Смеситель для теплого водяного пола
Обустройство современных домов требует монтажа новых, более эффективных отопительных систем, к одной из которых относится установка «теплый пол». Сегодня среди всего многообразия подобных обогревательных узлов можно выделить электрические и водяные блоки, отличающиеся видом нагревательного элемента. Основной функцией последних является равномерное распределение теплоэнергии в помещении посредством циркуляции горячей воды по предварительно проложенному контуру. А для эффективности работы всей установки понадобится смеситель для теплого водяного пола.
Для чего нужен смесительный узел
Если же для традиционного обогрева с помощью радиаторов требуется температура 80-90°С, то для напольного отопления она должна быть гораздо ниже – примерно 30-40°С, чтобы было комфортно находиться на полу без риска получить ожоги. Именно с помощью смесительной группы удается создать наиболее оптимальные условия для полноценной функциональности скрытых нагревателей.
Смесительный узел теплого пола – незаменимая составляющая водяных обогревательных блоков. Аппараты подобного действия дают возможность для того, чтобы подключить коллекторную установку, которая обеспечивает необходимое смешение воды разных температур для создания комфортных условий в помещении. Однако, применение такого прибора как самостоятельного регулировочного агрегата также не исключено.
Трубопровод оборудуют небольшим насосом, посредством которого обеспечивается принудительная циркуляция теплоисточника по контуру. Эти аппараты, в большинстве своем, имеют дросселя питания, состоящие из двух и трех ходов. Они нужны для создания постоянного добавления холодной воды из обратки в теплоноситель.
Преимущества смесителей
Внутреннее оборудование, оснащенное узлом смешения для теплого пола, обладает рядом положительных качеств, делающих этот блок еще эффективнее и популярнее. К его основным достоинствам можно отнести:
- Экономичность. В отличие от электрических скрытых обогревателей, водяные, оснащенные смесительным узлом для теплого пола, позволяют сэкономить до 50% электроэнергии.
- Безопасность. Люди попросту не помнят о том, насколько высока температура нагревательного устройства, что нередко приводит к сильным ожогам, не говоря уже о том, что такая ситуация очень опасна для детей. Применение специального термосмесителя позволяет избежать подобных неприятностей и оградить себя, а также своих близких от опасности.
- Долговечность. Монтаж такого нагревательного блока – дело экономически выгодное, по сравнению с другими идентичными по функциональности приборами. И если провести его укладку по всем правилам, то он прослужит вам как минимум половину столетия. Теплоноситель имеет свойство изнашиваться, тем не менее, производитель заявляет, что срок его эксплуатации составляет не менее 50 лет.
- Гигиеничность. Уход за скрытым блоком достаточно прост, и не требуют больших усилий. Более того, благодаря тому, что покрытие подвергается регулярному подогреву, оно высыхает достаточно быстро, что исключает вероятность образования грибковой инфекции и плесени.
- Управление температурным режимом по наружному окружению – система оснащена статическим термоклапаном, который подключен к регулятору. Это говорит о том, что корректировка уровня нагрева выполняется с учетом изменений уличных показателей.
- Наличие ручного управления, при котором регулировка узла подмеса для теплого пола осуществляется своими руками.
- Использование режима ограничения. Благодаря этому есть возможность обеспечения заданной температуры в помещении. Так, к примеру, вы задаете с помощью терморегулятора определенную температуру, при достижении которой устройство будет лишь поддерживать ее на таком уровне, не позволяя теплоносителю перегреваться или охлаждаться.
Назначение и принцип работы
Это специфическое оборудование, которое предназначено для циркуляции и регулировки воды в трубопроводе. В его основе:
- циркуляционный насос, который способствует принудительному перемещению теплоносителями по контуру отопительного блока;
- термостатический двухходовой клапан, подпитывающий трубопровод новым тепловым источником до создания заданного значения.
Смесительный узел для теплого пола – основная составляющая регулирующего подачу воды прибора, которая может иметь разный вид.
Типы коллекторов и их характеристика
Тип №1
В основе работы этой модели используется трехходовой клапан для теплого пола, задача которого заключается в смешивании нового теплового источника из отопительного котла с «отработанным», остывшим. Дросселя, в большинстве своем, оснащены сервоприводом, посредством которого осуществляется управление термостатом и погодозависящими датчиками.
Как подключается трехходовой клапан
Этот тип является наиболее оптимальным, но при этом он имеет некоторые недостатки. Прежде всего, хотелось бы отметить ситуацию, когда клапан по сигналу терморегулятора может открыться в полном объеме и впустить в трубопровод большой поток горячей воды, температура которой колеблется в рамках 85-90°С. Резкий перепад теплоисточника рано или поздно может спровоцировать разрыв теплоносителя, поскольку давление в нем становится чересчур высоким.
Еще одним недостатком этого варианта регуляционной установки – повышенная пропускная способность. Это, в свою очередь, вызывает некоторые трудности, потому как любые изменения в регулировании температурных условий могут значительным образом отразиться на обогреве напольной поверхности.
Даже с учетом существующих недостатков, скрытый нагрев с устройством подобного типа является просто незаменимым помощником в обогреве помещений с большой площадью.
ВИДЕО: Коллекторный блок VALTEC. Обзор продукта
Тип №2
Этот вариант оснащен двухходовым регулировочным клапаном. В отличие от предыдущего варианта, смешивание теплоисточника осуществляется не по сигналу терморегулятора, а в постоянном режиме, что в полной мере исключает превышение заданного температурного режима напольной поверхности.
Кроме этого, термостатический двухходовой клапан обладает малой пропускной способностью, что обеспечивает постепенное и стабильное регулирование теромоусловий. Но при этом опытные специалисты не рекомендуют устанавливать скрытые отопительные системы, оснащенные таким устройством, в помещения, площадь которых превышает 200 м 2 .
Коллекторная распределительная установка
Коллектор – одна из важных деталей отопительной системы, которая отвечает за регулирование режима нагревательного элемента. Основная задача этого прибора – распределение теплоисточника по трубопроводу. А чтобы обеспечить полноценную и эффективную работу коллектора, необходимо оснащать его термоклапанами и расходомером (при условии, что вы самостоятельно собираете этот агрегат). Если же вы воспользовались помощью специалистов, которые занимаются монтажом подобного нагревательного оборудования, то они сами подберут все нужные комплектующие для сбора коллекторного блока.
Этапы монтажа
Безусловно, все работы по подключению подобного оборудования должны проводиться специалистами. Более того, многие компании, реализующие смесительные узлы и системы «теплый пол» предлагают свои работы по установке, обеспечивая их долговременной гарантией. Но если вы решили подключить узел своими руками или просто интересуетесь, как именно он должен быть введен в работу, такая информация не будет лишней.
Итак, все работы можно условно разбить на 5 этапов:
- Определяется место для коллектора и осуществляется подводка подающей и обратной трубы.
- Подключаются клапаны и коллекторный узел, после чего проводится подготовка к монтажу контура.
- Монтируются все соединительные и датчики – температуры, давления (манометр) и т.д.
- Далее следует этап настройки смесительного узла и проводится 3-4 тестовых запуска, чтобы убедиться в исправности работы оборудования и всей установки.
- Система проверяется на герметичность. При отсутствии протечек и исправной работе работы по монтажу завершены.
ВИДЕО: Принцип работы
Насосно-смесительные узлы для водяного теплого пола
Требуемый расход теплоносителя в любой системе водяного отопления подсчитывается по следующей формуле:
где Q — тепловая мощность системы, Вт; с — удельная теплоёмкость теплоносителя, Дж/кг °С; ∆Т — разность температур между прямым и обратным теплоносителем, °С.
В системах радиаторного отопления перепад температур ∆Т обычно составляет порядка 20 °С, а в системах напольного отопления ∆Т = 5–10 °С.
Это значит, что для переноса одного и того же количества теплоты тёплые полы требуют расхода теплоносителя в 2–4 раза больше.
Максимальная температура теплоносителя в системах тёплого пола, как правило, не превышает 55 °С, рабочее значение этого параметра обычно лежит в пределах 35–45 °С.
В радиаторном же отоплении теплоноситель обычно подаётся с температурой 80–90 °С.
В связи с этими двумя факторами неизменным атрибутом системы напольного отопления является узел смешения.
- Насосно-смесительный узел системы тёплого пола должен выполнять следующие основные функции:
- поддерживать во вторичном контуре температуру теплоносителя ниже температуры первичного контура;
- обеспечивать расчётный расход теплоносителя через вторичный контур;
- обеспечивать гидравлическую увязку между первичным и вторичным контурами.
- К вспомогательным функциям насосно-смесительного узла можно отнести следующие:
- индикация температуры (на входе и выходе);
- отсекание циркуляционного насоса шаровыми кранами для его замены или обслуживания;
- защита насоса от работы на «закрытую задвижку» с помощью перепускного клапана;
- аварийное отключение насоса при превышении максимально допустимой температуры теплоносителя;
- отведение воздуха из теплоносителя;
- дренирование узла.
Принцип работы простейшего насосно-смесительного узла можно объяснить по тепломеханической схеме на рис. 1.
Рис. 1. Тепломеханическая схема простейшего насосно-смесительного узла
Нагретый теплоноситель поступает на вход насосно-смесительного узла от котла или стояка радиаторной системы отопления с температурой T1. На входе в узел установлен настраиваемый термостатический клапан 2, на приводе которого выставляется требуемая температура теплоносителя, поступающего в тёплый пол Т11. Термочувствительный элемент 3 привода клапана располагается после насоса 1. При повышении температуры Т11 выше настроечного значения, клапан 2 закрывается, а при понижении – открывается, пропуская горячий теплоноситель на вход насоса. Пройдя по петлям тёплого пола, теплоноситель остывает до температуры Т21. Часть остывшего теплоносителя возвращается к котлу, а часть – через балансировочный клапан 4 поступает на вход насоса, смешиваясь с горячим теплоносителем.
Таким образом, в первичном (котловом) контуре температура теплоносителя снижается с Т1 до Т21 (∆Ткк = Т1 – Т21). Температуру Т21 задаёт пользователь. Перепад температур в петлях тёплого пола ∆Ттп = Т11 – Т21 также задаётся на стадии расчётов. Зная эти данные, и требуемую тепловую мощность тёплого пола, можно определить соотношение расходов в узле:
- Исходные данные:
- температура на входе в насосно-смесительный узел Т1 = 90 °С;
- температура после насоса Т11 = 35 °С;
- перепад температур в петлях тёплого пола ∆Ттп = 5 °С;
- тепловая мощность тёплого пола Q = 12 кВт.
- Решение:
- Температура на выходе из петель тёплого пола: Т21 = Т11 – ∆Ттп = 35 – 5 = 30 °С.
- Перепад температур в первичном (котловом) контуре: ∆Ткк = Т1 – Т21 = 90 – 30 = 60 °С.
- Расход во вторичном контуре G11 = Q/c⋅ ∆Tтп = 12000/4187⋅5 = 0,573 кг/с.
- Расход в первичном (котловом) контуре G1 = Q/c⋅ ∆Tтп = 12000/4187⋅60 = 0,048 кг/с.
- Расход через байпас G3 = G11 – G1 = 0,573 – 0,048 = 0,535 кг/с.
Таким образом, расход в контуре тёплого пола в данном примере должен быть в 12 раз выше, чем в котловом контуре.
Как правило, циркуляционный насос при проектировании выбирается с некоторым запасом, поэтому он может перекачивать через байпас большее количество теплоносителя, чем требуется по проекту. К тому же, и температура теплоносителя в первичном контуре может по факту оказаться меньше расчётной. Именно для корректировки этих расхождений с расчётными данными служит балансировочный клапан 4, которым можно ограничить расход через байпас.
Насосно-смесительные узлы VT.COMBI и VT.COMBI.S
В насосно-смесительных узлах VT.COMBI и VT.COMBI.S (рис. 2, 3) приготовление теплоносителя с пониженной температурой происходит при помощи двухходового термостатического клапана, управляемого либо термоголовкой с капиллярным термочувствительным элементом, установленном в линии подающего коллектора (модель VT.COMBI), либо аналоговым сервоприводом, который работает под управлением контроллера VT.К200.М (модель VT.COMBI.S). Контроллер с датчиками температуры теплоносителя и наружного воздуха не входит в комплект поставки насосно-смесительного узла и приобретается отдельно.
В линии подмеса узла установлен балансировочный клапан, который задаёт соотношение между количествами теплоносителя, поступающего из обратной линии вторичного контура и прямой линии первичного контура, а также уравнивает давление теплоносителя на выходе из контура тёплых полов с давлением после термостатического регулировочного клапана.
От настроечного значения Kvb этого клапана и установленного скоростного режима насоса зависит тепловая мощность смесительного узла.
Узел адаптирован для присоединения к нему коллекторных блоков с межосевым расстоянием 200 мм и горизонтальным смещением между осями коллекторов 32 мм. При этом коллекторные блоки могут присоединяться как на входе, так и на выходе насосно-смесительного узла. Это позволяет использовать этот узел в комбинированных системах отопления (рис. 4), где отопление тёплым полом совмещается с радиаторным отоплением.
Рис. 4. Узел VT.COMBI.S в комбинированной системе отопления
Насосно-смесительный узел VT.DUAL
Насосно-смесительный узел VT.DUAL (рис. 5 и 6) состоит из двух модулей (насосного и термостатического), между которыми монтируется коллекторный блок контура тёплого пола. Для смешения используется трехходовой термостатический клапан, управляемый термоголовкой с капиллярным термочувствительным элементом, установленным на обратный коллектор вторичного контура.
Рис. 5. Насосно-смесительный узел VT.DUAL
Предохранительный термостат подающего коллектора останавливает насос в случае превышения настроечного значения температуры, прекращая циркуляцию в петлях тёплого пола.
Рис. 6. Узел VT.DUAL с коллекторным блоком (подключение справа)
Конструкция узла предусматривает перепускной контур с балансировочным клапаном, сохраняющим неизменным расход теплоносителя в первичном контуре при перекрытии петель тёплого пола.
Элементы узла устанавливаются не вертикально, а под углом 9°, что вызвано горизонтальным смещением осей коллекторного блока. Это позволяет подключать узел к подводящим трубопроводам как справа, так и слева.
Насосно-смесительный узел VT.VALMIX
Насосно-смесительный узел VT.VALMIX (рис. 7) отличается от узла VT.COMBI меньшей монтажной длиной и отсутствием перепускного клапана. Узел рассчитан на установку циркуляционного насоса монтажной длиной 130 мм. Ручной воздухоотводчик узла расположен на регулировочной втулке балансировочного клапана вторичного контура.
Узел поставляется с термоголовкой VT.3011, имеющей диапазон настройки температур от 20 до 62 °С. Вместо термоголовки может быть установлен аналоговый термоэлектрический сервопривод VT.TE3061, работающий под управлением контроллера VT.K200.М. Узел поставляется без циркуляционного насоса.
Рис. 7. Насосно-смесительный узел VT.VALMIX
Насосно-смесительный узел VT.TECHNOMIX
Так же как узел VT.VALMIX, узел VT.TECHNOMIX (рис. 8) рассчитан на установку циркуляционного насоса длиной 130 мм, но имеет несколько большую монтажную длину.
Кроме того, входные и выходные патрубки узла находятся в одной плоскости, поэтому узел монтируется к коллекторному блоку под углом 9°, и может устанавливаться как справа от обслуживаемого коллекторного блока, так и слева от него.
Узел поставляется с термоголовкой VT.5011, имеющей диапазон настройки температур от 20 до 60 °С.
Вместо термоголовки может быть установлен аналоговый термоэлектрический сервопривод VT.TE3061, работающий под управлением контроллера VT.K200.М. Узел поставляется без циркуляционного насоса.
Сравнение насосно-смесительных узлов VALTEC
Таблица 1. Сравнительная таблица насосно-смесительных узлов VALTEC