- Расчет производительности насоса для отопления
- Разновидности устройств
- Расчет мощности
- Расчет производительности по теплу
- Расчет подачи воды
- Расчет напора воды
- Кавитация в системе отопления
- Автоматическое регулирование
- Повышение эффективности теплогенератора с учетом снижения кавитации
- Increasing heat generator efficiency with consideration of cavitation effect
- Кавитационный теплогенератор своими руками чертежи устройство
- Устройство и принцип работы
- Простейшая модель
- Идеальный теплогенератор Потапова
- Что такое кавитация
- Сделать своими руками?
- Роторный теплогенератор
- Трубчатые
- Ультразвуковые
- Типы обогревателей
- Применение
- Плюсы и минусы
- КТГ своими руками
- Самостоятельное изготовление оборудования
Расчет производительности насоса для отопления
Любая замкнутая система отопления нуждается в предварительных расчетах для мощности насоса систем водоснабжения и отопления, чтобы быть уверенным, что помещение будет прогреваться максимально равномерно. Чтобы начать расчет насоса отопления, важно определиться с его типом.
Разновидности устройств
Каждый из двух модификаций насосов имеет свои особенности, если прибор с «сухим» ротором обычно более громоздок, то насос с «мокрым» ротором, как правило, компактнее, но ограничен по мощности и не подходит для больших систем. Мокрым ротор называется из-за того, что подвижные части мотора находятся в воде, ей же осуществляется их смазка и охлаждение, что предъявляет некоторые требования по чистоте к перекачиваемой воде.
Циркуляционные насосы в системе отопления
При этом электрические компоненты мотора изолированы от частей, находящихся в воде, разделительным стаканом. Насосы, имеющие «сухой» ротор, охлаждаются воздушным путем, поэтому они чаще всего и более шумные.
Расчет мощности
Оптимальный выбор насоса определяется по графику пересечения кривых напора и расхода воды, значения которых определяются по внутренним характеристикам отопительной системы или водоснабжения. Выбор будет оптимальным, если насос в выбранной рабочей точке будет работать с лучшим КПД, в этом случаем можно считать расчет мощности насоса отопления выполненным верно.
В такой рабочей точке мощность насоса соответствует потреблению энергии отопительной системой. Если рабочая точка выбрана неверно, то установленный по ней насос будет работать плохо, потребляя более высокую мощность, чем это необходимо и, в конечном счёте, может привести к перегрузке и выходу из строя насоса и всей отопительной системы. В таких случаях приходится выбирать новый более мощный насос.
Рабочая точка насоса
Мощность насоса отопления определяется по формуле:
P2(кВт) = (p * Q * H) / 367 * КПД,
здесь p – плотность воды в килограммах на литр, Q – расход воды в кубометрах в час, H – напор воды в метрах.
Расчет производительности по теплу
Производительность насоса по теплу определяется по простой формуле:
Q = S * Qуд / 1000,
здесь Q – производительность в киловаттах, S – площадь отопления в квадратных метрах, Qуд — удельное энергопотребление в ваттах на квадратный метр.
Удельное потребление энергии отличается для разных типов помещений. В обычных многоквартирных домах — около 70 Ватт на квадратный метр, в частных домах индивидуальной застройки оно принимается равным 100 Ватт на квадратный метр.
Расчет подачи воды
Подачу воды следует вычислять по формуле:
здесь V – подача воды в кубометрах в час, 1.16 — характеристика теплоёмкости воды, T – разность температур, обычно 10-20 градусов.
Расчет напора воды
Напор воды рассчитывается по формуле:
H = R * L * ZF / 10000,
здесь H — напор в метрах, R — удельное давление в трубопроводе, характеризующее его сопротивление напору, в Паскалях на метр (типичные значения 100-150 Паскалей на метр), L – метраж самого протяжённого участка трубопровода, ZF – нормализующий коэффициент (2.2 для отопительных систем и 2.6 для систем горячего водоснабжения).
Кавитация в системе отопления
В любом трубопроводе возможно возникновение кавитации. Разница в давлении вследствие, например, вследствие естественного спада давления в точках с разной высотой, трения потоков воды о стенки труб или ротора, на участках трубопровода приводит к кавитации — образованию микроскопических пузырьков из насыщенного пара в зонах с пониженным давлением.
Обычно такие зоны существуют недолго и как только давление повышается до значения, когда образовавшийся насыщенный пар не может существовать в равновесии с жидкостью, микропузырьки схлопываются, порождая микроскопическое подобие взрывов. Сами пузырьки и их схлопывание поодиночке не опасны, но, когда их много, это грозит к разрушениям материала труб, насоса и других узлов системы отопления.
Кавитационный нагрев воды
Для минимизации кавитации следует по возможности обеспечить ровное давление на всех участках системы и чем выше это давление, тем лучше. Понижение температуры перекачиваемой воды уменьшает вероятность кавитационных явлений. Также очевидно, что насосы с меньшим числом оборотов будут создавать меньше кавитации, что тоже нужно учитывать при выборе насоса.
Верно осуществленный расчет насоса отопления и правильно подобранный насос гарантируют эффективность функционирования систем отопления и водоснабжения.
Если вы не уверены в возможности самостоятельно рассчитать характеристики нужного насоса отопительной системы, то лучше предоставить это профессионалам. Специалист произведёт все необходимые расчёты, поможет вам в выборе лучшего насоса и установит его.
Автоматическое регулирование
Моторы насосов потребляют значительное количество энергии и, с учетом их непрерывной работы в течении больших промежутков времени, такое их энергопотребление может стать заметной статьёй в расходах на содержание дома.
Насосы с автоматической регулировкой потребляемой электроэнергии станут хорошим выбором. Такие устройства могут сократить потребление электричества на 50%.
Использование современных эффективных насосов позволит сократить расходы электроэнергии на 80%. Система автоматической подстройки мощности поможет снизить расходы на работу в то время, когда нет необходимости в полной нагрузке отопительной системы.
Повышение эффективности теплогенератора с учетом снижения кавитации
Проанализированы конвективные системы отопления на основе комплексного подхода к инженерным системам. Установлены причины и условия возникновения кавитационного явления, его последствия в инженерных системах. Предлагаются способы устранения кавитационных явлений и использования положительных свойств кавитации. Разработана методика проектирования конвективной системы отопления с учетом кавитационного эффекта. Определено: направлением совершенствования конвективных систем отопления может быть установка дополнительного оборудования – кавитационного теплогенерирующего комплекса, что при небольших затратах (15–20 тыс. руб) позволит значительно повысить эффективность (на 20–22 %) и ресурс данных систем, снизить энергозатраты (на 15–17 %) и объем водопотребления (на 3–5 %).
Increasing heat generator efficiency with consideration of cavitation effect
Convective heating systems are analysed based on complex approach to technical systems. Reasons and conditions of cavitation event appearance have been found along with consequences for technical systems. Methods to eliminate cavitation events and using positive properties of cavitation are proposed. Designing method for convective heating system is developed, with consideration of cavitation effect. It is found that as development direction for convective heating systems, can be installation of additional equipment – cavitation heat generating complex; at rather small costs (15–20 thousand roubles) it will allow sufficiently enhance efficiency (by 20–22 %) and life time of the system, reduce power consumption (by 15–17 %) and water consumption volume (by 3–5 %).
Большинство современных промышленных предприятий по экономическим соображениям, требованиям экологии, а также в связи с ограниченными запасами воды в природных источниках применяет оборотную систему технического водоснабжения. Прошедшая механическую очистку вода используется для технологических целей, а также допускается к использованию в качестве теплоносителя в системах отопления. В них при длительной эксплуатации образуются воздушные пробки и зашлаковывание труб, что приводит к снижению эффективности и шуму в трубах. Эти недостатки могут быть компенсированы установкой дополнительного оборудования: кавитационного теплогенератора совместно с гидроциклоном (кавитационного теплогенерирующего комплекса) для удаления воздуха и частиц шлама из системы, улучшения химико-физических свойств теплоносителя.
В системах отопления вода используется многократно, ухудшается ее качество, что, в свою очередь, приводит к более быстрому износу систем конвективного отопления, которые в ряде случаев проектируются без учета ухудшения качества вторично используемой воды.
Преждевременная потеря мощности насосного оборудования, вызывающая падение давления в сети ниже определенной критической величины, как правило, приводит к возникновению такого нежелательного явления, как кавитация. Это явление может значительно усиливаться примесями, находящимися в оборотной воде.
Фактически увеличение скорости потока жидкости, снижение давления на входе и резкое повышение температуры перекачиваемой жидкости являются основными причинами кавитации. Поэтому кавитация характерна не только для напорных систем водоснабжения, но и для отопительных систем в момент их пуска и при нагревании теплоносителя. Признаком кавитации в отопительных системах являются так называемые щелчки и характерные стуки в трубах и нагревательных приборах. Это явление также наблюдается в системах горячего водоснабжения с использованием местных нагревательных котлов (когда жидкость нагревается периодически, неравномерно по времени). Кроме того, многие исследователи считают, что кавитация может возникать при изменении характера потока жидкости с ламинарного на турбулентный режим.
Кавитационный теплогенератор своими руками чертежи устройство
Устройство и принцип работы
Принцип действия кавитационного теплогенератора заключается в эффекте нагрева за счет преобразования механической энергии в тепловую. Теперь более детально рассмотрим само кавитационное явление. При создании избыточного давления в жидкости возникают завихрения, из-за того, что давление жидкости больше чем у содержащегося в ней газа, молекулы газа выделяются в отдельные включения – схлопывание пузырьков. За счет разности давления вода стремиться сжать газовый пузырь, что аккумулирует на его поверхности большое количество энергии, а температура внутри достигает порядка 1000 — 1200ºС.
При переходе кавитационных полостей в зону нормального давления пузырьки разрушаются, и энергия от их разрушения выделяется в окружающее пространство. За счет чего происходит выделение тепловой энергии, а жидкость нагревается от вихревого потока. На этом принципе основана работа тепловых генераторов, далее рассмотрите принцип работы простейшего варианта кавитационного обогревателя.
Простейшая модель
Рис. 1: Принцип работы кавитационного теплогенератора
Посмотрите на рисунок 1, здесь представлено устройство простейшего кавитационного теплогенератора, который заключается в нагнетании насосом воды к месту сужения трубопровода. При достижении водяным потоком сопла давление жидкости значительно возрастает и начинается образование кавитационных пузырьков. При выходе из сопла пузырьки выделяют тепловую мощность, а давление после прохождения сопла значительно снижается. На практике может устанавливаться несколько сопел или трубок для повышения эффективности.
Идеальный теплогенератор Потапова
Идеальным вариантом установки считается теплогенератор Потапова, который имеет вращающийся диск (1) установленный напротив стационарного (6). Подача холодной воды осуществляется с трубы расположенной внизу (4) кавитационной камеры (3), а отвод уже нагретой с верхней точки (5) той же камеры. Пример такого устройства приведен на рисунке 2 ниже:
Рис. 2: кавитационный теплогенератор Потапова
Но широкого распространения устройство не получило из-за отсутствия практического обоснования его работы.
Что такое кавитация
Кавитация – это негативное явление, которое возникает из-за перепада давления в жидкости. Когда давление воды понижается до значения давления насыщенного пара – это приводит к вскипанию. Это когда жидкость частично переходит в состояние пара, то есть образуются пузырьки. Когда давление повышается до уровня выше значения насыщенного пара – пузырьки лопаются. В результате всхлопывания возникают локальные волны давления до 7 тыс. бар. Эти волны давления и называются кавитацией.
Для утепления мансарды изнутри минватой своими руками нужно использовать паробарьеры.
Это касается и технологии утепления крыши изнутри минватой. Но кроме пароизоляции еще используется гидробарьер.
- эрозия металлов;
- питтинговая коррозия;
- появление вибраций.
Изобретатели кавитационного генератора уверяют, им удалось извлечь из негативного явления пользу.
Сделать своими руками?
Вы можете купить готовый кавитационный теплогенератор, но сделать это устройство своими руками по чертежам вряд ли получиться. В лучшем случае выйдет шумная машина, в которой кавитации не будет. Кроме этого, перед тем как что-то сделать, нужно задать себе вопрос: «Зачем?». Есть масса способов обогреть дом:
- газовые, твердотопливные, электрические котлы в тандеме с водяными системами отопления;
- электрические обогреватели;
- системы ПЛЭН;
- теплые инфракрасные полы;
- кондиционер;
- тепловые насосы или гелиосистемы – если хочется экзотики.
Не верьте тем, кто говорит, что сделать кавитационные теплогенераторы своими руками легко и просто, потратив две копейки. Это не так. Вы потратите только свое время и не получите взамен ничего, кроме разочарования.
Выбор материалов для утепления кровли изнутри минватой относительно невелик.
По сравнению со скатной крышей, утепление чердачного перекрытия минватой является более простым процессом.
Вот на видео ниже пример того, как народный умелец сделать данный прибор. Как думаете, можно им обогреть хоть что-нибудь?
Основная задача кавитационного теплогенератора – образование газовых включений, а от их количества и интенсивности будет зависеть качество нагрева. В современной промышленности существует несколько видов таких теплогенераторов, отличающихся принципом выработки пузырьков в жидкости. Наиболее распространенными являются три вида:
- Роторные теплогенераторы – рабочий элемент вращается за счет электропривода и вырабатывает завихрения жидкости;
- Трубчатые – изменяют давление за счет системы труб, по которым движется вода;
- Ультразвуковые – неоднородность жидкости в таких теплогенераторах создается за счет звуковых колебаний низкой частоты.
Помимо вышеперечисленных видов существует лазерная кавитация, но промышленной реализации этот метод еще не нашел. Теперь рассмотрим каждый из видов более детально.
Роторный теплогенератор
Состоит из электрического двигателя, вал которого соединен с роторным механизмом, предназначенным для создания завихрений в жидкости. Особенностью роторной конструкции является герметичный статор, в котором и происходит нагревание. Сам статор имеет цилиндрическую полость внутри – вихревую камеру, в которой происходит вращение ротора. Ротор кавитационного теплогенератора представляет собой цилиндр с набором углублений на поверхности, при вращении цилиндра внутри статора эти углубления создают неоднородность в воде и обуславливают протекание кавитационных процессов.
Рис. 3: конструкция генератора роторного типа
Количество углублений и их геометрические параметры определяются в зависимости от модели вихревого теплогенератора. Для оптимальных параметров нагрева расстояние между ротором и статором составляет порядка 1,5мм. Данная конструкция является не единственной в своем роде, за долгую историю модернизаций и улучшений рабочий элемент роторного типа претерпел массу преобразований.
Одной первых эффективных моделей кавитационных преобразователей был генератор Григгса, в котором использовался дисковый ротор с несквозными отверстиями на поверхности. Один из современных аналогов дисковых кавитационных теплогенераторов приведен на рисунке 4 ниже:
Рис. 4: дисковый теплогенератор
Несмотря на простоту конструкции, агрегаты роторного типа достаточно сложные в применении, так как требуют точной калибровки, надежных уплотнений и соблюдения геометрических параметров в процессе работы, что обуславливает трудности их эксплуатации. Такие кавитационные теплогенераторы характеризуются достаточно низким сроком службы – 2 — 4 года из-за кавитационной эрозии корпуса и деталей. Помимо этого они создают достаточно большую шумовую нагрузку при работе вращающегося элемента. К преимуществам такой модели относится высокая продуктивность – на 25% выше, чем у классических нагревателей.
Трубчатые
Статический теплогенератор не имеет вращающихся элементов. Нагревательный процесс в них происходит за счет движения воды по трубам, сужающимся по длине или за счет установки сопел Лаваля. Подача воды на рабочий орган осуществляется гидродинамическим насосом, который создает механическое усилие жидкости в сужающемся пространстве, а при ее переходе в более широкую полость возникают кавитационные завихрения.
В отличии от предыдущей модели трубчатое отопительное оборудование не производит большого шума и не изнашивается так быстро. При установке и эксплуатации не нужно заботиться о точной балансировке, а при разрушении нагревательных элементов их замена и ремонт обойдутся куда дешевле, чем у роторных моделей. К недостаткам трубчатых теплогенераторов относят значительно меньшую производительность и громоздкие габариты.
Ультразвуковые
Данный тип устройства имеет камеру-резонатор, настроенную на определенную частоту звуковых колебаний. На ее входе устанавливается кварцевая пластина, которая производит колебания при подаче электрических сигналов. Вибрация пластины создает волновой эффект внутри жидкости, который достигая стенок камеры-резонатора и отражается. При возвратном движении волны встречаются с прямыми колебаниями и создают гидродинамическую кавитацию.
Рис. 5: принцип работы ультразвукового теплогенератора
Далее пузырьки уносятся водным потоком по узким входным патрубкам тепловой установки. При переходе в широкую область пузырьки разрушаются, выделяя тепловую энергию. Ультразвуковые кавитационные генераторы также обладают хорошими эксплуатационными показателями, так как не имеют вращающихся элементов.
Типы обогревателей
Кавитационный котел отопления относится к одному из распространенных типов обогревателей. Наиболее востребованные из них:
- Роторные установки, среди которых особого внимания заслуживает устройство Григгса. Суть его действия основана на центробежном насосе роторного действия. Внешне описываемая конструкция напоминает диск с несколькими отверстиями. Каждая такая ниша называется ячейкой Григгса, их количество и функциональные параметры взаимозависимы с частотой вращения привода, типом применяемой генераторной установки. Рабочая жидкость подогревается в пространстве между ротором и статором из-за быстрого перемещения по дисковой поверхности.
- Статические обогреватели. Котлы лишены каких-либо передвигающихся деталей, кавитация в них обеспечивается за счет специальных элементов Лаваля. Установленный в отопительную систему насос задает необходимое давление воды, которая начинает быстро передвигаться и подогреваться. За счет узких отверстий в соплах жидкость перемещается в ускоренном режиме. Из-за ее быстрого расширения достигается необходимая для обогрева кавитация.
Выбор того или иного нагревателя зависит от потребностей человека. Следует учитывать, что роторный кавитатор более производителен, к тому же он отличается меньшими размерами.
Особенность статического агрегата заключается в отсутствии вращающихся деталей, чем и обуславливается его продолжительный эксплуатационный срок. Длительность работы без технического обслуживания достигает 5 лет. Если же сломается сопло, его без труда можно заменить, что стоит гораздо дешевле в сравнении с приобретением нового рабочего элемента в роторную установку.
Применение
В промышленности и в быту кавитационные теплогенераторы нашли реализацию в самых различных сферах деятельности. В зависимости от поставленных задач они применяются для:
- Отопления – внутри установок происходит преобразование механической энергии в тепловую, благодаря чему нагретая жидкость двигается по системе отопления. Следует отметить, что кавитационные теплогенераторы могут отапливать не только промышленные объекты, но и целые поселки.
- Нагревание проточной воды – кавитационная установка способна быстро нагревать жидкость, за счет чего может легко заменять газовую или электрическую колонку.
- Смешение жидких веществ – за счет разрежения в слоях с получением мелких полостей такие агрегаты позволяют добиться надлежащего качества перемешивания жидкостей, которые естественным образом не совмещаются из-за разной плотности.
Плюсы и минусы
В сравнении с другими теплогенераторами, кавитационные агрегаты отличаются рядом преимуществ и недостатков.
К плюсам таких устройств следует отнести:
- Куда более эффективный механизм получения тепловой энергии;
- Расходует значительно меньше ресурсов, чем топливные генераторы;
- Может применяться для обогрева как маломощных, так и крупных потребителей;
- Полностью экологичен – не выделяет в окружающую среду вредных веществ во время работы.
К недостаткам кавитационных теплогенераторов следует отнести:
- Сравнительно большие габариты – электрические и топливные модели имеют куда меньшие размеры, что немаловажно при установке в уже эксплуатируемом помещении;
- Большая шумность за счет работы водяного насоса и самого кавитационного элемента, что затрудняет его установку в бытовых помещениях;
- Неэффективное соотношение мощности и производительности для помещений с малой квадратурой (до 60м2 выгоднее использовать установку на газу, жидком топливе или эквивалентной электрической мощности с нагревательным тэном).\
КТГ своими руками
Наиболее простым вариантом для реализации в домашних условиях является кавитационный генератор трубчатого типа с одним или несколькими соплами для нагревания воды. Поэтому разберем пример изготовления именно такого устройства, для этого вам понадобится:
- Насос – для нагревания обязательно выбирайте тепловой насос, который не боится постоянного воздействия высоких температур. Он должен обеспечивать рабочее давление на выходе в 4 – 12атм.
- 2 манометра и гильзы для их установки – размещаются с двух сторон от сопла для измерения давления на входе и выходе из кавитационного элемента.
- Термометр для измерения величины нагрева теплоносителя в системе.
- Клапан для удаления лишнего воздуха из кавитационного теплогенератора. Устанавливается в самой верхней точке системы.
- Сопло – должно иметь диаметр проходного отверстия от 9 до 16мм, делать меньше не рекомендуется, так как кавитация может возникнуть уже в насосе, что значительно снизит срок его эксплуатации. По форме сопло может быть цилиндрическим, коническим или овальным, с практической точки зрения вам подойдет любое.
- Трубы и соединительные элементы (радиаторы отопления при их отсутствии ) – выбираются в соответствии с поставленной задачей, но наиболее простым вариантом являются пластиковые трубы под пайку.
- Автоматика включения/отключения кавитационного теплогенератора – как правило, подвязывается под температурный режим, устанавливается на отключение примерно при 80ºС и на включение при снижении менее 60ºС. Но режим работы кавитационного теплогенератора вы можете выбрать самостоятельно.
Рис. 6: схема кавитационного теплогенератора
Перед соединением всех элементов желательно нарисовать схему их расположения на бумаге, стенах или на полу. Места расположения необходимо размещать вдали от легковоспламеняемых элементов или последние нужно убрать на безопасное расстояние от системы отопления.
Соберите все элементы, как вы изобразили на схеме, и проверьте герметичность без включения генератора. Затем опробуйте в рабочем режиме кавитационного теплогенератора, нормальным нарастанием температуры жидкости считается 3- 5ºС за одну минуту.
Самостоятельное изготовление оборудования
Создать кавитатор своими руками вполне реально, но предварительно стоит ознакомиться со схематическими особенностями, точными чертежами агрегата, понять и подробно изучить принцип, по которому он действует. Наиболее простой моделью принято считать ВТГ Потапова с показателем КПД в 93%. Схематически теплогенератор довольно прост, будет уместен в быту и промышленном применении.
Приступая к сборке агрегата, необходимо подобрать в систему насос, который должен полностью соответствовать требованиям мощности, необходимой тепловой энергии. В большинстве своем описываемые генераторы по форме напоминают сопло, такие модели самые удобные и простые для домашнего применения.
При собственноручном создании теплогенератора не забываем нужные зап.части, например, гильзы
Создание кавитатора невозможно без предварительной подготовки определенных инструментов и приспособлений. К ним относятся:
- патрубки входного и выходного типа, оснащенные краниками;
- манометры, измеряющие давление;
- термометр, без которого невозможно произвести замер температуры;
- гильзы, которыми дополняются термометры;
- вентили, с помощью которых из всей отопительной системы устраняются воздушные пробки.
Специалисты рекомендуют следить за диаметральным показателем сечения отверстия, которое присутствует между конфузором и диффузором. Оптимальные пределы варьируются от 8 до 15 единиц, выход за эти рамки нежелателен.
Последовательность конструирования кавитационного теплогенератора своими руками представлена следующими действиями: