Смеситель для теплого пола valtec инструкция по применению

Как подключить смесительный узел Valtec к системе теплого пола

Водяные виды теплых полов продолжают совершенствоваться, оставаясь по-прежнему популярными среди потребителей. Одним из признанных лидеров является итальянская компания Valtec (Валтек).

Смесительный узел VALTEC для теплого пола

Плюсы системы Valtec

Спецификация смесительного узла Valtec для теплого пола

Прежде чем начинать монтаж и подбирать смесительный узел для теплого пола Valtec, необходимо проанализировать плюсы этого вида водяного контура.

  • Благодаря качественным материалам, прочным крепежным элементам, обеспечивается надежность функционирования.
  • Разработанные в виде модулей комплектующие детали точно состыкуются, исключая риск протечек.
  • Производитель предусмотрел выпуск сопутствующих материалов, необходимых для оборудования тепло- и гидроизоляции.

Инструкция по проведению расчета

Чтобы правильно разработать проект укладки теплого пола, потребуется предварительный расчет основных показателей, ориентируясь на средние их величины.

Монтаж водяного тёплого пола своими руками

Приходится учитывать разнообразные факторы, включая роль водяного пола как основного вида обогрева или же использование его в качестве дополнительного источника тепла. Поскольку детальный расчет для самостоятельного выполнения является сложным процессом, на практике используются усредненные параметры.

Схема подключения смесительного узла Valtec

  • Номинальная мощность имеет пределы 90 – 150 Вт/м 2 . Более высокие значения подбираются для помещений с повышенным уровнем влажности.
  • Выполняя расчет шага укладки, необходимо ориентироваться на диапазон 15–30 см. С этим показателем в обратной пропорциональной зависимости находится удельная мощность подогрева. То есть, чем больше шаг, тем меньше мощность.

Тепломеханическая схема насосно-смесительного узла

После определения ключевых параметров может разрабатываться схема, на которой в точном масштабе определяется наиболее рациональная укладка труб. После этого делается расчет их общей длины. Одновременно продумывается, где будет размещаться насосно-смесительный узел и элементы управления.

Ключевые характеристики смесительного узла

Чтобы устанавливаемый водяной контур функционировал эффективно, необходимо грамотно произвести расчет всей системы и правильно установить смесительный узел для теплого пола Valtec в соответствии с положениями, которые отражает прилагаемая к комплекту инструкция.

Схема подключения смесительного узла к разным видам отопления

Параметры насосно-смесительного узла:

  • сечение труб составляет ¾ дюйма, коллекторов – 1 дюйм;
  • в конструкции находятся патрубки в количестве 12 штук;
  • насосная система имеет длину 18 см;
  • температурный режим нагретой воды в системе поддерживается до 90°С;
  • максимальное значение давления – 10 бар;
  • пропускная способность – 2,75 м 3 /ч.

Спецификация насосно-смесительного узла Valtec

Трубы имеют внешнюю резьбу с соединением «евроконус».

Насосно-смесительный узел для теплого пола

Функциональные возможности

В конструкцию узла Combi входят следующие сервисные элементы:

  • сливные клапаны;
  • воздухоотводчики;
  • термометры.

Принцип работы узла Combi

Для осуществления регулировки узла служат следующие органы:

К узлу VALTEC COMBIMIX допустимо подключать неограниченное количество веток тёплого пола суммарной мощностью не более 20 кВт

  • балансировочный клапан на вторичном контуре, обеспечивающий смешивание в нужной пропорции теплоносителей из подающего и обратного трубопровода для обеспечения нормативной температуры;
  • балансировочно-запорный клапан на первичном контуре, отвечающий за подачу в узел необходимого количества горячей воды. Он позволяет при необходимости полностью перекрыть поток;
  • перепускной клапан, позволяющий открывать дополнительный байпас для обеспечения работы насоса в ситуации, когда все регулирующие клапаны закрыты.

Схема подключения разработана с учетом возможности подсоединения к насосно-смесительному узлу необходимого количества ответвлений отопления пола с суммарным расходом воды, не превышающим 1,7 м 3 /ч. Расчет показывает, что подобная величина расхода теплоносителя при разности температур в 5°С соответствует мощности 10 кВт.

Алгоритм монтажа

После того как предварительный расчет всех составляющих выполнен, начинается непосредственно монтаж теплого пола, предполагающий прохождение нескольких этапов.

Схема водяного отопления полов

  • Установка на предварительно выбранном месте коллекторного шкафа. В нем располагается модуль из коллекторного блока и насосно-смесительного узла с шаровыми кранами, посредством которых будет выполняться подключение к высокотемпературному контуру.
  • Подготовка плоскости пола. При наличии значительных неровностей принимаются меры по их устранению. Самым действенным вариантом является черновая стяжка.

Схема подключения насосно-смесительного узла к теплому полу

Настройка

Для подключения труб к распределительным коллекторам используется труборез для отрезания нужной длины, калибратор, снимающий фаски и обжимной фитинг. Проводить детальный расчет в домашних условиях сложно, поэтому обязательно изучается инструкция, где подробно отражена настройка насосно-смесительного узла в определенной последовательности.

  • Снимается термоголовка.
  • Для балансировочного клапана на вторичном контуре производится расчет пропускной способности по формуле.

Два варианта смесительного узла

где kνt – коэффициент = 0,9 пропускной способности клапана;

t1 – температура воды первичного контура на подаче, °С;

t11 – температура вторичного контура на подаче теплоносителя, °С;

t12 – температура воды обратного трубопровода, °С.

Рассчитанную величину kνb нужно выставить на клапане.

  • Настройка нужного режима функционирования перепускного клапана при выставлении максимального значения перепада давлений в 0,6 бар.
  • Чтобы теплый пол функционировал эффективно, настраивается требуемая скорость насоса. Для этого необходимо определить значение расхода теплоносителя в системе вторичного контура, а также потери давления, появляющиеся в контурах, расположенных после узла.

Оборудование для смесительного узла Valtec

Расход G2 (кг/с) определяется по формуле:

где Q – суммарная тепловая мощность водяного контура, присоединенного к смесительному узлу, Дж/с;

4187 [Дж/(кг•°С)] – теплоемкость воды.

Для расчета потерь давления используется специальная программа гидравлического расчета. Чтобы определить скорость насоса, которая устанавливается при помощи переключателя, по рассчитанным показателям, используется номограмма, которая есть в инструкции, прилагаемой к конструкции теплого пола.

Схема подключение контуров теплого пола

  • Производятся операции по настройке балансировочного клапана на первичном контуре.
  • На терморегуляторе устанавливается необходимая для комфортного обогрева температура.
  • Производится пробный запуск системы.

При отсутствии протечек остается выполнить бетонную стяжку, а после ее полного застывания уложить половое покрытие.

Видео: Теплый пол с насосно-смесительным узлом VALTEC

Насосно-смесительные узлы для водяного теплого пола

Требуемый расход теплоносителя в любой системе водяного отопления подсчитывается по следующей формуле:

где Q — тепловая мощность системы, Вт; с — удельная теплоёмкость теплоносителя, Дж/кг °С; ∆Т — разность температур между прямым и обратным теплоносителем, °С.

В системах радиаторного отопления перепад температур ∆Т обычно составляет порядка 20 °С, а в системах напольного отопления ∆Т = 5–10 °С.

Это значит, что для переноса одного и того же количества теплоты тёплые полы требуют расхода теплоносителя в 2–4 раза больше.

Максимальная температура теплоносителя в системах тёплого пола, как правило, не превышает 55 °С, рабочее значение этого параметра обычно лежит в пределах 35–45 °С.

В радиаторном же отоплении теплоноситель обычно подаётся с температурой 80–90 °С.

В связи с этими двумя факторами неизменным атрибутом системы напольного отопления является узел смешения.

    Насосно-смесительный узел системы тёплого пола должен выполнять следующие основные функции:
  • поддерживать во вторичном контуре температуру теплоносителя ниже температуры первичного контура;
  • обеспечивать расчётный расход теплоносителя через вторичный контур;
  • обеспечивать гидравлическую увязку между первичным и вторичным контурами.
    К вспомогательным функциям насосно-смесительного узла можно отнести следующие:
  • индикация температуры (на входе и выходе);
  • отсекание циркуляционного насоса шаровыми кранами для его замены или обслуживания;
  • защита насоса от работы на «закрытую задвижку» с помощью перепускного клапана;
  • аварийное отключение насоса при превышении максимально допустимой температуры теплоносителя;
  • отведение воздуха из теплоносителя;
  • дренирование узла.

Принцип работы простейшего насосно-смесительного узла можно объяснить по тепломеханической схеме на рис. 1.

Рис. 1. Тепломеханическая схема простейшего насосно-смесительного узла

Нагретый теплоноситель поступает на вход насосно-смесительного узла от котла или стояка радиаторной системы отопления с температурой T1. На входе в узел установлен настраиваемый термостатический клапан 2, на приводе которого выставляется требуемая температура теплоносителя, поступающего в тёплый пол Т11. Термочувствительный элемент 3 привода клапана располагается после насоса 1. При повышении температуры Т11 выше настроечного значения, клапан 2 закрывается, а при понижении – открывается, пропуская горячий теплоноситель на вход насоса. Пройдя по петлям тёплого пола, теплоноситель остывает до температуры Т21. Часть остывшего теплоносителя возвращается к котлу, а часть – через балансировочный клапан 4 поступает на вход насоса, смешиваясь с горячим теплоносителем.

Таким образом, в первичном (котловом) контуре температура теплоносителя снижается с Т1 до Т21 (∆Ткк = Т1Т21). Температуру Т21 задаёт пользователь. Перепад температур в петлях тёплого пола ∆Ттп = Т11Т21 также задаётся на стадии расчётов. Зная эти данные, и требуемую тепловую мощность тёплого пола, можно определить соотношение расходов в узле:

    Исходные данные:
  • температура на входе в насосно-смесительный узел Т1 = 90 °С;
  • температура после насоса Т11 = 35 °С;
  • перепад температур в петлях тёплого пола ∆Ттп = 5 °С;
  • тепловая мощность тёплого пола Q = 12 кВт.
    Решение:
  1. Температура на выходе из петель тёплого пола: Т21 = Т11 – ∆Ттп = 35 – 5 = 30 °С.
  2. Перепад температур в первичном (котловом) контуре: ∆Ткк = Т1Т21 = 90 – 30 = 60 °С.
  3. Расход во вторичном контуре G11 = Q/c⋅ ∆Tтп = 12000/4187⋅5 = 0,573 кг/с.
  4. Расход в первичном (котловом) контуре G1 = Q/c⋅ ∆Tтп = 12000/4187⋅60 = 0,048 кг/с.
  5. Расход через байпас G3 = G11G1 = 0,573 – 0,048 = 0,535 кг/с.

Таким образом, расход в контуре тёплого пола в данном примере должен быть в 12 раз выше, чем в котловом контуре.

Как правило, циркуляционный насос при проектировании выбирается с некоторым запасом, поэтому он может перекачивать через байпас большее количество теплоносителя, чем требуется по проекту. К тому же, и температура теплоносителя в первичном контуре может по факту оказаться меньше расчётной. Именно для корректировки этих расхождений с расчётными данными служит балансировочный клапан 4, которым можно ограничить расход через байпас.

Насосно-смесительные узлы VT.COMBI и VT.COMBI.S

В насосно-смесительных узлах VT.COMBI и VT.COMBI.S (рис. 2, 3) приготовление теплоносителя с пониженной температурой происходит при помощи двухходового термостатического клапана, управляемого либо термоголовкой с капиллярным термочувствительным элементом, установленном в линии подающего коллектора (модель VT.COMBI), либо аналоговым сервоприводом, который работает под управлением контроллера VT.К200.М (модель VT.COMBI.S). Контроллер с датчиками температуры теплоносителя и наружного воздуха не входит в комплект поставки насосно-смесительного узла и приобретается отдельно.

В линии подмеса узла установлен балансировочный клапан, который задаёт соотношение между количествами теплоносителя, поступающего из обратной линии вторичного контура и прямой линии первичного контура, а также уравнивает давление теплоносителя на выходе из контура тёплых полов с давлением после термостатического регулировочного клапана.

От настроечного значения Kvb этого клапана и установленного скоростного режима насоса зависит тепловая мощность смесительного узла.

Узел адаптирован для присоединения к нему коллекторных блоков с межосевым расстоянием 200 мм и горизонтальным смещением между осями коллекторов 32 мм. При этом коллекторные блоки могут присоединяться как на входе, так и на выходе насосно-смесительного узла. Это позволяет использовать этот узел в комбинированных системах отопления (рис. 4), где отопление тёплым полом совмещается с радиаторным отоплением.

Рис. 4. Узел VT.COMBI.S в комбинированной системе отопления

Насосно-смесительный узел VT.DUAL

Насосно-смесительный узел VT.DUAL (рис. 5 и 6) состоит из двух модулей (насосного и термостатического), между которыми монтируется коллекторный блок контура тёплого пола. Для смешения используется трехходовой термостатический клапан, управляемый термоголовкой с капиллярным термочувствительным элементом, установленным на обратный коллектор вторичного контура.

Рис. 5. Насосно-смесительный узел VT.DUAL

Предохранительный термостат подающего коллектора останавливает насос в случае превышения настроечного значения температуры, прекращая циркуляцию в петлях тёплого пола.

Рис. 6. Узел VT.DUAL с коллекторным блоком (подключение справа)

Конструкция узла предусматривает перепускной контур с балансировочным клапаном, сохраняющим неизменным расход теплоносителя в первичном контуре при перекрытии петель тёплого пола.

Элементы узла устанавливаются не вертикально, а под углом 9°, что вызвано горизонтальным смещением осей коллекторного блока. Это позволяет подключать узел к подводящим трубопроводам как справа, так и слева.

Насосно-смесительный узел VT.VALMIX

Насосно-смесительный узел VT.VALMIX (рис. 7) отличается от узла VT.COMBI меньшей монтажной длиной и отсутствием перепускного клапана. Узел рассчитан на установку циркуляционного насоса монтажной длиной 130 мм. Ручной воздухоотводчик узла расположен на регулировочной втулке балансировочного клапана вторичного контура.

Узел поставляется с термоголовкой VT.3011, имеющей диапазон настройки температур от 20 до 62 °С. Вместо термоголовки может быть установлен аналоговый термоэлектрический сервопривод VT.TE3061, работающий под управлением контроллера VT.K200.М. Узел поставляется без циркуляционного насоса.

Рис. 7. Насосно-смесительный узел VT.VALMIX

Насосно-смесительный узел VT.TECHNOMIX

Так же как узел VT.VALMIX, узел VT.TECHNOMIX (рис. 8) рассчитан на установку циркуляционного насоса длиной 130 мм, но имеет несколько большую монтажную длину.

Кроме того, входные и выходные патрубки узла находятся в одной плоскости, поэтому узел монтируется к коллекторному блоку под углом 9°, и может устанавливаться как справа от обслуживаемого коллекторного блока, так и слева от него.

Узел поставляется с термоголовкой VT.5011, имеющей диапазон настройки температур от 20 до 60 °С.

Вместо термоголовки может быть установлен аналоговый термоэлектрический сервопривод VT.TE3061, работающий под управлением контроллера VT.K200.М. Узел поставляется без циркуляционного насоса.

Сравнение насосно-смесительных узлов VALTEC

Таблица 1. Сравнительная таблица насосно-смесительных узлов VALTEC

Читайте также:  Каким цветом покрасить радиаторы отопления
Оцените статью