Системы пассивного солнечного отопления

Пассивные солнечные системы теплоснабжения.

Опыт Китайской Народной Республики

Чжао Цзиньлин, канд. техн. наук, Даляньский политехнический ун-т (КНР), стажер кафедры промышленных теплоэнергетических систем,

А. Я. Шелгинский, доктор техн. наук, проф., науч. руководитель, МЭИ (ТУ), Москва

Особое значение при проектировании олимпийских объектов в Сочи имеет использование экологически чистых возобновляемых источников энергии и в первую очередь энергии солнечной радиации. В связи с этим будет интересен опыт разработки и внедрения пассивных солнечных систем теплоснабжения в жилых и общественных зданиях в провинции Ляонин (Китай), поскольку географическое расположение и климатические условия данной части Китая сопоставимы с аналогичными характеристиками Сочи.

Применение возобновляемых источников энергии (ВИЭ) для систем теплоснабжения является актуальным и весьма перспективным в настоящее время при условии грамотного подхода к данному вопросу, т. к. традиционные источники энергии (нефть, газ и т. п.) не безграничны. В связи с этим многие страны, включая КНР, переходят на использование экологически чистых возобновляемых источников энергии, одним из которых является теплота солнечного излучения.

Возможность эффективного использования теплоты солнечного излучения в Китайской Народной Республике зависит от региона, поскольку климатические условия в разных частях страны сильно отличаются: от умеренного континентального (запад и север) с жарким летом и суровой зимой, субтропического в центральных районах страны до тропического муссонного на южном побережье и островах, обуславливается географическим местонахождением территории, на которой находится объект (таблица).

Таблица
Распределение солнечных ресурсов по территории Китая
Зона

Годовая
длительность
инсоляции, ч
Солнечная
радиация,
MДж/(м 2 •год)
Район
Китая
Соответствующие районы
в других странах мира
I 2 800–3 300 7 550–9 250 Тибет и т. д. Северные районы Пакистана и Индии
II 3 000–3 200 5 850–7 550 Хэбэй и т. д. Джакарта (Индонезия)
III 2 200–3 000 5 000–5 850 Пекин, Далянь и т. д. Вашингтон (США)
IV 1 400–2 200 4 150–5 000 Хубжй, Хунань и т.д. Милан (Италия), Германия, Япония
V 1 000–1 400 3 350–4 150 Сычуань и Гуйчжоу Париж (Франция), Москва (Россия)

В провинции Ляонин интенсивность солнечной радиации составляет от 5 000 до 5 850 МДж/м 2 в год (в Сочи – около 5 000 МДж/м 2 в год), что позволяет активно применять системы отопления и охлаждения зданий на основе использования энергии солнечной радиации. Такие системы, преобразующие теплоту солнечного излучения и наружного воздуха, можно разделить на активные и пассивные.

В пассивных системах солнечного теплоснабжения (ПССТ) используется естественная циркуляция нагретого воздуха (рис. 1), т. е. гравитационные силы.

В активных системах солнечного теплоснабжения (рис. 2) задействованы дополнительные источники энергии для обеспечения ее работы (например, электроэнергия). Теплота солнечного излучения поступает на солнечные коллекторы, где частично аккумулируется и передается промежуточному теплоносителю, который насосами транспортируется и распределяется по помещениям.

Пассивные солнечные системы теплоснабжения

Пример активной солнечной системы теплоснабжения

1 – солнечный коллектор;

Возможны системы с нулевым потреблением теплоты и холода, где соответствующие параметры воздуха в помещениях обеспечиваются без дополнительных энергозатрат за счет:

  • необходимой тепловой изоляции;
  • выбора конструкционных материалов здания с соответствующими теплохладоаккумулирующими свойствами;
  • использования в системе дополнительных теплохладоаккумуляторов с соответствующими характеристиками.

На рис. 3 представлена усовершенствованная схема работы пассивной системы теплоснабжения здания c элементами (шторы, клапаны), позволяющими более точно регулировать температуру воздуха внутри помещения. На южной стороне здания устанавливается так называемая стена Тромба, которая состоит из массивной стены (бетонной, кирпичной или каменной) и стеклянной перегородки, устанавливаемой на небольшом расстоянии от стены с внешней стороны. Наружная поверхность массивной стены окрашена в темный цвет. Через стеклянную перегородку нагревается массивная стена и воздух, находящийся между стеклянной перегородкой и массивной стеной. Нагретая массивная стена за счет излучения и конвективного теплообмена передает накопленную теплоту в помещение. Таким образом, в этой конструкции совмещаются функции коллектора и аккумулятора теплоты.

Схемы работы усовершенствованной пассивной солнечной системы теплоснабжения: а, б – зимой; в, г – летом

2– верхний клапан;

3– стеклянная перегородка;

5 – массивная стена;

6 – нижний клапан

Воздух, находящийся в прослойке между стеклянной перегородкой и стеной, в холодный период времени и в солнечный день используется в качестве теплоносителя для подачи теплоты в помещение. Для предотвращения теплооттоков в окружающую среду в холодный период времени в ночное время и избыточных теплопритоков в солнечные дни теплого периода времени используются шторы, которые значительно сокращают теплообмен между массивной стеной и внешней окружающей средой.

Шторы выполняются из нетканых материалов с серебристым покрытием. Для обеспечения необходимой циркуляции воздуха используются воздушные клапаны, которые расположены в верхней и нижней частях массивной стены. Автоматическое управление работой воздушных клапанов позволяет поддерживать необходимые теплопритоки или теплооттоки в обслуживаемом помещении.

Система пассивного солнечного теплоснабжения работает следующим образом:

1. В холодный период времени (отопление):

  • солнечный день – штора поднята, клапаны открыты (рис. 3а). Это приводит к нагреву массивной стены через стеклянную перегородку и нагреву воздуха, находящегося в прослойке между стеклянной перегородкой и стеной. Теплота поступает в помещение от нагретой стены и нагретого в прослойке воздуха, циркулирующего через прослойку и помещение под воздействием гравитационных сил, вызванных разностью плотностей воздуха при разных температурах (естественная циркуляция);
  • ночь, вечер или пасмурный день – штора опущена, клапаны закрыты (рис. 3б). Теплооттоки во внешнюю среду значительно сокращаются. Температура в помещении поддерживается за счет поступления теплоты от массивной стены, накопившей эту теплоту от солнечного излучения;

2. В теплый период времени (охлаждение):

  • солнечный день – штора опущена, нижние клапаны открыты, верхние – закрыты (рис. 3в). Штора предохраняет нагрев массивной стены от солнечного излучения. Наружный воздух поступает в помещение с затененной стороны дома и выходит через прослойку между стеклянной перегородкой и стеной в окружающую среду;
  • ночь, вечер или пасмурный день – штора поднята, нижние клапаны открыты, верхние – закрыты (рис. 3г). Наружный воздух поступает в помещение с противоположной стороны дома и выходит в окружающую среду через прослойку между стеклянной перегородкой и массивной стеной. Стена охлаждается в результате конвективного теплообмена с воздухом, проходящим через прослойку, и за счет оттока теплоты излучением в окружающую среду. Охлажденная стена в дневное время поддерживает необходимый температурный режим в помещении.

Для расчета систем пассивного солнечного отопления зданий разработаны математические модели нестационарного теплопереноса при естественной конвекции для обеспечения помещений необходимыми температурными условиями в зависимости от теплофизических свойств ограждающих конструкций, суточного изменения солнечного излучения и температуры наружного воздуха [1, 2].

Для определения достоверности и уточнения полученных результатов в Даляньском политехническом университете разработана, изготовлена и исследована экспериментальная модель жилого дома, расположенного в г. Далянь, с пассивными солнечными системами отопления. Стена Тромба размещается только на южном фасаде, с автоматическими воздушными клапанами и шторами (рис. 3, фото).

При проведении эксперимента использовались:

  • малая метеостанция;
  • приборы для измерения интенсивности солнечной радиации;
  • анемограф RHAT-301 для определения скорости воздуха в помещении;
  • термометрограф TR72-S и термопары для замеров температуры в помещении.

Экспериментальные исследования проводились в теплый, переходной и холодный периоды года при различных метеорологических условиях.

Алгоритм решения поставленной задачи представлен на рис. 4.

Алгоритм решения задачи по определению эффективности работы пассивной солнечной системы теплоснабжения

Результаты эксперимента подтвердили достоверность полученных расчетных соотношений и позволили скорректировать отдельные зависимости с учетом конкретных граничных условий.

В настоящее время в провинции Ляонин находится много жилых домов и школ, в которых используются пассивные солнечные системы отопления.

Анализ пассивных солнечных систем теплоснабжения показывает, что они являются достаточно перспективными в отдельных климатических регионах в сравнении с остальными системами по следующим причинам:

  • дешевизна;
  • простота обслуживания;
  • надежность.

К недостаткам пассивных солнечных систем отопления следует отнести то, что параметры воздуха внутри помещения могут отличаться от требуемых (расчетных) при изменении температуры наружного воздуха за пределами, принятыми в расчетах.

Для достижения хорошего энергосберегающего эффекта в системах теплохладоснабжения зданий с более точным поддержанием температурных условий в заданных пределах целесообразно комбинированное использование пассивных и активных солнечных систем теплохладоснабжения.

В связи с этим необходимы дальнейшие теоретические исследования и проведение экспериментальных работ на физических моделях с учетом ранее полученных результатов.

Литература

1. Zhao Jinling, Chen Bin, Liu Jingjun, Wang Yongxun Dynamic thermal performance simulation of an improved passive solar house with trombe wall ISES Solar word Congress, 2007, Beijing China, Vols 1-V: 2234–2237.

2. Zhao Jinling, Chen Bin, Chen Cuiying, Sun Yuanyuan Study on dynamic thermal response of the passive solar heating systems. Journal of Harbin Institute of Technology (New Series). 2007. Vol. 14: 352–355.

Поделиться статьей в социальных сетях:

Пассивные солнечные системы отопления

В пассивных системах солнечного теплоснабжения роль КСЭ и аккумулятора теплоты выполняют ограждающие конструкции здания, а движение нагретого солнечной энергией воздуха осуществляется, как правило, путем естественной конвекции. В пассивных системах солнечного теплоснабжения осуществляются:

— прямое улавливание стенами и полом здания солнечной энергии, поступающей через окна большой площади, расположенные в южной стене;

— накопление тепловой энергии аккумулирующей массой (стены, пол, емкости с водой);

— улавливание солнечной энергии в пристроенной к южной стене здания теплице и передача теплоты внутрь помещений.

Для снижения теплопотерь здания в ночное время на светопрозрачных поверхностях предусматривают тепловую изоляцию (щиты, ставни и т. п.).

Для отопления зданий используются следующие типы пассивных гелиосистем:

1) с прямым улавливанием солнечного излучения, поступающего через остеклённые поверхности большой площади на южном фасаде здания или через примыкающую к южной стене здания солнечную теплицу (зимний сад, оранжерею);

2) с непрямым улавливанием солнечного излучения, то есть, тепло-аккумулирующей стеной, расположенной за остеклением южного фасада;

3) с контуром конвективной циркуляции воздуха и галечным аккумулятором теплоты.

Пассивные системы составляют интегральную часть самого здания [2, 6], которое должно проектироваться таким образом, чтобы обеспечивать наиболее эффективное использование солнечной энергии для отопления. Наряду с окнами и остеклёнными поверхностями южного фасада для улавливания солнечного излучения также используются остекленные проемы в крыше и дополнительные окна в верхней части здания, которые повышают уровень комфорта человека, так как исключают прямое попадание солнечных лучей в лицо. Одно из важнейших условий эффективной работы пассивной гелиосистемы заключается в правильном выборе местоположения и ориентации здания на основе критерия максимального поступления и улавливания солнечного излучения в зимние месяцы.

Пассивные системы просты в конструкции, но для их эффективной работы требуются регулирующие устройства, управляющие положением тепловой изоляции светопрозрачных поверхностей, штор, заслонок в отверстиях для циркуляции воздуха в теплоаккумулирующей стене.

Прямое улавливание солнечной энергии может эффективно осуществляться при соблюдении следующих условий:

1) оптимальная ориентация дома – вдоль оси восток-запад или с отклонением до 30° от этой оси;

2) на южной стороне дома должно быть сосредоточено не менее 50-70% всех окон, а на северной – не более 10%; при этом окна, расположенные в южной части здания, должны иметь двухслойное остекление, а в северной части здания — трёхслойное остекление;
3) здание должно иметь улучшенную тепловую изоляцию и низкие теплопотери, обусловленные инфильтрацией наружного воздуха через неплотности в строительных ограждениях;

4) внутренняя планировка здания должна обеспечивать расположение жилых комнат с южной стороны, а вспомогательных помещений – с северной;

5) должна быть обеспечена достаточная теплоаккумулирующая способность внутренних стен и пола для поглощения и аккумулирования теплоты солнечной энергии;

6) для предотвращения перегрева помещений в летний период над окнами должны быть предусмотрены навесы, козырьки и т.п.

КПД такой системы отопления, как правило, составляет 25-30%, но в особо благоприятных климатических условиях может быть значительно выше и достигать 60%. Существенным недостатком этой системы являются большие суточные колебания температуры воздуха внутри помещений.

Пассивные системы прямого улавливания солнечной энергии имеют наименьшую стоимость для вновь строящихся зданий.

Пассивные системы имеют такой же срок службы, как и само здание, и весьма низкие текущие эксплуатационные расходы.

Использование системы прямого улавливания солнечной энергии в существующих зданиях связано со значительными трудностями, поэтому их применение в этих случаях нецелесообразно.

Необходимо учитывать, что площадь остекления южного фасада должна быть значительной, чтобы обеспечить требуемую долю солнечной энергии в покрытии тепловой нагрузки, а теплоаккумулирующие элементы (теплоаккумулирующая масса) должны быть размещены в наиболее благоприятных местах, чтобы на них попадали солнечные лучи большую часть дня. Вместо остекления вертикальных стен или наряду с ним может быть использовано остекление элементов крыши и чердачных помещений, сообщающихся с жилыми помещениями. При этом облегчается задача размещения теплоаккумулирующих элементов, возникает меньше «солнечных зайчиков» и уменьшается затенение теплоаккумулирующей массы предметами интерьера и экстерьера.

Важнейшее требование, предъявляемое к пассивным системам теплоснабжения, состоит в необходимости обеспечения теплового комфорта и регулирования температурного режима в помещениях. В помещениях с пассивным использованием солнечной энергии комфорт обеспечивается при более низких температурах воздуха по сравнению с обычными зданиями, так как температура строительных конструкций всех или большинства помещений выше температуры внутреннего воздуха. При этом строительные конструкции помещений излучают теплоту на человека, отчего ощущение теплового комфорта повышается.

Применение пассивных систем солнечного отопления (ССО) экономически целесообразно в районах с достаточно высоким уровнем инсоляции, большим числом часов солнечного стояния и умеренной температурой наружного воздуха.

Для условий эксплуатации сезонно обитаемого жилища средней полосы России наиболее подходящей является воздушная система теплоснабжения. Воздух нагревается в солнечном коллекторе и по воздуховодам подается в помещение. Удобства применения воздушного теплоносителя по сравнению с жидким очевидны:

— нет опасности его замерзания;

— нет необходимости в трубах и кранах;

— простота и дешевизна.

Недостаток – невысокая теплоемкость воздуха.

Плоский коллектор, помимо прямой солнечной радиации, воспринимает рассеянную и отраженную радиацию в пасмурную погоду, при легкой облачности, то есть, в тех условиях, какие реально имеются
в средней полосе России. Плоский коллектор не создает высокопотенциальной теплоты, как концентрирующий коллектор, но для конвекционного отопления этого и не требуется, здесь достаточно иметь низко потенциальную теплоту.

Неравномерность солнечной радиации в течение дня, а также желание обогревать дом ночью и в пасмурный день обусловливает необходимость устройства теплового аккумулятора. Днем он накапливает тепловую энергию, а ночью отдает. Для работы с солнечным коллектором наиболее рациональным является гравийно-галечный аккумулятор. Он более дешев, прост при проведении строительных работ. Гравийную засыпку можно разместить в заглубленной цокольной части дома, покрытой тепловой изоляцией. Теплый воздух нагнетается в аккумулятор с помощью вентилятора.

Для дома жилой площадью 60 м 2 объем теплового аккумулятора составляет от 3 до 6 м 3 . Разброс определяется качеством исполнения элементов гелиосистемы, теплоизоляцией, а также режимом солнечной радиации в конкретной местности. Система солнечного теплоснабжения дома работает в четырех режимах (рис. 8,а ÷ 8,г):

– отопление и аккумулирование тепловой энергии (рис. 8,а);

– отопление от аккумулятора (рис. 8,б);

– аккумулирование тепловой энергии (рис. 8,в);

– отопление от коллектора (рис. 8,г).

В холодные солнечные дни нагретый в коллекторе воздух поднимается и через отверстия у потолка и поступает в помещения. Циркуляция воздуха идет за счет естественной конвекции.

В ясные теплые дни горячий воздух забирается из верхней зоны коллектора и с помощью вентилятора прокачивается через гравий, заряжая тепловой аккумулятор. Для ночного отопления и на случай пасмурной погоды воздух из помещения прогоняется через аккумулятор и возвращается в комнаты подогретый.

В средней полосе России гелиосистема лишь частично обеспечивает потребности отопления. Опыт эксплуатации показывает, что сезонная экономия топлива за счет использования солнечной энергии составляет 60%.

При применении пассивных ССО здания должны иметь улучшенную тепловую изоляцию и удовлетворять требованиям сохранения энергии.

Наряду с получением теплоты эти системы также обеспечивают эффективное использование дневного освещения, благодаря чему снижается потребление электроэнергии.

Читайте также:  Как объединить балкон с кухней отопление
Оцените статью