- Пластинчатый теплообменник для горячего водоснабжения
- Устройство и принцип работы
- Расчет
- Схема обвязки
- Для чего нужен и как изготовить теплообменник для горячей воды от отопления самостоятельно?
- Что это такое?
- Какие плюсы даёт использование устройства?
- Как устроен прибор?
- Пластинчатые
- Трубчатые
- Как рассчитать модель под конкретное здание?
- Технические критерии выбора
- Конструкция
- Объём бака
- Бытовые модели и цены на них
- Пластинчатых
- Кожухотрубных
- Пошаговая инструкция, как сделать своими руками
- Инструменты и материалы
- Процесс изготовления
- Схемы подключения
- Параллельная
- Двухступенчатая смешанная
- Двухступенчатая последовательная
- Как использовать?
- Заключение
Пластинчатый теплообменник для горячего водоснабжения
Обеспечить себе в доме или квартире горячее водоснабжение можно многими способами и непосредственный нагрев, например прямоточным электронагревателем или бойлером – не самый эффективный способ. В простоте и надежности отлично зарекомендовал себя пластинчатый теплообменник ГВС. Если есть источник тепла, например автономное отопление или даже централизованное, то тепло для нагрева воды вполне разумно взять от них, не тратя дорогостоящее электричество для этих целей.
Устройство и принцип работы
Пластинчатый теплообменник (ПТО) обеспечивает переход тепла от нагретого теплоносителя холодному, при этом не перемешивая их, развязывая два контура между собой. Теплоносителем может быть пар, вода или масло. В случае с горячим водоснабжением чаще источником тепла является теплоноситель системы отопления, а нагреваемой средой – холодная вода.
Конструктивно теплообменник представляет собой группу гофрированных пластин, собранных параллельно друг другу. Между ними образуются каналы, по которым течет теплоноситель и нагреваемая среда, притом послойно они чередуются между собой, не перемешиваясь при этом. За счет чередования слоев, по которым текут жидкости обоих контуров, увеличивается площадь теплообмена.
Схема работы теплообменника
Гофрирование чаше выполняется в виде волн, притом ориентированных так, чтобы каналы одного контура располагались под углом к каналам второго контура.
Подключение входов и выходов делаются так, чтобы жидкости текли навстречу друг другу.
Поверхность и материал пластин подбирается исходя из требуемой мощности теплообмена, вида теплоносителя. В особенно эффективных и продуманных теплообменниках поверхность формуется для возбуждения завихрений возле поверхности пластины, повышая теплообмен, не создавая сильного сопротивления общему току.
Теплообменник включается между двумя контурами:
- Последовательно к системе отопления или параллельно с наличием регулирующей арматуры.
- К входу от холодного водопровода и выходом к потребителю ГВС.
Холодная вода, протекая через теплообменник нагревается за счет тепла от системы отопления до требуемой температуры и подается на кран потребителя.
Основные характеристики пластинчатого теплообменника:
- Мощность, Вт;
- Максимальная температура теплоносителя, оС;
- Пропускная способность, производительность, литры/час;
- Коэффициент гидравлического сопротивления.
Мощность зависит от общей площади теплообмена, перепада температур в обоих контурах между входов и выходом и даже от числа пластин.
Максимальная температура задается подбором материалов и способом соединения пластин и корпуса теплообменника.
Пропускная способность повышается с увеличением числа пластин, так как они подключаются фактически параллельно, то каждая новая пара пластин добавляет дополнительный канал для тока жидкости.
Коэффициент гидравлического сопротивления важен при расчете нагрузки на систему отопления, где от этого зависит выбор циркуляционного насоса, немаловажен и для других источников тепла. Зависит от типа гофрирования пластин и размера сечения каналов и их количества.
Для наиболее востребованных случаев, каким является обеспечение горячей водой частного хозяйства, дома или квартиры производятся готовые теплообменники с постоянными характеристиками.
Расчет
Выбор подходящего теплообменника сложно выполнить, оперируя только одной лишь его мощностью или пропускной способностью. Эффективность подготовки ГВС зависит и от состояния теплоносителя в первом контуре и во втором, от материала и конструкции теплообменника, скорости и массовой части теплоносителя, проходящего в единицу времени через пластинчатый теплообменник. Однако, естественно следует предварительно выполнить расчет, позволяющий прийти к определенному сочетанию мощности и производительности для выбора подходящей модели.
Базовые данные необходимые для расчета:
- Тип среды в обоих контурах (вода-вода, масло-вода, пар-вода)
- Температура теплоносителя в системы отопления;
- Максимально допустимое снижение температуры теплоносителя после прохождения теплообменника;
- Начальная температура воды, используемой для ГВС;
- Требуема температура ГВС;
- Целевой расход горячей воды в режиме максимального потребления.
Кроме этого в формулах для расчета задействована удельная теплоемкость жидкости в обоих контурах. Для ГВС используется табличное значение для начальной температуры воды, чаще +20оС, равное 4,182 кДж/кг*К. Для теплоносителя следует отдельно находить значение удельной теплоемкости, если в его составе имеется антифриз или другие присадки для улучшения его качеств. Аналогично для централизованного отопления берется приблизительное значение или фактическое на основании данных теплокоммунэнерго.
Целевой расход определяется количеством пользователей для горячей воды и количеством устройств (краны, посудомоечная и стиральная машинка, душ), где она будет использована. Согласно требованиям СНиП 2.04.01-85 необходимы следующие значения расхода горячей воды:
- для раковины – 40 л/ч;
- ванная – 200 л/ч;
- душевая – 165 л/ч.
Значение для раковины умножается на количество устройств в доме, которые могут использоваться параллельно, и складывается со значением для ванны или душевой в зависимости от того, что именно используется. Для посудомоечной и стиральной машинки значения берутся из паспорта и инструкции и только при условии, что они поддерживают использование горячей воды.
Второе базовое значение – это мощности теплообменника. Рассчитывается исходя из полученного значения расхода жидкости и разницы температур воды на входе в теплообменник и на выходе.
где m – расход воды, С – удельная теплоемкость, Δt – разница температур воды на входе и выходе ПТО.
Для получения массового расхода воды следует расход, выраженный в л/ч умножить на плотность воды 1000 кг/м3.
КПД теплообменников оценивается на уровне 80-85%, и многое зависит от конструкции самого оборудования, так что полученное значение следует разделить на 0,8(5).
С другой стороны ограничением по мощности будет расчет, выполненный со стороны первого контура с теплоносителем, где, используя уже разницу допустимых температур для системы отопления, получаем максимально допустимый забор мощности. Конечный результат будет компромиссом между двумя полученными значениями.
Если забора мощности для нагрева нужного количества горячей воды не хватает, то разумнее использовать две ступени подогрева и, соответственно, два теплообменника. Мощность распределяется между ними поровну от требуемого расчета. Одна ступень выполняет предварительный нагрев, используя в качестве источника тепла обратку отопления с пониженной температурой. Второй ПТО уже нагревает окончательно воду за счет горячей воды с подачи отопления.
Схема обвязки
Подключают теплообменник к системе отопления несколькими способами. Самый простой вариант с параллельным включением и наличием регулировочного клапана, работающего от термоголовки.
Обязательными являются запорные шаровые вентили на всех выводах теплообменника, чтобы иметь возможность полностью перекрыть доступ жидкости и обеспечить условия для демонтажа оборудования. Регулировкой мощности и, соответственно, нагревом горячей воды должен заниматься клапан с управлением от термоголовки. Клапан устанавливается на подводящую трубу от отопления, а датчик температуры на выход контура ГВС.
При цикличной организации ГВС с наличием накопительной емкости устанавливается дополнительно тройник на входе нагреваемого контура для включения холодной водопроводной воды и обратки по ГВС. Избежать ненужного тока в обратном направлении в ветке горячей и холодной воды не даст обратный клапан.
Недостатком этой схемы является сильно завышенная нагрузка на систему отопления и неэффективный нагрев воды во втором контуре при большем перепаде температур.
Гораздо продуктивнее и надежнее работает схема с двумя теплообменниками, двухступенчатая.
1 – пластинчатый теплообменник; 2 – регулятор температуры прямого действия: 2.1 – клапан; 2.2 – термостатический элемент; 3 – циркуляционный насос ГВС; 4 – счетчик горячей воды; 5 – электро-контактный манометр (защита от «сухого хода»)
Идея заключается в использовании двух теплообменников. В первой ступени используется с одной стороны обратка системы отопления, а с другой холодная вода из водопровода. Это дает предварительный нагрев примерно на 1/3 или половину от необходимой температуры, при этом не страдает обогрев дома. Включение контура выполняется последовательно с байпасом, на котором уже закреплен игловой вентиль, с помощью которого регулируется объем теплоносителя.
Второй ПТО, вторая ступень, подключаемая параллельно системе отопления – это с одной стороны подача горячего теплоносителя от котла или котельной, а с другой уже подогретая на первой ступени вода ГВС.
Регулировкой первой ступени заниматься нет нужды. Устанавливаются лишь шаровые вентили на все четыре отвода и обратный клапан на подачу холодной воды.
Обвязка второй ступени идентичная параллельному подключению за исключением того, что вместо холодной воды подключается уже подогретая вода с первой ступени.
Для чего нужен и как изготовить теплообменник для горячей воды от отопления самостоятельно?
Теплообменник – полезное в быту устройство, позволяющее передавать тепло от одного независимого источника к другому. Существует множество разновидностей и областей применения данного прибора.
Наиболее часто встречаемый вариант применения теплообменника – это нагрев воды от отопительной системы. Подробнее о теплообменниках для горячей воды от отопления поговорим в статье.
Что это такое?
Теплообменник представляет собой устройство, предназначенное для обмена теплом между двумя или более не связанными друг с другом напрямую носителями тепла. Чаще всего используется для нагрева воды напрямую от системы отопления.
Теоретически, можно рассмотреть вариант использования воды напрямую из отопительной системы, так как её качество не сильно отличается от воды, продающейся в супермаркетах. Однако, на практике, использовать её в бытовых целях нельзя.
Обусловлено это следующими причинами:
Замена воды в отопительных трубах – процесс затратный и требует денег.
- Вливание новой воды отрицательно влияет на котлы, способствует быстрому изнашиванию системы.
- В отопительных системах зачастую используются химические примеси, призванные смягчить воду.
- Трубы в этих системах сами по себе имеют внутри себя множество отложений, стандарты их использования рассчитаны на техническую воду, а не на потребляемую человеком в пищу.
По вышеназванным причинам, использование воды напрямую из отопительных труб в бытовых и пищевых целях не представляется возможным, и для нагрева воды от тепловой системы обязательно использование теплообменника.
Какие плюсы даёт использование устройства?
Основными преимуществами, ради которых стоит установить данный прибор, являются:
- Высокая эффективность. Теплообменник способен поставлять воду оптимальной температуры сразу в несколько мест в доме.
- Экономичность. Устройство позволяет нагревать воду прямиком от отопления, не нужно устанавливать нагреватель и тратить дополнительно электричество и газ.
- Небольшой размер. Прибор довольно компактен и не занимает много места.
- Легкость установки и использования. Устройство просто установить, оно не требует частого обслуживания, легко поддаётся чистке.
Как устроен прибор?
Работа устройства состоит в том, что оно позволяет двум независимым друг от друга системам обмениваться теплом друг с другом.
В зависимости от конкретного типа прибора, трубы соединяются между собой пластинами, либо расположены особым образом, например, труба с носителем тепла находится внутри трубы с приёмником.
Вода быстро нагревается, не соприкасаясь при этом напрямую с источником тепла.
Устройство подключается к отоплению и к водопроводным трубам. Вода проходит через систему и нагревается от источника тепла, а после поступает к крану в нагретом состоянии.
По своей конструкции устройства данного класса подразделяются на две основных категории:
Для бытовых нужд используются устройства пластинчатого типа, благодаря большему удобству использования и эффективности, а также лёгкой транспортировке и установке. Среди трубчатых устройств в быту, как правило, используют кожухообразный вариант.
Пластинчатые
Пластинчатый тип теплообменников представляет собой конструкцию из пластин, установленных параллельно друг другу и соединённых в едином корпусе. Носитель и приёмник тепла протекают в отдельных трубах, подсоединяемых к коммуникациям на передней и задней панелях устройства.
Пластинчатые теплообменники подразделяются в свою очередь на три группы:
Плюсами разборных теплообменников являются удобство монтажа и использования.
Минусом можно считать регулярную необходимость замены резиновых прокладок и чувствительность к агрессивным веществам.
Трубчатые
Данный тип устройств применяется в основном промышленности, а также в качестве элементов конструкции кондиционеров и холодильников.
Плюсом данного типа является высокая устойчивость к любым условиям и средам. Распространённой конструкцией является вариант, когда внутри одной широкой трубы располагается другая поуже. По внутренней трубе протекает носитель тепла, а по внешней – приёмник.
В свою очередь трубчатые обменники подразделяются на несколько типов:
Существует возможность соединения нескольких устройств данного типа для достижения большей эффективности.
Данная разновидность наиболее часто используется в быту среди трубчатых обменников.
Как рассчитать модель под конкретное здание?
При подборе конкретной модели прибора, необходимо учитывать следующие параметры:
- количество жильцов в помещении;
- объём воды, необходимый одному жильцу в сутки, стандартом считается норма потребления, равная 120 литрам на человека в день;
- степень нагрева носителя тепла — в централизованных отопительных системах стандартом является нагрев, равный 60-ти градусам;
- будет ли прибор работать круглые сутки, или планируется его периодически отключать;
- температура воды в трубах в зимнее время года;
- количество приборов, потребляющих горячую воду;
- допустимый процент потери воды.
Технические критерии выбора
При выборе теплообменника необходимо, прежде всего, обращать внимание на такие параметры, как конструкция и мощность прибора, а также его стоимость. При использовании прибора с ёмкостью для воды, немаловажную роль играет выбор бака подходящего объёма.
Конструкция
Для нагрева воды от отопительной системы используются приборы различных конструкций, отличающихся друг от друга скоростью и эффективностью нагрева:
Сложная форма элемента значительно ускоряет нагрев. Катушка может быть установлена внизу бака, либо вертикально – для более равномерного нагрева.
Объём бака
Немаловажный фактор, который необходимо учитывать при выборе – это размер бака:
- Для небольших помещений подойдёт бак на сто литров. Это компактный и экономичный вариант, наиболее простой в транспортировке. Стоит помнить, что малый объём воды сохраняет тепло значительно меньшее время, поэтому нагревать его придётся чаще.
- Для большинства частных домов подойдёт бак объёмом 200 литров. Этого хватит на несколько сантехнических приборов, при этом температура будет держаться достаточно длительное время.
- Для больших домов подойдёт бак объёмом 500 литров. Такие баки используются также в производстве. Для большинства же помещений такой большой объём будет излишним и неэкономичным решением, так как для такого бака потребуется гораздо большее потребление энергии.
Бытовые модели и цены на них
В данный момент на рынке представлено большое количество приборов для теплообмена, отличающихся друг от друга типом конструкции, скоростью нагрева, объёмом бака и стоимостью.
Пластинчатых
Вот несколько популярных моделей:
Между пластинами располагаются термопрокладки, эффективно передающие тепло от носителя к приёмнику.
Прочность конструкции обеспечивается гофрированной поверхностью. Примерная стоимость устройства: 14000 рублей.
Кожухотрубных
Ниже представлены популярные модели теплообменников кожухообразного типа:
- ТНГ-1,6-М8/20Г-2-2-И. Популярная модель, часто используемая в промышленности и в быту. Имеет трубные решётки и вертикальный тепловой компенсатор. Цена – от 9000 рублей.
- Подогреватель кожухотрубный ТТАИ. Конструкция представляет собой две трубки с тонкими стенками разного диаметра, одна вложена в другую. Тонкие стенки способствуют более эффективной отдаче тепла. Устройство компактное и лёгкое в обслуживании. Цена – от 7500 рублей.
- Bowman 190 кВт. Устройство премиум-класса. Титановые трубки с противокоррозийным покрытием пригодны для взаимодействия с хлорированной и морской водой. Может работать как на нагрев, так и на охлаждение. Цена от 120000 рублей.
Пошаговая инструкция, как сделать своими руками
Устройство для обмена теплом от теплосети к воде можно сконструировать своими руками.
Инструменты и материалы
Чтобы сконструировать пластинчатый теплообменник собственноручно, потребуются:
- аппарат для сварки;
- болгарка;
- листы из нержавеющей стали — два из рифлёной, один из плоской. Толщина 4 мм;
- электроды.
Процесс изготовления
Весь процесс изготовления устройство делится на несколько этапов:
- Необходимо нарезать пластины из рифлёной стали. Потребуется 31 пластина размером 300 на 300 мм.
- Из плоского листа вырезается лента длиной 18 метров и шириной 10 мм. Ленту необходимо нарезать на части длиной по 300 мм каждый.
- Квадраты из рифлёного материала свариваются друг с другом десятимиллиметровой полосой с разных сторон, соседние секции должны быть перпендикулярны. Получится 15 секций, обращённых в одну сторону и 15 в другую в виде куба.
- К частям, где будет течь вода, необходимо приварить коллектор из плоской нержавеющей стали.
- В каждом коллекторе сверлится отверстие, к нему приваривается соединительная часть трубы.
- Конструкция монтируется открытой стороной к газовой системе.
Схемы подключения
Теплообменник может подключаться к системам отопления и водоснабжения по трём разным схемам: параллельной, двухступенчатой смешанной и двухступенчатой последовательной.
Параллельная
Наиболее простая в реализации и экономная схема. Обязательным условием является установка температурного регулятора. Недостатками являются не самое экономичное расходование тепла носителя, а также необходимость увеличенного трубопровода.
Двухступенчатая смешанная
Также требует регулятора температур. Значительно экономичнее параллельной схемы в плане потребления тепла. Однако сама по себе конструкция стоит дороже, так как требует сразу двух теплообменников. Оборудование необходимо подбирать очень точно в соответствии с конкретными условиями.
Двухступенчатая последовательная
При таком подключении входящий поток делится на два, один проходит через регулятор, а второй через нагреватель. Носитель тепла расходуется более эффективно по сравнению со смешанной. Также более эффективно распределяется нагрузка на сеть.
Минусом схемы является невозможность полной автоматизации. Несмотря на все преимущества, на практике схема используется редко из-за сильного влияния отопительной и водопроводной систем друг на друга и возможности перегрева отопительной сети.
Как использовать?
Существует два основных варианта использования теплообменника для нагрева воды:
- Первый вариант – подогрев проточной воды. Недостатками этого метода являются ограниченный расход воды, сложность поддержания тепла, отсутствие запасов воды. Плюсы – компактность системы.
- Нагрев в ёмкости. Теплообменник погружается в бак и заполняется водой. Конструкция позволяет поддерживать температуру длительное время, при этом всегда есть запас воды. Недостаток метода – большие габариты бака требуют много пространства.
Все, что необходимо знать о горячей воде, представлено в этом разделе сайта.
Заключение
Теплообменник – удобное и экономичное в быту устройство. В отличие от электрического водонагревателя не требует дополнительных затрат на электроэнергию и позволяет нагревать воду напрямую от системы отопления.
Существуют различные варианты конструкции данного прибора, но наибольшей популярностью для бытового применения пользуются пластинчатые и кожухообразные.