Общие сведения о системах отопления — реферат по строительству
|
Тезисы:
- К системе отопления предъявляются разнообразные требования.
- Принципиальные схемы замкнутой (а) и разомкнутой (б) системы парового отопления.
- Виды систем отопления.
- Характеристика систем отопления.
- Основные виды систем отопления.
- Классификация систем отопления.
- Теплоносители в системах отопления.
- Основные конструктивные элементы системы отопления (рис.1.1).
- Принципиальная схема системы отопления.
- Системы водяного отопления по способу создания циркуляции.
Похожие работы:
26 Кб / 17 стр / 2782 слов / 19738 букв / 8 окт 2010
71 Кб / 9 стр / 2263 слов / 15954 букв / 20 июл 2007
4 Мб / 68 стр / 8993 слов / 65082 букв / 26 июл 2014
768 Кб / 27 стр / 3759 слов / 25126 букв / 10 ноя 2008
8 Кб / 3 стр / 1305 слов / 7580 букв / 27 июл 2008
6 Кб / 2 стр / 473 слов / 3364 букв / 2 мая 2008
11 Кб / 16 стр / 2221 слов / 15797 букв / 16 июл 2014
5 Кб / 1 стр / 425 слов / 2842 букв / 22 сен 2020
67 Кб / 18 стр / 2260 слов / 14907 букв / 24 мар 2010
13 Кб / 6 стр / 2033 слов / 15168 букв / 2 мая 2008
Отопление
Главная > Реферат >Промышленность, производство
История отопления неразрывно связана с историей человечества. Первые отопительные устройства, а это были обыкновенные костры, разведенные непосредственно в жилище, были известны еще в каменно веке.
Приблизительно за пару веков до нашей эры появились первые отопительные печи с отводом продуктов горения через дымовые трубы. Эти печи, постоянно совершенствуясь, долгое время служили (и служат по наше время) основным способом отопления. За все время использования печей их эффективность сильно увеличилась. Так, например кпд классической двухъярусной русской печи (самый высокий кпд среди всех известных) составляет от 60 % до 80 % — то есть приближается к кпд современных твердотопливных котлов.
Особый вклад в историю отопления внесли инженеры Римской Империи. Именно здесь зародились системы центрального отопления и теплого пола. Эти системы работали благодаря сети специальных каналов, размещенных под полом и в стенах, по которым пропускались горячие дымовые газы из печи. В место того чтобы строить печь для каждого отдельного помещения римские инженеры использовали одно специализированное помещение и сеть каналов. Это был важный этап в истории отопления.
С XV в. уже применялось воздушное отопление с подачей в помещение горячего воздуха, нагревавшегося при соприкосновении с поверхностями печи. В XVIII веке появились системы водяного и парового отопления. Первые примеры применения водяного пара для обогрева помещений в России приводятся в книге Николая Львова «Русская пиростатика», вышедшей в 1799 году. С начала XIX века пар находит все большее применение, как для отопления помещений, так и для обогрева теплиц. Но широкое распространение они находят лишь во второй половине XIX в. В это же время, приблизительно в 1855 году, был изобретен первый отопительный радиатор. Выглядел первый радиатор как прямоугольная коробка из толстых металлических труб с вертикальными дисками. Изобретателем был русский немец итальянского происхождения Франц Карлович Сан-Галли проживавший в то время в Санкт-Петербурге.
К началу XX века относиться создание лучистого и панельного отопления. Но основное направление в развитии отопительных систем было направлено на усовершенствование котлов, печей и радиаторов. Получают свое развитие системы центрального отопления, теплофикации и централизованного теплоснабжения. К концу XX века особую популярность получает новый вид топлива – природный газ.
Современные пути развития отопительных систем направлены на поиск новых источников топлива (например, солнечные коллекторы, производимые компаниями Buderus, Wolf, Vaillant), энергосбережение и учет.
Отопление – это искусственный обогрев помещений в холодный период года с целью возмещения в них теплопотерь и поддержания на заданном уровне температуры. Отопление, водоснабжение – две системы, без которых сегодня не обходится ни одно жилище. Отопление является одной из важнейших составляющих уюта и комфорта.
Отопительное устройство характеризуется наличием генератора или источника теплоты, коммуникаций для передачи теплоты, теплоотдающих устройств или поверхностей. В генераторе теплоноситель получает необходимое количество теплоты. По теплопроводам теплоноситель перемещается к нагревательным приборам, которые передают теплоту воздуху и ограждениям помещений. Генератором теплоты может служить печь или котельный агрегат, где сжигается топливо, теплообменные аппараты или смесительные устройства, использующие теплоносители иных параметров, чем в системе отопления. В качестве теплоносителей используют воду, пар или воздух, а также дымовые газы.
К системам отопления предъявляется ряд требований:
1) санитарно — гигиеншеские — обеспечение требуемой температуры воздуха в помещениях без ухудшения состояния воздушной среды;
2) экономические — минимальные приведенные затраты при ‘уменьшении расхода металла и других материалов;
3) строительные — увязка элементов отопительных систем с архитектурно-планировочным и конструктивным решениями зданий без нарушений прочности основных конструкций при монтаже и ремонте системы отопления;
4) монтажные — повышение степени индустриализации монтажа, применение преимущественно унифицированных стандартных узлов, сокращение применения узлов и деталей индивидуального изготовления;
5) эксплуатационные — простота и удобство управления и ремонта, бесшумность и безопасность действия;
6) эстетические – сочетание с внутренней отделкой и интерьером помещений, без занятия лишних площадей.
Классификация систем отоплений
По месту размещения генератора теплоты относительно отапливаемого помещения :
Местные системы отопления – генератор теплоты и нагревательный прибор скомпонованы вместе и установлены в обслуживаемом помещении или поблизости от него. Это печное отопление, отопление газовыми и электрическими приборами и т. п.
Центральные системы отопления – обслуживание несколько и даже много помещений, генератор теплоты размещается в едином тепловом пункте. Это системы водяного, парового и воздушного отопления.
По способу разводки труб к радиаторам :
При однотрубной разводке (см.рис.1) теплоноситель переходит последовательно от одного радиатора к другому, при этом остывая. Таким образом, последний радиатор в цепочке может быть значительно холоднее первого. Если вы заботитесь о качестве системы отопления — выбирайте двухтрубную систему, позволяющую регулировать температуру в каждой комнате. Единственный плюс однотрубной системы — более низкая цена.
При двухтрубной к каждому радиатору подведено две трубы — «прямая» и «обратная». Эта разводка позволяет иметь одинаковую температуру теплоносителя на входе во все приборы. Двухтрубная разводка может быть двух типов:
с параллельным подключением радиаторов (см. рис.2)
лучевая (коллекторная), когда от коллектора «лучами» к каждому отопительному прибору подводятся две трубы — прямая и обратная. Минус лучевой системы — большие затраты труб. Плюс — легкая регулировка отопительных приборов и балансировка системы.
Рис.1 Однотрубная разводка. Рис.2 Двухтрубная разводка с
ОП – отопительный прибор
По расположению подающей магистрали :
С верхним расположением подающей магистрали
С нижним расположением подающей магистрали
Проектирование отопления дома
И нженерная система отопления включает в себя котельный пункт, систему разводки трубопроводов и тепловые приборы. Чтобы система функционировала в соответствии с современными требованиями, т. е. комфортно, экономично и надежно, очень важен комплекс инженерных расчетов.
Расчет тепловых потерь дома должен быть выполнен на каждое помещение в отдельности, с учетом количества окон, дверей, внешних стен. Необходимые данные для расчета теплопотерь: толщина стен и перекрытий, материал, использованный при их возведении; конструкция кровельного покрытия и использованные материалы;
•тип фундамента и материал, использованный при его возведении;
•тип остекления (обычные окна или стеклопакеты), если стеклопакеты, то имеет значение двойные или тройные;
•количество и толщина стяжек пола.
В ажно учесть наличие в конструкциях теплоизолирующего слоя, его состав и толщину. Иногда подбор осуществляется по укрупненным вычислениям, в зависимости от объема помещения. У комнат с одинаковым объемом могут быть разные показатели по теплопотерям, если одна является угловым, а другая смежным или внутренним помещением, расположенным в южной или северной части дома, и т. д.
Таким образом, чтобы избежать недостаточного нагрева помещений, застройщики используют традиционный принцип «много — не мало». В этом случае наращивается количество радиаторов, стоимость возрастает эквивалентно их запасу по мощности, что увеличивает общий объем системы, а значит, размер мембранного бака, мощность циркуляционного насоса и количество потребляемого электричества. Эксплуатация системы отопления с повышенной теплоотдачей приведет к перегреву дома и искусственному увеличению теплопотерь. Гидравлический расчет трубопроводов системы отопления — важная составляющая комплекса инженерных расчетов. Необходимо определить сопротивление планируемой системы, диаметры трубопроводов, мощность насоса для циркуляции теплоносителя в системе.
Данные расчета позволят запланировать дополнительные устройства, обеспечивающие рациональное распределение тепла таким образом, чтобы иметь возможность полностью использовать их рабочие характеристики. В домах площадью от 350 м2 во избежание ошибки в сторону дефицита мощности системы зачастую завышаются диаметры трубопроводов разводки 1-го этажа или характеристики циркуляционного насоса. Это ведет к удорожанию системы как по стоимости, так и в эксплуатации. Только при грамотном подходе к проектированию можно оптимизировать систему по конструктивности и затратам. К сожалению, о дефиците мощности системы отопления своего дома потребитель узнает только в процесс е эксплуатации. А убытки от переделки будут весьма существенными. В фирмах, профессионально занимающихся монтажом систем отопления, специалисты в короткие сроки осуществляют разработку оптимального проекта системы. Такой проект на отопление в среднем стоит от 1,5 до 2 тыс. у.е., а экономия по материалам составляет 15-20% от общей стоимости коммуникаций. Экономичное оборудование всегда дороже на этапе приобретения и монтажа. Но со временем оно все же окупается, а не становится источником постоянных проблем и затрат.
История развития систем отопления характеризуется не только изобретением новых систем, но и возвратом к применению тех систем, которые использовались ранее, но со временем были забыты. Это происходит благодаря созданию нового оборудования, материалов и изменениям условий эксплуатации.
Схемы систем отопления подразделяются по следующим показателям:
с верхней (см. рис. а) и нижней подводкой (см. рис. б);
в ертикальная и горизонтальная;
однотрубная или двухтрубная;
тупиковая (см. рис. в) или попутная. (см. рис. г)
в) Водонагреватель обозначен буквой
H, а радиаторы — цифрами. г) Система водяного отопления с попутным движением воды:
1 — отопительный котел; 2 – главный стояк;
3 — разводящий магистральный трубопровод; 4 – воздухосборник;
5 – стояки; 6 — обратные стояки; 7 — обратная линия;
8 — расширительная труба; 9 — расширительный бак; 10 – насос.
Совершенствование систем отопления происходит по разным направлениям:
повышение теплоотдачи нагревательных приборов;
снижение эксплуатационных и капитальных затрат;
экономия теплоты за счет совершенствования способов регулирования;
повышение надежности и долговечности систем отопления.
Так, на определенном этапе развития применялись гравитационные однотрубные системы отопления с верхней разводкой подающей магистрали. Изобретение насосов позволило перейти от гравитационных систем к насосным однотрубным с короткозамыкающим участком (К3У) и двухтрубным системам. Период интенсивного развития индивидуального жилищного строительства способствовал увеличению потребности отопительного оборудования. На рынке оборудования появилось большое количество импортных котлов для индивидуального теплоснабжения, надежные эффективные котлы отечественных производителей, работающие на всех видах топлива.
Появились автоматические устройства по регулированию теплоотдачи нагревательных приборов, трубы на основе полиэтилена. Трубы из сшитого полиэтилена имеют гораздо меньшую шероховатость, выдерживают температуру до 90 ОС; они легки, удобны в монтаже, долговечны и выдерживают давление, применяемое в системах отопления. Эти обстоятельства позволили перейти к проектированию двухтрубных систем отопления. Однако двухтрубные схемы имеют существенный недостаток, который необходимо учитывать при проектировании. Речь пойдет о влиянии гравитационного давления на работу системы. При изменении температуры теплоносителя система отопления может быть разрегулирована.
Чтобы уменьшить это влияние и добиться устойчивости работы системы отопления, необходимо, чтобы доля гравитационного давления в располагаемом давлении для каждого нагревательного прибора составляла не более 10%. Необходимо учитывать и то обстоятельство, что в процессе регулирования при снижении температуры подающего теплоносителя уменьшается разность плотностей обратного и подающего теплоносителей, а следовательно, и гравитационное давление.
Например, если при температуре наружного воздуха t = -26 С температурный перепад теплоносителя 20 ОС, то при температуре наружного воздуха 8 С температурный перепад уменьшится в 3,8 раза, а гравитационное давление — в 2,8 раза. Поэтому для обеспечения устойчивой работы системы отопления не только при, расчетной температуре наружного воздуха, но и при более высоких ее значениях, в расчетах необходимо учитывать не максимальное гравитационное давление, а минимальное. Для обеспечения устойчивой работы системы отопления при больших температурных перепадах теплоносителя следует при проектировании увеличивать потери давления в трубопроводах до значений, которые на порядок выше гравитационного давления.
В настоящее время актуальным моментом является подключение нагревательных приборов к действующим отопительным системам при реконструкции чердаков под жилые помещения. При подключении рассматриваются два варианта однотрубных систем отопления с верхней разводкой. Первый вариант — подключение нагревательных приборов к стоякам по проточной схеме, когда весь теплоноситель стояка проходит через нагревательный прибор. Второй вариант – подключение нагревательного прибора с К3У.
В первом варианте поверхность нагревательного прибора определить несложно, если принять среднюю температуру прибора близкой к расчетной. Однако такое решение увеличивает потери давления в стояке, а следовательно, уменьшает расход теплоносителя, проходящего через стояк. В варианте с К3У расход теплоносителя в стояке не только не уменьшается, но даже возрастает за счет увеличения гравитационного давления. Использование пластиковых труб является причиной повышенного интереса к низкотемпературным системам панельно-лучистого отопления (НСПЛО), нагревательные элементы которых располагаются в конструкции пола. Применение стальных труб сдерживало применение этих систем в связи с относительно коротким сроком службы последних, сложностью и высокой стоимостью текущего и капитального ремонта.
Поэтому НСПЛО применялись только в исключительных случаях в помещениях детских дошкольных учреждений и в залах плавательных бассейнов. В настоящее время область применения данных систем значительно расширилась. Это объясняется рядом преимуществ перед традиционными системами. Прежде всего, это санитарно-гигиенический аспект. Нагретая поверхность пола создает в помещении повышенную радиационную температуру, которая превышает температуру внутреннего воздуха. Повышение радиационной температуры в помещениях с НСПЛО может достигать нескольких градусов. Это объясняется повышением температуры внутренних поверхностей ограждений. Причиной отмеченных явлений является интенсивный лучистый теплообмен нагретой поверхности пола, стен и потолка, а также мебели и других предметов. В связи с этим тепловой комфорт в помещениях с НСПЛО может обеспечиваться при более низкой температуре внутреннего воздуха (на 2-3 ОС), нежели при традиционных конвективных системах отопления.
Отмеченное обстоятельство, как правило, не учитывается при проектировании таких систем. Это часто приводит к завышению мощности нагревательных панелей, перерасходу наиболее дорогостоящих элементов нагревательных панелей и труб, повышенному расходу тепла на отопление, а при отсутствии системы автоматического терморегулирования – к появлению дискомфорта в помещении. При расчете нагревательных панелей необходимо учитывать отечественные нормативные требования по температуре поверхности пола, которые отличаются от зарубежных. Максимальная температура нагретой поверхности пола не должна превышать 30 С, а средняя температура поверхности 24-26 С (для обходных дорожек бассейнов 31 С). Зарубежные требования в среднем на 2-3 С выше. Обследование помещений, оборудованных такими системами, показало, что средняя температура поверхности нагретых полов, как правило, выше нормативной на 2-3 С.
Задача соответствия температур поверхности пола нормативным значениям может быть решена варьированием шага укладки труб, температуры и расхода теплоносителя. Возможность такого расчета ограничивается отсутствием надежных результатов исследования процесса передачи тепла в массиве панели с трубами или кабелями, а также данных о коэффициенте теплоотдачи поверхности (Вт/м 2 С) панелей при неравномерной температуре поверхности нагретого пола. Повышение температуры панелей достигается следующими решениями:
•В толще панели над источником тепла (трубой, кабелем) размещается слой материала с коэффициентом теплопроводности меньше, чем у основного материала панели (бетон). Теплоотдача панели при этом возрастает приблизительно на 20-30%;
•В толще панели на уровне трубы располагается металлическая пластина (как правило, алюминиевая), коэффициент теплопроводности которой в несколько раз выше, чем у бетона. Пластина играет роль своеобразного ребра. При этом наблюдается отмеченный выше теплотехнический эффект;
•Возможно также сочетание этих конструктивных решений.
Рассмотренные способы повышения теплоотдачи нагревательных панелей до настоящего времени не нашли широкого применения в связи с увеличением стоимости систем и усложнением методов монтажа нагревательных радиаторов. Из вышесказанного можно сделать следующие выводы:
•при реконструкции однотрубных систем водяного отопления следует учитывать влияние гравитационных сил;
•в процессе проектирования двухтрубных систем для уменьшения влияния гравитационных сил рекомендуется повышать гидравлическое сопротивление магистрального трубопровода;
•для увеличения эффективности напольного отопления целесообразно принимать меры по выравниванию температуры поверхности пола.
Отопление для малоэтажного строительства
К настоящему времени сложились два основных типа индивидуальных жилых зданий: усадьбы для круглогодичного проживания жильцов и дома (дачи) для проживания только в летний период. С технологической точки зрения требования к усадьбам и летним домам заметно различаются. Поскольку в летних домах проживают в основном в летний период, разность температур помещения и наружного воздуха относительно невелика. Поэтому наружные стены домиков обычно имеют небольшое термическое сопротивление теплопередаче от воздуха внутреннего помещения к наружному. Как правило, стены летних садовых домиков изготавливают из облегченных конструкций. И в этих домиках отопление, как правило, отсутствует.
Необходимость создания комфортных условий в летнем садовом домике и в зимнее время обязывает хозяев использовать различные варианты отопления, причем в качестве теплогенераторов используются в основном печи на твердом топливе. Кроме печей и каминов могут быть рекомендованы также электронагреватели (ТЕНы, рефлекторы, электрокамины и т. д.). В этих случаях не следует использовать водяные системы отопления, поскольку при отрицательных температурах нужно сливать воду из системы, а затем вновь заполнять ее водой — занятие, связанное с определенными неудобствами. Избежать их можно, если использовать в качестве теплоносителя незамерзающую жидкость — антифриз. Однако следует считаться с тем, что антифриз достаточно дорог и токсичен.
Что касается теплоснабжения усадебных и дачных домиков с круглогодичным проживанием жильцов , то их устройства должны обеспечивать весь комплекс удобств, предоставляемых городским жителям: отопление, горячее водоснабжение, возможность приготовления пищи. В то же время основные теплопотребляющие элементы домов — системы отопления и горячего водоснабжения имеют некоторые особенности в сравнении с системами отопления и горячего водоснабжения — городских жилых зданий.
Они состоят в следующем :
поскольку дома усадебного типа имеют небольшой объем и соответственно небольшие теплопотери, их обычно подсоединяют к наружным теплосетям, обслуживаемым групповой или индивидуальной котельной с температурой теплоносителя не более 95° С. Присоединение квартирных систем отопления к теплосети в этом случае можно производить без подмешивающих устройств в виде элеваторов;
ввиду того, что усадебные дома имеют один-два этажа, в них, как правило, целесообразно применять наиболее простую однотрубную систему отопления;
Из-за отсутствия регуляторов для небольших расходов сетевой воды для присоединения к теплосети систем горячего водоснабжения следует использовать емкостные водонагреватели, в которых вода теплосети нагревает местную воду через поверхность размещенного в нем змеевика (бойлерные котлы).
Для отопления малоэтажных зданий в настоящее время применяют печное, водяное, электрическое и воздушное отопление.
Наиболее совершенно электрическое отопление , характеризующееся рядом достоинств, в том числе удобством регулирования тепловой нагрузки, отсутствием громоздких отопительных приборов, высокой гигиеничностью. Единственный, но часто решающий недостаток электрического отопления — его дороговизна. Стоимость единицы отпущенного тепла при электрическом отоплении в несколько раз выше, чем при выработке тепла в печах или котлах.
Наибольшее распространение получили водяные и воздушные системы отопления. При оценке теплотехнических свойств теплоносителей решающими показателями являются весовая и объемная теплоемкость и температура. С точки зрения количества тепла, содержащегося в единице объема, вода имеет огромные преимущества. С точки зрения количества тепла, содержащегося в единице объема, вода имеет огромные преимущества. Например, при обычных для систем отопления температурах воды 80° С и воздуха 70° С объемная теплоемкость составляет:
С v = рС g= 975×1 = 975 ккал /( м 3 х ° С );
Cv = ( 1.29 x 273 x 0.24 ) / ( 273 + 70 ) = 0.25 ккал /( м 3 х ° С )
т. е. теплоемкость воды больше чем теплоемкость воздуха почти в 4000 раз. Соответственно объемный расход ее, необходимый для отопления одного и того же помещения, в тысячи раз меньше расхода воздуха, в силу этого требуется гораздо меньшее сечение соединительных коммуникаций, транспортирующих разогретый теплоноситель в отапливаемое помещение. Большие объемы нагретого воздуха затрудняют его транспортировку и распределение по отапливаемым помещениям. Из-за значительных диаметров разделительных воздуховодов вентилятор для передачи нагретого воздуха необходимо располагать вблизи отапливаемого жилого помещения, что связано с проникновением в помещение шума от работающего вентилятора.
Вместе с тем воздух, как теплоноситель, имеет ряд преимуществ по сравнению с водой.
Во-первых, он передает тепло в помещение непосредственно, т. е. без установки отопительных приборов. Проникающая способность воздуха велика, за счет высокой конвенционной способности осуществляется эффективное отопление помещения.
Во-вторых, не требуется устройств канализации теплоносителя (воздуха).
Достоинства воздушного отопления оценены человеком давно. Известно, что отопление горячими газами было первым способом искусственного отопления жилища.
Простой и древний способ отопления путем сжигания топлива внутри помещения соседствовал с центральными установками водяного и воздушного отопления. Так, в г. Эфесе, основанном в X веке до н.э. на территории современной Турции, для отопления помещений уже в то время использовалась система трубок, в которые подавалась горячая вода из котлов, находящихся в подвалах домов. В Хакасии и многих других местах нашей страны применялось напольное отопление с использованием теплоты продуктов сгорания централизованно сжигаемого топлива. Система воздушного отопления, созданная в Италии, подробно описана еще Витрувием (конец I века до н.э.). Наружный воздух нагревался в подпольных каналах, предварительно прогретых горячими газами, и поступал в отапливаемые помещения. По такому же принципу отапливались помещения замков в Германии в средние века.
На развитие отопительной техники оказывал влияние вид применяемого топлива. В течении многих столетий использовалось твердое топливо (дрова, уголь) и отопительные установки приспосабливались к его сгоранию. Известны многочисленные конструкции очагов и жаровен, каминов и особенно печей, получивших широкое распространение в России. Отопительные печи для сжигания твердого топлива часто применяют и сейчас.
С открытием новых видов топлива (природный газ, нефть) создаются отопительные установки и тепловые станции для их сжигания с нагреванием промежуточной среды, переносящей теплоту в помещения.
В современных системах воздушного отопления малоэтажных зданий воздух нагревают обычно в калориферах-теплообменниках, печах, в которых тепло передается воздуху через стенку продуктами сгорания топлива или электрическими нагревателями. Нагретая изнутри металлическая (или кирпичная) поверхность калорифера (печи) охлаждается снаружи, отдавая тепло воздуху. Теплоотдача воздуху тем выше, чем больше поверхность теплообмена, поэтому искусственно увеличивают поверхность теплообмена или увеличивают скорость движения воздуха, соприкасающегося с поверхностью теплообменника.
Плотность воздуха при средней температуре +70° С примерно в тысячу раз меньше чем воды, поэтому его нагревающая способность (коэффициент теплопередачи) значительно (в 3050 раз) меньше, чем этот показатель для воды. Таким образом в огневоздушных калориферах (теплообменниках) существует опасность перегрева разделяющей стенки теплообменника. Чтобы исключить это негативное явление, применяют принудительное движение воздушной среды в теплообменнике с помощью вентиляторов. Промышленностью, к сожалению, выпускается мало вентиляторов с низкой производительностью и поэтому в большинстве случаев применяются огневоздушные калориферы и теплообменники, в которых используется так называемая естественная тяга, возникающая при его нагреве. Недостатком калориферов с естественной тягой является незначительная величина возникающего напора воздуха. Это ограничивает протяженность распределительных воздуховодов и создает трудности в распределении нагретого воздуха по помещениям.
Указанный недостаток калориферов с естественной тягой не является определяющим. Главная причина того, что воздушное отопление еще мало распространено в малоэтажных зданиях, состоит в недостаточном выпуске дешевых и малопроизводительных вентиляторов, а также в создаваемом ими шуме. Кроме того, конструкции разработанных к настоящему времени калориферов предусмотрены только для сжигания сетевого газа или жидкого топлива. Поэтому наибольшее распространение для отопления малоэтажных зданий получило печное и водяное отопление. Причем движение воды в водяных системах можно осуществить без применения насосов, используя естественный напор, возникающий вследствие охлаждения воды в нагревательных приборах.
« Сердце » отопительной системы
«Сердцем» отопительной системы является котел. От него нагретый теплоноситель (вода или антифриз) с помощью циркуляционного насоса (если система с принудительной циркуляцией) или без него (естественная циркуляция) движется по трубам и отдает тепло вашему дому через отопительные приборы. Кроме вышеназванных основных элементов в систему отопления входит еще масса других более мелких, но необходимых для нормальной работы вещей: расширительный бак — компенсирующий температурное расширение воды, фитинги — для соединения труб, воздушные клапаны и многое другое.
Этапы выбора отопительного котла .
Для выбора котла необходимо предстоит пройти следующие этапы:
Первый . Определиться, применение какого вида топлива оптимально в вашей местности. Есть выбор из следующих вариантов: газ, жидкое (дизельное) топливо, электричество, твердое топливо (уголь, дерево, кокс и др.).
Второй . Подобрать наиболее подходящий по мощности котел, который позволит при минимальных затратах энергоносителя обогреть ваше помещение. Ориентировочная мощность котла для хорошо утепленного здания при высоте потолков до 3 м определяется следующим соотношением: 1 кВт мощности котла на 10 м 2 отапливаемой площади. Но окончательный расчет необходимой мощности стоит доверять только профессионалам.
Третий . Понять, требуется только отопление дома или еще и горячее водоснабжение. Во втором случае понадобится двухконтурный котел или одноконтурный котел с подключенным к нему бойлером.
Виды топлива для отопления дома :
Если к участку подведен магистральный газ, то, в подавляющем большинстве случаев, оптимальным является газовый котел , так как более дешевого топлива не найдешь. Газовые котлы принято подразделять на напольные и настенные.
Теплообменник напольных, обычно, выполнен из чугуна или стали. Нельзя сказать однозначно, что какой-то материал имеет неоспоримые преимущества перед другим. Стальные — легче, не очень боятся ударов при перевозке и погрузке-выгрузке. У чугунных теплообменник, по сравнению со стальными, как правило, толще, что может положительно сказаться на сроке его службы. Но, как мне кажется, не меньшее влияние, чем материал теплообменника, на срок службы котла оказывает правильный проект, монтаж и эксплуатация системы отопления.
Настенные котлы можно назвать «котельной в миниатюре», ведь в небольшом корпусе находится не только горелка, теплообменник и устройство управления, но и один или два циркуляционных насоса, расширительный бак, манометр, термометр, система, обеспечивающая безопасную работу котла и многие другие элементы, без которых не обходится работа нормальной котельной. Хочется обратить ваше внимание на то, что по способу удаления отходящих газов котлы делятся на модели с естественной и принудительной тягой. В котлах с принудительной тягой удаление отходящих газов происходит с помощью вентилятора, встроенного в котел. Такие модели идеальны для помещений без традиционного дымохода, так как продукты сгорания в этом случае выводятся через специальный коаксиальный дымоход, для которого достаточно сделать только отверстие в стене.
Если же газа нет, то вариантов остается немало: электрические котлы, котлы со сменными горелками на жидкое топливо и газ, твердотопливные котлы.
Электрический котел . Основными достоинствами электрокотлов являются: невысокая цена, низкие затраты на монтаж, безопасность, простота в эксплуатации; они не требуют отдельного помещения (котельной) и монтажа дымохода, бесшумны, экологичны (нет вредных выбросов и посторонних запахов).
Электрический котел — достаточно простое устройство. Основными его элементами являются теплообменник, состоящий из бака, с укрепленными в нем электронагревателями (ТЭНами), и блока управления и регулирования. Электрические котлы некоторых фирм поставляются уже укомплектованными циркуляционным насосом, расширительным баком, предохранительным клапаном и фильтром. Важно отметить, что электрокотлы небольшой мощности бывают в двух разных исполнениях — однофазные (220 В) и трехфазные (380 В). Котлы мощностью более 12 кВт обычно производятся только трехфазными.
Подавляющее большинство электрических котлов мощностью более 6 кВт выпускается многоступенчатыми, что позволяет рационально использовать электроэнергию и не включать котел на полную мощность в переходные периоды — весной и осенью.
Если вы решили купить электрический котел, то вам будет полезна таблица с ориентировочными значениями сечения кабеля для электроподключения котла в зависимости от его мощности.