочий и резервный (Н1 и H2).

    Насосы к электрической сети подключаются через щит управления в котором предусмотрены следующие уровни защиты:

    • Защита от сухого хода
    • Защита от перекоса фазных напряжений
    • Защита от обрыва фаз и коротких замыканий
    • Тепловая защита от повышенных токовых нагрузок
    • Автоматическое включение резервного насоса при выходе из строя рабочего

    На вводе тепловой сети установлен регулятор перепада давления (РД) который стабилизирует перепад давлений, ограничивает максимальный расход теплоносителя отбираемого из тепловой сети и создаёт режим работы регулирующего клапана при котором перемещение штока плавно изменяет расход проходящей через него воды.

    Для ограничения максимального расхода на регуляторе настраивают перепад давлений равный потере напора на регулирующем клапане в полностью открытом положении при прохождении максимального расхода теплоносителя.

    Для настройки рабочей точки насоса в тепловом пункте предусмотрен ручной балансировочный клапан, который допускается не устанавливать если насосы оборудованы регулятором частоты вращения.

    Кроме нового строительства данная схема применяется при реконструкции ИТП с заменой элеваторных узлов.

    Особенности схемы

    В рабочем режиме давление в обратном трубопроводе системы отопления равняется давлению в обратном трубопроводе тепловой сети на вводе, а давление в точке смешения потоков несколько ниже давления в обратном трубопроводе тепловой сети.

    Даже при полном открытии регулирующего клапана на подающем трубопроводе к потоку поступающему в систему отопления будет подмешивать остывшая вода из обратного трубопровода.

    Зависимая схема с двухходовым клапаном, насосами в подающем трубопроводе и регулятором подпора

    Применяется в случаях когда статическое или рабочее давление в обратном трубопроводе тепловой сети, ниже чем статическое давление системы отопления + 5м.вод.ст.

    Регулятор подпора устанавливают для защиты систем отопления от частичного или полного опорожнения.

    Зависимая схема с двухходовым клапаном и насосами в обратном трубопроводе

    Зависимая схема подключения ИТП системы отопления с автоматическим погодозависимым регулированием на базе программируемого контроллера с двухходовым клапаном и циркуляционно-смесительными насосами в обратном трубопроводе.

    Схему применяют если:

    1 Расчётный температурный график источника тепла превышает расчётный температурный график системы отопления.

    2 Рабочее давление в обратном трубопроводе тепловой сети и статическое давление в тепловой сети — превышают статическое давление системы отопления, как минимум, на значение равное максимальному напору насоса + 5м.вод.ст..

    3 Давление в подающем и обратном трубопроводах тепловой сети, а также статическое давление в тепловых сетях не превышают максимально допустимого давления для системы отопления определяемого пределом прочности наиболее слабого её элемента (радиаторы, трубы).

    4 В тепловом пункте необходимо реализовать автоматическое качественное управление температурой теплоносителя в зависимости от температуры наружного воздуха и/или по суточному, недельному графику работы системы.

    5 Температура в подающем трубопроводе системы отопления в рабочем режиме может превышать допустимую температуру для циркуляционного насоса.

    Особенности схемы

    Давление в обратном трубопроводе системы отопления всегда будет меньше давления в обратном трубопроводе тепловой сети на вводе в здание на величину напора насоса в рабочей точке.

    Давление в подающем трубопроводе системы отопления будет несколько ниже давления в обратном трубопроводе тепловой сети.

    Зависимая схема с трёхходовым клапаном и циркуляционными насосами

    Зависимая схема подключения теплового пункта системы отопления к источнику тепла с трёхходовым клапаном регулятора теплового потока и циркуляционно-смесительными насосами в подающем трубопроводе системы отопления.

    Данную схему в ИТП применяют при соблюдении условий:

    1 Температурный график работы источника тепла (котельной) превышает либо равен температурному графику системы отопления. Тепловой пункт подключённый по данной принципиальной схеме может работать как с подмесом к подаче потока из обратного трубопровода, так и без него, то есть пустить теплоноситель из подающего трубопровода тепловой сети напрямую в систему отопления.

    Например расчётный температурный график системы отопления 90/70°C, равен температурному графику источника, но источник независимо от внешних факторов всё время работает с температурой на выходе 90°C, а для системы отопления подавать теплоноситель с температурой в 90°C нужно лишь при расчётной температуре наружного воздуха (для Киева -22°C). Таким образом в тепловом пункте к воде, поступающей от источника будет подмешиваться остывший теплоноситель из обратного трубопровода пока температура наружного воздуха не опустится до расчётного значения.

    2 Подключение теплового пункта выполнено к безнапорному коллектору, гидравлической стрелке или теплотрассе с разницей давлений между подающим и обратным трубопроводом не более 3м.вод.ст..

    3 Давление в обратном трубопроводе источника тепла в статическом и динамическом режимах превышает как минимум на 5м.вод.ст высоту от места подключения теплового пункта до верхней точки системы отопления (статику здания).

    4 Давление в подающем и обратном трубопроводе источника тепла, а также статическое давление в тепловых сетях не превышают максимально допустимого давления для системы отопления здания подключённой к данному ИТП.

    5 Схема подключения теплового пункта должна обеспечивать автоматическое качественное регулирование системой отопления по температурному или временному графику.

    Описание работы схемы ИТП с трёхходовым клапаном

    Принцип работы данной схемы схож с работой первой схемы за исключением того, что трёхходовым клапаном может быть полностью перекрыт отбор из обратного трубопровода, при котором весь теплоноситель, поступающий от источника тепла без подмеса будет подан в систему отопления.

    В случае полного перекрытия подающего трубопровода источника тепла, как и в первой схеме, в систему отопления будет подаваться только вышедший из неё теплоноситель, отбираемый из обрата.

    Зависимая схема с трёхходовым клапаном, циркуляционными насосами и регулятором перепада давления.

    Применяется при перепаде давления в месте подключения ИТП к тепловой сети превышающем 3м.вод.ст.. Регулятор перепада давления в данном случае подбирается для дросселирования и стабилизации располагаемого напора на вводе.

    Независимая схема индивидуального теплового пункта

    Независимая схема подключения теплового пункта с двухходовым клапаном регулятора перепада давления, циркуляционными насосами, закрытым расширительным баком и автоматизированной линией подпитки.

    Независимую схему подключеня ИТП применяют при:

    1 Статическое давление и/или давление в подающем и/или обратном трубопроводе тепловой сети превышают допустимое давление в системе отопления.

    2 Температурный график источника тепла превышает температурный график системы отопления. Например, температурный график источника тепла 110/70, а у подключаемой по независимой схеме системы отопления 90/70.

    3 В отапливаемом здании 12 или более этажей (согласно ДБН В. 2.5-67:2013).

    4 Располагаемый напор на вводе тепловой сети превышает 4 м.вод.ст. (из условия преодоления гидравлического сопротивления теплообменника и регулирующей арматуры).

    5 Независимая схема подключения регламентируется техническими условиями теплоснабжающей организации или техническим заданием заказчика.

    Принцип работы теплового пункта подключенного по независимой схеме

    Горячий теплоноситель поступающий от источника тепла попадает в пластинчатый теплообменник где остывая нагревает воду циркулирующую в системе отопления.

    Применение пластинчатого теплообменника позволяет защитить систему отопления от изменений гидравлического режима источника тепла / тепловой сети, то есть сделать её независимой.

    В отличие от зависимых схем, в которых вода отобранная из подающего трубопровода тепловой сети поступает в систему отопления, при независимом подключении теплового пункта вода из наружных сетей попадает в с систему едино разово при заполнении и в незначительных количествах во время подпитки компенсирующей утечки теплоносителя в системе. Независимое подключение системы отопления сокращает влияние на трубопроводы и элементы системы отопления не осевших в сетчатых фильтрах взвешенных частиц присутствующих в теплоносителе отобранном из наружных сетей.

    Управляет тепловым пунктом электронный контроллер, снабжённый датчиком температуры наружного воздуха, и датчиком температуры теплоносителя поступающего в систему отопления. К контролеру также подключён электропривод регулирующего клапана установленного на подающем трубопроводе источника тепла.

    Контроллеру задана зависимость температуры воды поступающей в систему отопления от температуры наружного воздуха, соответствие которой он с определённой периодичностью проверяет. Если по результатам опроса датчиков контроллер выяснил, что теплоноситель поступает в систему отопления с недостаточной температурой, — он посылает открывающий сигнал регулирующему клапану на подающем трубопроводе тепловой сети, при превышении температуры над заданной, контроллер прикрывает клапан вплоть до полного перекрытия подачи.

    Ограничение расхода теплоносителя выполнено на базе регулятора перепада давления, так же как и в первой схеме (см. выше).

    Циркуляцию теплоносителя в системе отопления создают два бесшумных насоса, один из которых резервный. Пара циркуляционных насосов оборудована щитом автоматизации с перечнем функций описанных в описании первой схемы.

    Вода при нагреве увеличивает свой объём, а при охлаждении, соответственно, уменьшает. Так как вода – жидкость практически несжимаемая, то при её нагреве в замкнутом контуре системы отопления резко повысится давление, что приведёт к разрушению наиболее слабого элемента системы отопления.

    Чтобы исключить разрушающее действие нагреваемой воды в замкнутом контуре системы отопления, в него добавляют расширительный бак (БР) рассчитанный на приём прироста объёма нагреваемой жидкости. Полость расширительного бака разделена на две части эластичной мембраной способной растягиваться принимая внутрь полости весь прирост объёма нагреваемой воды и сжиматься во время снижения температуры воды в системе отопления – вытесняя обратно в систему полученный ранее объём воды.

    На случай защиты системы отопления от аварийного повышения давления в ней, предусматривают установку предохранительных клапанов (ПК) в количестве не менее двух, один из которых резервный.

    Подпитка системы отопления осуществляется регулятором давления (РД) в автоматическом режиме, как только давление в нагреваемом контуре опустится ниже давления настройки регулятора.

    Независимая схема ИТП с блоком подпиточных насосов

    Схему применяют если давление в подающем трубопроводе на вводе от источника тепла ниже статического давления системы отопления. Схема не обязательна, но рекомендуется к применению если давление в обратном трубопроводе тепловой сети, либо статическое давление источника тепла ниже статического давления системы отопления.

    Читайте также:  Строительно монтажные компании систем отопления водоснабжения
Оцените статью