Схемы системы оборотного водоснабжения
Установки с замкнутым и оборотным водоснабжением
При повторном водоснабжении воду после использования в каком-либо технологическом процессе сохранившую достаточно качественные показатели, без промежуточной обработки подают для повторного применения (рис.2, а) в систему водоснабжения. Например, тару для марочных продуктов (контейнеры, фляги и т.д.) после мойки повторной водой ополаскивают еще и питьевой. Эту воду можно повторно применять для первого ополаскивания, мойки полов, наружного обмыва автомашин, полива территории и т.д.
В оборотных системах водоснабжения (рис.2, б) воду используют многократно после соответствующей обработки (очистки, охлаждения, подогрева и т.д.).
Схемы системы оборотного водоснабжения
Рис.2. Схемы систем повторного и оборотного водоснабжения
- а – повторного использования воды с установкой накопителя и насоса:
- 1 – технологическое оборудование для использования водопроводной воды;
- 2 – технологическое оборудование для использования отработанной воды;
- 3 – накопитель;
- 4 – насос;
- 5 – водопровод; v
- 6 – трубопровод, подающий отработанную воду в накопитель;
- 7 – трубопровод, подающий отработанную воду для повторного использования;
- 8 – трубопровод для сброса избытков отработанной воды;
- 9 – трубопровод для сброса использованной воды в канализацию;
- б – схема оборотного водоснабжения для мойки (промывки) сырья, полуфабриката и готового продукта:
- 1 – промыватель на необоротной воде;
- 2 – поток промываемого вещества;
- 3 – промыватель на водопроводной воде;
- 4 – поток промытого вещества;
- 5 – аппарат для очистки оборотной воды, например отстойник;
- 6 – насос;
- 7 – трубопровод, подающий очищенную воду;
- 8 – трубопровод, подающий загрязненную воду;
- 9 – водопровод;
- 10 – канализация.
Если при первом использовании вода в системе водоснабжения загрязняется, ее подают в очистные сооружения, после чего очищенную воду с помощью насосов вновь направляют для участия в технологическом цикле. В канализацию уходит небольшая часть воды с загрязнениями. Потери восстанавливают свежей водой. В системах оборотного водоснабженияможно использовать даже сточные воды после их биологической очистки.
Пример оборотного использования воды – охлаждающая вода в холодильных агрегатах. Нагревшуюся в конденсаторах агрегатов воду охлаждают в градирных или брызгальных бассейнах и снова подают в конденсаторы. На предприятиях молочной промышленности повторно используют воду в пластинчатых пастеризационно-охладительных линиях.
Оборотное водоснабжение позволяет уменьшить расход свежей воды в десятки раз. Экономия свежей воды способствует сохранению водных ресурсов. При повторном и оборотном водоснабжении резко уменьшается количество сточных вод, тем самым меньше загрязняются водоемы.
На предприятиях нужно добиваться сокращения водопотребления свежей воды и водоотвода. Для этого необходимо внедрять безотходные технологические процессы и системы водоснабжения с повторным и оборотным использованием воды по замкнутому циклу с полной ее регенерацией.
Технология
Замкнутые рыбоводные установки зародились в США в середине 20 века. Их использование было обосновано американской национальной программой восстановления численности естественных популяций форели в северо-западных штатах США.
Сегодня Установки Замкнутого Водоснабжения (УЗВ) активно используется аквакультурными хозяйствами по всему миру.
Основной задачей УЗВ является искусственное создание среды обитания гидробионтов, обеспечивающей максимальный выход товарной продукции в сокращённые сроки при сохранении качества товара. Кроме того, к такого вида установкам предъявляются требования эффективного использования водных ресурсов — минимальная подпитка, использование оборотной воды.
Круглогодичное выращивание гидробионтов в закрытых аквакультурных фермах исключает режимы зимовки, тем самым интенсифицируется процесс роста. Чем качественней технология, тем тем лучше среда обитания и, как следствие, выше темпы роста рыбы. Кроме того, качественно очищенная вода позволяет повысить плотность посадки рыбы и более эффективно использовать производственные площади.
Современная технология замкнутого водоснабжения заключается в следующем:
Средой обитания гидробионтов в технологической линии являются бассейны с подготовленной водой. Главная задача всего технологического процесса – очистка оборотной воды, поскольку от 85-95 % воды, слитой из рыбных бассейнов, возвращается в систему и требует удаления из неё продуктов жизнедеятельности рыб для дальнейшего возврата.
Очистка начинается с механической фильтрации. Наиболее эффективные устройства для этой операции – барабанные фильтры, представляющие собой вращающийся в корпусе микросетчатый барабан. Барабан требует периодической промывки отфильтрованной водой, тем самым решается две задачи – очистка барабана от твёрдых нерастворённых частиц (фекалии рыб, не съеденный корм) и выведение из оборотной системы воды с накопленными вредными веществами (нитраты, сульфаты). Важным моментом при транспортировке воды к механическим фильтрам является создание самотёчной системы. Такая транспортировка не разбивает взвешенные частицы и не растворяет их в воде, тем самым повышая качество механической очистки. Кроме того повышается энергоэффективность линии за счёт исключения дополнительных насосных групп.
Следующим этапом очистки воды является процесс удаления из воды растворённого азота – биофильтрация. Продукты жизнедеятельности рыб, не съеденный корм вызывают аккумуляцию аммонийного азота в воде, который крайне токсичен для гидробионтов. Решением данной задачи является перевод аммонийного азота в нитраты, концентрация в воде которых может быть в сотни раз выше аммонийного азота без ущерба для живущих в воде рыб. Такая химическая реакция возможна благодаря биоорганизмам – бактериям, живущим на поверхностях биофильтра. Биофильтр представляет собой ёмкость (зачастую бетонную, заглублённую в пол), которая заполнена элементами – биозагрузкой, на поверхностях которой селятся колонии бактерий. Ёмкость биофильтра – биореактор, наполняется водой и подвергается аэрации. Воздух создаёт барботажный эффект, что интесифицирует процесс, а также снабжает биофильтр необходимым кислородом. Кроме того, интенсивная аэрация в биофильтре способствует удалению из воды накапливаемого от дыхания рыб углекислого газа.
Дальнейшая очистка воды осуществляется в потоке, поэтому после биофильтра установлена насосная группа. К бассейну-сумматору, из которого осуществляется забор воды насосами, подведён источник чистой воды. Таким образом, в бассейне-сумматоре осуществляется подпитка чистой водой в количестве, равном удалённой со стоками воды. Обычно эта величина на уровне 5-15 %.
После биофильтра для ряда видов рыб, в том числе для осетровых, решается вопрос денитрификации. Несмотря на высокие допустимые нормы концентрации нитратов в воде, их количество непрестанно растёт и требует удаления из системы. Осуществляется это либо за счёт увеличения ежесуточной подпитки, либо введением в технологию денитрификатора. Денитрификатор – это тот же биофильтр, только закрытого типа (без доступа кислорода). В денитрификаторе за счёт бактерий идет разложение нитратов на свободный азот. Процесс денитрификации протекает при постоянной подпитке источником углерода. В большинстве случаев это метанол. Все денитрификаторы имеют невысокую пропускную способность по воде, поэтому устанавливаются в систему байбасом, т.е. пропуская через себя только часть потока.
В процессе биофильтрации и денитрификации снижается щелочной показатель воды, уровень pH. Его необходимо регулировать путём периодического внесения в бассейн сумматор щёлочи. Для таких целей применяется обычная пищевая сода.
Следующая стадия включает в себя дезинфекцию воды. Наиболее эффективна двухэтапная дезинфекция. Первый этап – ультрафиолетовое облучение путём пропускания воды через ультрафиолетовые лампы. Второй этап – обработка воды озоном. Для этого устанавливается озонатор, который сам вырабатывает озон и растворяет его в воде.
В процессе очистки воды и после ее подпитки из источника, температура воды падает. Необходимо довести технологическую воду до температуры, соответствующей биотехническому нормативу. Для этого используется теплообменник, который как и денитрификатор устанавливается байпасом. К теплообменнику подводиться источник тепла – горячая вода температурой 80-90 ºС.
Подготовка воды перед подачей в бассейны завершается насыщением её кислородом. Вода пропускается через кислородный конус – оксигенатор, к которому подведён источник кислорода (кислородная станция или баллоны с кислородом), и в нём происходит насыщение воды до заданных параметров. Подготовленная вода подаётся в бассейны таким образом, чтобы создать течение в бассейне.
Контроль работы линии осуществляется системой мониторинга, которая обычно включает в себя датчики кислорода, температуры и рН.
Кормление рыб автоматизировано. В бункер кормушек засыпается комбикорм, задаётся порция кормления и устанавливается таймер, после чего кормушка сама выбрасывает корм в заданное время.
| | следующая лекция ==> | |
активированного антрацита | | | Определение расчетных расходов и концентраций загрязнений в смешанном потоке сточных вод. Определение коэффициента смешения |
Дата добавления: 2017-06-02 ; просмотров: 3196 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Оборотное водоснабжение
Содержание статьи
Что такое оборотное водоснабжение
Оборотное водоснабжение – это система обеспечения водой нужд производственного предприятия, при которой использованная вода после соответствующей подготовки подаётся повторно. Оборотное водоснабжение или водооборотный цикл представляет собой замкнутую систему, состоящую из различного технологического оборудования, соединённого трубопроводами.
Вода достаточно дорогой ресурс, её доставка на предприятие также требует определённых затрат. Поэтому для экономии средств предприятия имеет смысл использовать воду повторно. После использования и прохождение через оборудование вода, как правило, меняет свои свойства, может загрязняется продуктами производства. Сброс такой воды негативно влияет на окружающую среду, что в свою очередь может повлечь санкции со стороны контролирующих органов в области экологии.
Использование системы оборотного водоснабжения
Чаще всего вода используется как теплоноситель для нагрева или охлаждения оборудования. Также оборотное водоснабжение используется в гальванике, в горнодобывающей промышленности, ТЭЦ, в пищевом производстве и др.
Как указывалось выше, после прохождения воды через оборудование, она, как правило, загрязняется продуктами производства, поэтому перед повторным использование воду необходимо подготовить (произвести водоподготовку). В зависимости от характера загрязнений используют различные способы водоподготовки — отстаивание, фильтрация, добавление реагентов, охлаждение, продувка.
Фильтрация используется для очистки воды от механических загрязнений. Очень часто используется боковая фильтрация, когда фильтруется не весь поток воды, а его часть, при этом поддерживается допустимая концентрация примесей. В случае выхода из строя фильтра такая система позволяет какое-то время продолжать рабочий процесс, до замены фильтрующего элемента. Также для механической очистки воды применяются резервуары-отстойники.
Для очистки воды от растворённых примесей используется химическая очистка воды. Так, для декарбонизации жёсткой воды во избежание соляных отложений используют различные кислоты, для уменьшения коррозии трубопроводов и оборудования добавляют ингибиторы коррозии. Если вода подвергается аэрации и в ней содержится большое количество биологических веществ, то оборудование и трубопроводы могут быть подвержены биологическим обрастаниям. Для предотвращения этого воду хлорируют.
Также для снижения концентрации растворённых загрязнений применяют продувку. Продувка — это добавление в систему оборотного водоснабжения чистой воды. В зависимости от технологических процессов, например, при гальванике воду очищают выпариванием и осмосом.
Во время технологического процесса часть воды может теряться в результате испарений и капельного уноса; для компенсации этих потерь в схеме оборотного водоснабжения предусматривается подпитка.
Все перечисленные способы водоподготовки направлены на достижения воды нужного качества. Таким образом, система оборотного водоснабжения позволяет поддерживать длительное время состав циркулирующей воды.
Применяемые схемы оборотного водоснабжения
В системах водяного охлаждения технологического оборудования с применением вентиляторных градирен ЕВРОМАШ существует два варианта использования градирен.
1. Одноконтурная схема системы охлаждения.
Для номинального режима работы, а также для режимов с разностью температур входа-выхода воды до 12. 15 o C и температурой нагретой в охлаждаемом оборудовании воды до 45 o C может быть использована одноконтурная схема оборотного водоснабжения, изображенная на рисунке справа.
2. Двухконтурная схема системы охлаждения.
Для объектов, из которых вода выходит, нагретой до температуры выше 45 o C, или при разности температур входа-выхода охлаждаемой воды больше 12. 15 o C, а также для достижения минимально возможных температур охлажденной воды необходимо использовать двухконтурную схему оборотного водоснабжения, изображенную на рисунке справа.
Двухконтурная схема обеспечивает минимально возможную с использованием градирни ЕВРОМАШ температуру охлаждаемой воды за счет того, что в процессе охлаждения оборотной воды в бак 2 подмешивается холодная вода. В результате на градирню попадает не вода от объекта охлаждения, а смесь в которой перемешаны вода от объекта и свежая холодная вода. Эта смесь имеет более низкую температуру, нежели вода, вышедшая из объекта охлаждения и в результате на выходе из градирни также будет вода более низкой температуры.
Использование двухконтурной схемы оборотного цикла водоохлаждения позволяет разделить процессы приготовления охлажденной воды и потребление ее технологическим оборудованием.
При этом надо отметить, что в процессе потребления охлажденной воды при использовании двухконтурной схемы оборотного цикла количество воды, забираемой в охлаждаемое оборудование, может меняться в достаточно широком диапазоне: от 5% до 100% от количества приготовленной охлажденной воды. Решить эту задачу исключительно с помощью регулирования расхода воды через градирню не получится, потому что величина регулирования расхода ограничена минимальным значением в 35% от расхода номинального. При применении двухконтурной схемы эта задача решается за счет внутреннего саморегулирования системы в виде перелива излишней воды из бака охлажденной воды в бак воды теплой.