- Системы теплоснабжения приточных установок
- Разновидности узлов обвязки калориферов
- Принцип выбора схемы регулирования в зависимости от источника тепла
- Подбор основного оборудования для узлов теплоснабжения калориферов
- Подбор регулирующих клапанов
- Подбор циркуляционных насосов
- Узлы теплоснабжения вентиляционных агрегатов
- Необходимость установки узлов регулирования
- Классификация вариантов регулирования мощности установок
- Основные схемы узлов управления
- Источник тепла определяет выбор схемы узла регулирования
- Основное оборудование узлов теплоснабжения. Подбор и расчет
- Запорная арматура
- Обратные клапаны
- Регулирующие клапаны и приводы
- Измерительная арматура: манометры и термометры
- Воздухоспускные клапана и краны для слива системы
- Балансировочные клапана
- Циркуляционный насос
- Грязевик
- Защита калориферов от разморозки. Теплоносители в системах вентиляции
Системы теплоснабжения приточных установок
Приточные системы вентиляции , как правило, включают в себя одну или две—три ступени нагрева воздуха в зимний период. Нагрев наружного приточного воздуха осуществляется в теплообменниках-калориферах, которым подведены трубопроводы системы теплоснабжения. Главной задачей системы теплоснабжения является обеспечение заданной температуры приточного воздуха, вне зависимости от наружной температуры либо параметров теплоносителя источника тепла.
При подборе калориферов практически все проектировщики сталкиваются с ситуацией, когда производитель предлагает определенный типоразмер воздухонагревателя, который подбирается с некоторым запасом. Если подключать систему теплоснабжения к калориферу напрямую, без узла регулирования и системы автоматики, то температура приточного воздуха на выходе с калорифера не будет в расчетных диапазонах, а будет максимальной исходя из входных параметров. Такие ситуации приводят к перерасходу количества тепла выше расчетного, к некомфортным условиям внутреннего воздуха. Следовательно, суть системы теплоснабжения приточных установок сводится к выбору типа узлов регулирования.
Разновидности узлов обвязки калориферов
Основные схемы присоединения узлов регулирования воздухонагревателей к источнику теплоснабжения | |
С двухходовым клапаном — происходит количественное регулирование, то есть расход воды из тепловой сети регулируется двухходовым клапаном, установленным на обратном трубопроводе, в зависимости от потребности в нагреве. На внутреннем контуре устанавливается циркуляционный насос, который вне зависимости от состояния регулирующего клапана обеспечивает постоянную циркуляцию теплоносителя на калорифере через перемычку. Это необходимо для предотвращения остывания теплоносителя в калорифере в зимний период, что может угрожать разморозкой. | |
С трехходовым клапаном, работающим на перекрытие потока теплоносителя со стороны теплосети, без перемычки на калорифере. Порт со стороны источника теплоснабжения открывается или закрывается в зависимости от сигнала системы автоматизации. Циркуляционный насос на внутреннем контуре регулирующего узла работает либо на подмес воды от источника при открытом клапане, либо через перемычку самого клапана при закрытом патрубке. Такая схема также относится к количественному регулированию. Недостатком такой схемы является увеличение напора насоса на величину сопротивления регулирующего клапана в открытом состоянии. | |
С трехходовым клапаном, работающим на перепуск потока горячей воды в обратный трубопровод тепловой сети. При потребности в нагреве воздуха в калорифере порт регулирующего клапана входит в режим «открыто», циркуляция теплоносителя идет через калорифер на прямых параметрах. В случае, когда температура достигла уставки, система автоматики начинает закрывать порт клапана со стороны калорифера, тем самым осуществляя перепуск теплоносителя из подачи в обратный трубопровод. Циркуляция на нагревателе осуществляется циркуляционным насосом через перемычку во внутреннем контуре. |
Принцип выбора схемы регулирования в зависимости от источника тепла
В зависимости от того к какому источнику теплоснабжения подключаются узлы регулирования приточных установок на стадии проектирования определяется выбор схемы узлов обвязки калориферов.
Так, например, если источником тепла является центральная водогрейная котельная, работоспособность оборудования которой не зависит от минимальной температуры возвращаемого теплоносителя, выбор останавливают на простейшей схеме регулирования № 3. В этом случае система теплоснабжения работает в стандартном режиме на постоянном расходе теплоносителя, что защищает контур котельных установок от перегрева и выхода из строя.
Схема №2 используется, если источником тепла являются тепловые сети с независимым подключением системы теплоснабжения при помощи пластинчатого теплообменника, а в сети поддерживается давление соответствующее рабочему давлению трехходового клапана. При этом сетевой насос на внутреннем контуре пластинчатого теплообменника должен иметь встроенный или внешний частотный преобразователь, для корректировки расходных параметров в контуре. Также данную схему можно применять при зависимом или независимом подсоединении к котельной при условии частотного регулирования сетевых насосов контура вентиляции.
Схема №1 является наиболее универсальной схемой регулирования в узлах обвязок калориферов, но при этом и самая дорогая, так как двухходовые седельные клапаны, как правило, в несколько раз дороже трехходовых. Такая схема идеально подходит для зависимого присоединения к тепловым сетям, так как происходит контроль минимальной температуры обратного теплоносителя, перепад давления со стороны теплоносителя позволяет подбирать клапан с наименьшим коэффициентом Kv, что позволяет системе и автоматике максимально быстро реагировать на потребность калориферов в тепловой мощности.
Подбор основного оборудования для узлов теплоснабжения калориферов
Основное условие корректной работы узла обвязки воздухонагревателя — это соответствующий выбор схемы регулирования, правильный подбор регулирующего клапана и циркуляционного насоса.
Подбор регулирующих клапанов
Основными характеристиками регулирующих клапанов как двухходовых так и трехходовых являются диаметр, рабочее и максимальное давление и температура, а также главный коэффициент Kv.
Kv — это коэффициент пропускной способности клапана, означает как расход клапан способен пропустить через себя в открытом состоянии при потерях давления на нем 10 метров водяного столба.
При известном расходе теплоносителя и допустимом перепаде давления перед узлом по формуле определяется коэффициент Kv и в дальнейшем принимается ближайшее большее значение из каталога производителя. Также вместо расчета коэффициента по формулам можно воспользоваться номограммами подбора клапанов, которые каждый производитель разрабатывает под свой ассортимент регулирующей арматуры.
Правильность подбора можно определить сравнением с диаметром трубопроводов: клапан всегда должен быть меньшим диаметром. Чем меньше диаметр клапана, тем быстрее система регулирует на незначительные колебания температур воздуха или теплосети.
Подбор циркуляционных насосов
Циркуляционные насосы внутреннего контура калориферов подбираются также исходя из принятой схемы регулирования с учетом расчетного расхода теплоносителя и сопротивления регулируемого участка.
Под сопротивлением регулируемого участка принято понимать следующий объем арматуры и трубопроводов:
- Схема регулирования №1 — гидравлические потери давления на воздухонагревателе при расчетном расходе теплоносителя, потери по длине трубопроводов с учетом местных сопротивлений на участке от портов присоединения к калориферу до двухходового клапана, потери давления на обратных клапанах и фильтрах-грязевиках при рабочем засорении. Потери давления на клапане в расчет напора насоса не берутся, т. к. в данной схеме клапан работает на перепаде давления теплосети.
- Схема регулирования №2 — гидравлические потери давления на воздухонагревателе при расчетном расходе теплоносителя, потери по длине трубопроводов с учетом местных сопротивлений на участке от портов присоединения к калориферу до трехходового клапана, сопротивление трехходового клапана через байпасную линию, потери давления на арматуре.
- Схема регулирования №3 — гидравлические потери давления на воздухонагревателе при расчетном расходе теплоносителя, потери по длине трубопроводов с учетом местных сопротивлений на участке от портов присоединения к калориферу через внутреннюю перемычку, потери давления на арматуре.
Как видно напор насоса при равных начальных условиях в 1 и 3-й схеме регулирования меньше, чем во 2-й схеме.
При известном расходе теплоносителя и рассчитанному напору, то есть рабочей точке насоса по графикам производят подбор серии и модели насоса. При подборе трехскоростных циркуляционных насосов аналогичных 100-й серии Grundfos – UPS, рекомендуется подбор выполнять на средней скорости.
P/S. от директора компании ООО «Регион»: | |||||
Работаем по всей России | Контакты. Тел/ф + 7(812) 627-93-38; info@dc-region.ru | Автор G+ |
Связаться с нами вы можете с 9.00 – 18.00 (пнд — пят). Наш специалист всегда ответит на Ваши вопросы и проконсультирует по возможным решениям тех или иных задач по телефону или по запросу на почту market@dc-region.ru. | +7 (911) 088 95 67 | |
Мы в социальных сетях
Проектирование жилых, гражданских и промышленных зданий и сооружений,
в том числе очистных сооружений и инженерных сетей и систем. По всей России.
Узлы теплоснабжения вентиляционных агрегатов
Необходимость установки узлов регулирования
Установки приточной системы вентиляции согласно основным требованиям нормативных документов должны подавать свежий наружный воздух, предварительно нагретый до определенной температуры. Температура приточного воздуха должна соответствовать типу вентилируемого помещения в случае общеобменной вентиляции или технологическому процессу в случае какого-либо производственного цикла.
Принцип работы приточно-вытяжной системы вентиляции.
Кроме того, температура воздуха должна быть постоянной вне зависимости от температуры наружного воздуха и корректировки температурного графика теплоносителя. То есть, при похолодании и снижении температуры на улице тепловые сети, как правило, повышают температуру теплоносителя, а температура воздуха на выходе из приточной установки должна оставаться на заданном уровне.
Следовательно, тепловая нагрузка в течение отопительного периода не является постоянной величиной, а теплоноситель следует регулировать. В противном случае будет перерасход тепловой энергии, повышение температуры и избыточный перегрев помещений, что неблагоприятным образом может сказаться на самочувствии людей или технологическом процессе.
Нагрев воздуха происходит в калориферах приточной установки, количество которых может отличаться в зависимости от принятой схемы теплоснабжения. Наиболее распространен вариант установок с одним калорифером, но их может быть и два и больше.
Калориферы предназначены для нагрева воздуха в приточной и приточно-вытяжной системе вентиляции.
Для некоторых учреждений, где нагрев воздуха необходим и в переходное время года, предусматривают два раздельных контура системы теплоснабжения. Один калорифер работает весной и осенью, второй контур в зимнее время. В случае экстремальных морозов, когда главный калорифер не будет справляться с нагрузкой, второй может догревать воздух до заданно температуры.
Приточная установка системы вентиляции.
Также одним из главных достоинств такой схемы является практически 100% резервирование поверхности теплоотдачи. В случае возникновения аварийных ситуаций, когда один калорифер вышел из строя или разморозился, второй нагреватель будет подключен в работу и справится полностью с основной функцией. Поэтому при расчете установки желательно предусматривать два одинаковых калорифера, с поверхностью соответствующей максимальной мощности из двух режимов работы.
При расчете приточной установки можно столкнуться с ситуацией, когда подобранный калорифер в максимальном режиме выдаст тепловую мощность во много раз превышающую требуемую. Это связано с ограниченным числом типоразмеров калориферов у производителя. Поэтому для того чтобы иметь постоянную температуру приточного воздуха необходима установка регулирующих узлов системы теплоснабжения на каждом контуре теплоснабжения и на каждой установке. Управление этими узлами будет происходить от системы автоматики всех вентиляционных систем комплекса.
Классификация вариантов регулирования мощности установок
Система теплоснабжения приточной вентиляции может работать в нескольких принципиально отличающихся режимах регулирования:
- Если во время работы систем вентиляции происходит плавное или ступенчатое изменение температуры воды при неизменном расходе, то принято говорить, что на данном узле используется качественное регулирование. Применяется на котельных или в индивидуальных тепловых пунктах, то есть изменение параметров теплоносителя будет происходить непосредственно во всей системе теплоснабжения. Температура горячей воды корректируется по специальному графику теплоснабжающей организации в зависимости от изменения температуры наружного воздуха.
- Если изменение тепловой нагрузки происходит при изменении количества поступающего в установку теплоносителя, то есть при постоянной температуре плавно изменяется расход горячей воды. Здесь мы имеем дело с количественным регулированием.
- При качественно-количественном способ регулирования происходят и корректировки температуры в системе теплоснабжения (либо от источника тепла) и изменение расхода теплоносителя зонально на каждой установке в своем режиме. Достаточно сложный способ регулирования, но получивший наибольшее распространение в системах теплоснабжения вентиляции. Его можно реализовать только при установке системы автоматизации.
Основные схемы узлов управления
Существует как минимум несколько основных схем обвязки калориферов, которые имеют принципиальные отличия с точки зрения выбранной схемы регулирования и источника подачи тепла. Не существует однозначного ответа, какая из ниже описанных схем является правильной, все зависит от большого количества факторов (источник теплоснабжения и его возможности и требования по теплоносителю, уже установленное сетевое оборудование, величина свободного перепада давления на вводе в здание и т.д.).
Если система теплоснабжения приточной вентиляции работает на перепаде тепловой сети и подключена напрямую без промежуточных теплообменников, то в качестве управляющего органа устанавливают двухходовой линейный регулирующий клапан (схема №3), который гасит на себе избыточный перепад в точке подключения и выполняет главную функцию ограничения протока воды через калорифер. Но для того, чтобы защита от замерзания калорифера была обеспечена, на внутреннем контуре воздухонагревателя устанавливается циркуляционный насос, который обеспечивает постоянный расход на установке через дополнительную перемычку. Это классический способ количественного регулирования зонально на каждой приточной установке.
Не менее распространенными являются схемы теплоснабжения калориферов с установленными трехходовыми клапанами. Эти схемы могут работать в различных режимах регулирования в зависимости от положения клапана и места врезки перемычки.
Трехходовые клапана могут работать в режиме разделения потоков воды или в качестве смесительного органа (схема № 4). Если клапан установлен таким образом, что в зависимости от потребности установки в нагреве порт А (со стороны теплосети) открывается или закрывается, а циркуляция теплоносителя происходит через байпас клана (порты В и АВ), то имеет место самая распространенная схема количественного регулирования. Ее применение, как правило, ограничено предельным перепадом давления в центральной системе теплоснабжения, поэтому наиболее часто применяется в автономных системах теплоснабжения. Но при проектировании такой схемы необходимо учесть, что расход в системе теплоснабжения или на источнике тепла является не постоянным, поэтому сетевое насосное оборудование должно быть оснащено частотными преобразователями.
Если необходимо обеспечить постоянный расход со стороны источника тепла, то в предыдущую схему следует добавить перед клапаном перемычку с установленными обратным клапаном и балансировочным вентилем (схема №5).
Если в схеме поменять перемычку и клапан местами, а циркуляцию воды во внутреннем контуре осуществлять через перемычку, то напор циркуляционного насоса в этом случае будет меньше на величину гидравлического сопротивления клапана. Расход теплоносителя со стороны теплосети останется постоянным, а клапан будет работать на свободном перепаде давления (схема №6).
Источник тепла определяет выбор схемы узла регулирования
На стадии проектирования систем вентиляции и систем теплоснабжения приточных установок выбор схем и типа узлов обвязки калориферов непосредственным образом зависит от самого источника тепла.
Так, например, индивидуальные котельные, как правило, не требовательны к температуре возвращаемого теплоносителя, но перепад в теплосети должен быть постоянным. То есть регулирующий клапан не должен быть перекрыт со стороны теплосети либо должна быть предусмотрена перемычка для протока воды через нее в обратку, когда прямой порт клапана закрывается. К таким схемам, в основном, относится узел обвязки калориферов, выполненный во 2-м варианте (схема №4). Таким образом, водогрейные котлы будут работать на постоянном расходе и не будут перегреваться при нехватке теплоносителя.
Узел обвязки калорифера с трехходовым клапаном без перемычек может использоваться при центральном теплоснабжении с независимым подключением через пластинчатый теплообменник. Это обусловлено низкими предельными параметрами теплоносителя: максимальной температурой (у латунных регулирующих клапанов это порядка 110°С, а чугунных 90-95°С) и рабочим давлением, как правило, не превышающим 10 атм. В центральных теплосетях возможны пиковые температуры порядка 150°С и скачки давления до 16 атм. Так как при работе трехходового клапана происходит закрытие прямого порта, то в сети теплоснабжения будет переменный расход. Основным требованием является установка на сетевой насос преобразователя частоты, который и будет подстраивать работу системы под изменяющиеся параметры. Также эта схема применима и для работы с котельными установками при выполнении всех выше сказанных требований.
Схема подключения калориферов №3 является наиболее универсальной, обладающей практически одними плюсами управления и регулирования, но имеющая более высокую стоимость. Главным распространением проектирования схемы с двухходовым седельным клапаном получило применение при зависимом подключении к теплосетям. Во время работы схемы в целом происходит так называемый «контроль обратки», когда автоматика отслеживает и контролирует при помощи клапана максимально разрешенную температуру теплоносителя возвращаемого в тепловую сеть. Со стороны центральной тепловой сети, как правило, существует достаточно большой избыточный перепад, который позволяет подбирать диаметр клапана по расчетному коэффициенту пропускной способности Kv. Диаметр клапана может быть значительно меньше диаметра системы, а, следовательно, инерционность срабатывания и реагирования системы теплоснабжения будет гораздо выше, чем в схемах с трехходовыми клапанами.
Основное оборудование узлов теплоснабжения. Подбор и расчет
В составе узлов теплоснабжения приточных установок, выполненных по различным схемам, как правило, входит идентичное оборудование. Отличаются такие узлы лишь местом установки, насыщенностью арматуры и способом подбора.
При подборе оборудования для узлов теплоснабжения существует несколько общих правил и рекомендаций:
- При выборе того или иного типа арматуры следует предельно внимательно проверять технические характеристики как максимальное рабочее давление, так и предельную температуру.
- Крайне не рекомендуется приобретать готовые смесительные узлы, которые подобраны исходя из усредненных условий без учета важных параметров как свободный перепад давления в системе, вид теплоносителя, расход, тип источника тепла, необходимость частотного регулирования и так далее.
- Диаметр запорной арматуры, а также обратных клапанов и грязевиков должен быть не меньше диаметра трубопроводов.
- Диаметр трубопроводов системы теплоснабжения определяется в результате гидравлического расчета исходя из расчетного (требуемого) расхода теплоносителя, типа теплоносителя (вода или низкозамерзающие жидкости) и материала трубопроводов. Диаметр узлов теплоснабжения ни в коем случае не должен подбираться исходя из присоединительных портов калорифера. Он подбирается ТОЛЬКО РАСЧЕТОМ!
Запорная арматура
Необходима для перекрывания протока воды в случаях аварийных остановок системы теплоснабжения, например, для устранения течи, для проведения сервисных или ревизионных работ и т.д. В качестве запорной арматуры применяют как стальные или латунные шаровые краны (желательно полнопроходного сечения) либо фланцевая арматура.
Для узлов теплоснабжения с диаметром трубопроводов до 40мм включительно принято устанавливать резьбовую запорную арматуру, а свыше 50 мм фланцевую.
Для облегчения монтажа или демонтажа узлов резьбовую арматуру следует предусматривать с накидными гайками, иначе называемыми «американками или сгонами».
Обратные клапаны
Обратные клапаны используются в узлах регулирования для предотвращения перетока воды обратно в систему теплоснабжения в случае открытия или закрытия регулирующих клапанов. Или это возможно когда система теплоснабжения не отбалансирована, в системе смонтировано большое количество установок и при изменении расходов теплоносителя может произойти передавливание друг друга. Поэтому обратные клапана устанавливаются на обратном трубопроводе и на перемычке узла теплоснабжения.
Регулирующие клапаны и приводы
Двухходовой или трехходовой регулирующий клапан является основным исполнительным механизмом, который путем изменения расхода или путем смешения теплоносителей позволяет регулировать мощность калорифера приточной установки в зависимости от потребности установки в нагреве. Еще одной важной функцией работы клапана является предотвращение «замерзания» теплоносителя при работе установок в зимнее время. Когда автоматика получает сигнал о критических температурах теплоносителя и воздуха после калорифера привод максимально открывает регулирующий клапан на проток.
Подбор клапана производится на основании определения коэффициента пропускной способности Kv, который означает какой расход теплоносителя пройдет через клапан в открытом состоянии при потерях на нем в 10 метров водяного столба.
,
Типоразмер регулирующего клапана нельзя подбирать по диаметру трубопровода или портов калорифера. Чем меньше Kv или диаметр клапана, тем скорость реагирования на изменение параметров воздуха или теплосети будет выше, то есть система будет не инерционная.
В системах теплоснабжения приточных установок используются, как правило, двух и трехходовые клапана. Двухходовые клапана работают только в системах с изменением расхода теплоносителя, а трехходовые либо как смесительные, либо работающие на разделение тепловых потоков.
Измерительная арматура: манометры и термометры
Манометры и термометры являются необходимыми инструментами для визуального контроля работоспособности системы теплоснабжения. Термометры обычно устанавливаются на подающем и обратном трубопроводе непосредственно у калорифера. Манометры монтируются на насосной группе для контроля работы насоса и визуального определения создаваемого перепада. Манометры также ставят до и после грязевика – для определения степени его засоренности, и на подающем и обратном трубопроводе тепловой сети перед узлом обвязки – для контроля свободного перепада, необходимого для полноценной работы регулирующего клапана.
Воздухоспускные клапана и краны для слива системы
Автоматический воздухоспускной клапан
Для спуска воздуха после заполнения системы и в процессе эксплуатации в узлах обвязки рекомендуется устанавливать автоматические воздухоспускные краны. Их удобно монтировать на специальных портах, врезанных в калачи калорифера в верхней части корпуса либо в наивысшей точке трубопроводов узла регулирования.
Краны для опорожнения калориферов и слива участка системы теплоснабжения следует монтировать в самой низкой точке узла регулирования, либо в нижней части калорифера.
Балансировочные клапана
Если в системе теплоснабжения предусмотрено несколько приточных установок, работающих в своем независимом режиме, то тепловые потоки в трубопроводах будут не постоянны и могут значительно отличатся друг от друга. Чтобы не произошло передавливания друг друга со стороны теплоносителя, предусматривают балансировочные клапана. Их главной и основной функцией является дросселирование избыточного давления и уравнивание распределения расходов воды между калориферами в соответствии с потребностями. Установленные на обратных трубопроводах балансировочные клапана производят гидравлическую увязку калориферов между собой.
Подбор клапанов производится по аналогии с подбором регулирующих клапанов с учетом коэффициента Kv. Исходными данными для определения типоразмера клапана является избыточный перепад давления, который должен погасить балансировочный клапан, и расчетный расход на участке сети.
Циркуляционный насос
Циркуляционный насос внутреннего контура узла обвязки предназначен для обеспечения постоянной циркуляции воды в калорифере. Это позволит минимизировать риск возникновения угрозы «размораживания» калорифера при низких уличных температурах воздуха. Но главным предназначением насосов является преодоление гидравлических сопротивлений на регулируемом участке, то есть на всех функциональных элементах смесительного узла, разгруженных от давления теплосети.
Под регулируемым участком, как правило, подразумевают калорифер, трубопроводы, запорную и балансировочную арматуру, обратные клапана и грязевик. Регулирующий клапан может входить в состав регулируемого участка в зависимости от принятой схемы обвязки калорифера. Если регулирующий клапан установлен в узле обвязки таким образом, что циркуляция теплоносителя во внутреннем контуре происходит через перемычку самого клапана при закрытом прямом порту, то клапан входит в состав циркуляционного контура. В таких случаях напор насоса определяется как сумма гидравлических сопротивлений всех элементов регулируемого участка. Следует помнить, что в случае, когда теплоноситель в системе теплоснабжения является не вода, гидравлическое сопротивление всех элементов регулируемого участка и расчетный расход следует корректировать в зависимости от вязкости и плотности теплоносителя. Гидравлические потери на грязевиках следует учитывать с запасом на 50% засорение.
Если регулирующий клапан работает на перепаде тепловой сети (схема №3), то в расчет напора насоса потери давления на клапане не учитываются.
При расчете сопротивления трубопроводов на трение обязательно следует учитывать все потери давления на ответвлениях, углах и поворотах. Также обязательно учитывать шероховатость стенок трубопроводов в соответствии с выбранным материалом.
Все потери давления на элементах узла обвязки следует определять только при рабочем расходе теплоносителя, а не в соответствии с максимальным расходом калорифера, который он способен пропустить.
Подбор циркуляционных насосов производится по техническим каталогам производителей в соответствии с рабочими точками (расчетный расход воды и требуемый напор). Наиболее распространенным типом насосов в узлах являются трехскоростные насосы с мокрым ротором. В случае, когда требуется плавное изменение расхода в контуре приточной вентиляции, применяются насосы с встроенным частотным преобразователем.
Грязевик
Грязевики являются фильтрами механической очистки теплоносителя, как правило, с размером сетки порядка 500 микрон. В старых системах теплоснабжения отопительная вода содержит много взвешенных частиц, песок или окалину. Все эти загрязнения могут вывести из строя регулирующие клапана и циркуляционные насосы. Поэтому установка грязевиков непосредственно перед оборудованием является обязательным условием сохранения работоспособности и гарантии.
Защита калориферов от разморозки. Теплоносители в системах вентиляции
Количество и назначение калориферов в установках приточной вентиляции может быть различным в зависимости от состава установки и назначения ее работы. Калориферы могут быть первого нагрева, второго нагрева, с предварительным нагревом перед пластинчатыми рекуператорами, раздельными для работы в разное время года или использоваться для согрева на отдельных ответвлениях воздуховодов, если температурный режим обслуживаемых помещений различен.
Поэтому принято говорить, что калориферы преднагрева или 1-й ступени нагрева всегда работают на «остром» воздухе. То есть в нагреватели поступает воздух с очень низкой температурой. В условиях континентального климата опасность разморозки калориферов очень велика в момент запуска установок зимой или при новом строительстве, когда часты перебои и в электроснабжении так и перебои с подачей горячей воды.
Причин замерзания воды в калориферах в зимнее время может быть огромное количество: от случайного закрытия задвижки на вводе до сбоя в системе электроснабжения и автоматики. Также наиболее часто встречающейся причиной разморозки является неверный выбор схемы, малый перепад давления системе теплоснабжения, неверный подбор регулирующего клапана и привод с большим временем срабатывания.
Размороженный калорифер приточной системы вентиляции
Также следует знать, что идеальным выбором для управления регулирующими клапанами является привод с аналоговым управлением по сигналу 0-10V. Не менее редкой причиной размораживания системы является несогласованная работа систем приточной и вытяжной вентиляции. Например, частый случай, когда в нерабочее время отключаются приточные установки, а вытяжные по каким либо причинам продолжают работать, а в здании создается разряжение воздуха. Для восполнения воздушного баланса воздух начинает подсасываться через все доступные неплотности, в том числе и через негерметичную воздушную заслонку. Таким образом, при отключенной автоматике системы и нечувствительных датчиках сигнал о низких температурах не выдает команду для автоматики на включение прогрева системы теплоснабжения и вода в теплообменнике замерзает.
Видео на тему разморозки калорифера приточной системы вентиляции:
Безусловно, узлы обвязки калориферов должны быть также оснащены необходимым количеством датчиков и защитных термостатов комплекте со шкафами управления, но в случае скачков напряжения или отсутствия электропитания система автоматизации не сможет защитить калориферы. Единственным вариантом защитить систему от размораживания со 100% гарантией является заполнение ее низкозамерзающими теплоносителями.
К основным достоинствам антифризов относятся низкая температура кристаллизации, отсутствие температурных расширений в замерзшем состоянии, что не приводит к разрыву стенок воздухонагревателей. В состав низкозамерзающих жидкостей входят комплекты присадок, которые защищают систему трубопроводов от коррозии, минимизируют кавитацию и предотвращают выпадение осадка при нагреве или остывании системы.
Использование низкотемпературных теплоносителей в некоторых системах теплоснабжения ограничено предельной максимальной температурой 95-100°С, выше которой произойдет распад химического состава. Поэтому в индивидуальном тепловом пункте на теплообменнике разделения сред (вода-НЗТ) следует устанавливать регулятор температуры или клапан, которые будут защищать контур системы теплоснабжения от повышения температуры выше критической.
В системах теплоснабжения, как правило, используют этиленгликолевые или пропилен-гликолевые смеси которые отличаются как ценой, так и областью применения. Этиленгликоль является наиболее дешевым теплоносителем, поэтому получил наибольшее распространение в инженерных системах. Пропилен-гликолевые смеси используются на безопасных производствах, где в случае разгерметизации системы токсичный теплоноситель может нести потенциальную угрозу жизни или нарушения технологического цикла. Такие требования встречаются в основном в пищевой промышленности или в медицинских учреждениях.
Низкозамерзающий теплоноситель с температурой кристаллизации -30°С содержит 40% этиленгликоля в смеси с дистиллированной водой. Главной особенностью всех теплоносителей на основе этиленгликоля является образование пластичного геля при низких температурах, который не образует разрыв трубок калориферов или образование трещин в сварных соединениях.
Низкозамерзающий теплоноситель с температурой кристаллизации _65 градусов использовать в системах теплоснабжения не рекомендуется, а следует его разводить водой до необходимой концентрации.
После заполнения сетей этиленгликолевыми растворами систему следует тщательно опрессовать, так как наиболее вероятно, что в местах резьбовых соединений могут возникнуть небольшие подтеки теплоносителя или течи. Это обусловлено низким поверхностным натяжением всех теплоносителей и способностью проникать во все щели и неплотности системы.
При проведении гидравлического расчета системы теплоснабжения, которая будет заполнена раствором этиленгликоля, следует учитывать, что расход теплоносителя будет больше на 8% относительно расхода воды, а напор насосного оборудования в среднем должен быть увеличен на 54%. При подборе диаметров участков трубопроводов необходимо учитывать повышенную вязкость теплоносителей и вводить поправку на увеличение диаметра, где это необходимо.