Смесительные узлы для теплого пола италия

Насосно-смесительные узлы для водяного теплого пола

Требуемый расход теплоносителя в любой системе водяного отопления подсчитывается по следующей формуле:

где Q — тепловая мощность системы, Вт; с — удельная теплоёмкость теплоносителя, Дж/кг °С; ∆Т — разность температур между прямым и обратным теплоносителем, °С.

В системах радиаторного отопления перепад температур ∆Т обычно составляет порядка 20 °С, а в системах напольного отопления ∆Т = 5–10 °С.

Это значит, что для переноса одного и того же количества теплоты тёплые полы требуют расхода теплоносителя в 2–4 раза больше.

Максимальная температура теплоносителя в системах тёплого пола, как правило, не превышает 55 °С, рабочее значение этого параметра обычно лежит в пределах 35–45 °С.

В радиаторном же отоплении теплоноситель обычно подаётся с температурой 80–90 °С.

В связи с этими двумя факторами неизменным атрибутом системы напольного отопления является узел смешения.

    Насосно-смесительный узел системы тёплого пола должен выполнять следующие основные функции:
  • поддерживать во вторичном контуре температуру теплоносителя ниже температуры первичного контура;
  • обеспечивать расчётный расход теплоносителя через вторичный контур;
  • обеспечивать гидравлическую увязку между первичным и вторичным контурами.
    К вспомогательным функциям насосно-смесительного узла можно отнести следующие:
  • индикация температуры (на входе и выходе);
  • отсекание циркуляционного насоса шаровыми кранами для его замены или обслуживания;
  • защита насоса от работы на «закрытую задвижку» с помощью перепускного клапана;
  • аварийное отключение насоса при превышении максимально допустимой температуры теплоносителя;
  • отведение воздуха из теплоносителя;
  • дренирование узла.

Принцип работы простейшего насосно-смесительного узла можно объяснить по тепломеханической схеме на рис. 1.

Рис. 1. Тепломеханическая схема простейшего насосно-смесительного узла

Нагретый теплоноситель поступает на вход насосно-смесительного узла от котла или стояка радиаторной системы отопления с температурой T1. На входе в узел установлен настраиваемый термостатический клапан 2, на приводе которого выставляется требуемая температура теплоносителя, поступающего в тёплый пол Т11. Термочувствительный элемент 3 привода клапана располагается после насоса 1. При повышении температуры Т11 выше настроечного значения, клапан 2 закрывается, а при понижении – открывается, пропуская горячий теплоноситель на вход насоса. Пройдя по петлям тёплого пола, теплоноситель остывает до температуры Т21. Часть остывшего теплоносителя возвращается к котлу, а часть – через балансировочный клапан 4 поступает на вход насоса, смешиваясь с горячим теплоносителем.

Таким образом, в первичном (котловом) контуре температура теплоносителя снижается с Т1 до Т21 (∆Ткк = Т1Т21). Температуру Т21 задаёт пользователь. Перепад температур в петлях тёплого пола ∆Ттп = Т11Т21 также задаётся на стадии расчётов. Зная эти данные, и требуемую тепловую мощность тёплого пола, можно определить соотношение расходов в узле:

    Исходные данные:
  • температура на входе в насосно-смесительный узел Т1 = 90 °С;
  • температура после насоса Т11 = 35 °С;
  • перепад температур в петлях тёплого пола ∆Ттп = 5 °С;
  • тепловая мощность тёплого пола Q = 12 кВт.
    Решение:
  1. Температура на выходе из петель тёплого пола: Т21 = Т11 – ∆Ттп = 35 – 5 = 30 °С.
  2. Перепад температур в первичном (котловом) контуре: ∆Ткк = Т1Т21 = 90 – 30 = 60 °С.
  3. Расход во вторичном контуре G11 = Q/c⋅ ∆Tтп = 12000/4187⋅5 = 0,573 кг/с.
  4. Расход в первичном (котловом) контуре G1 = Q/c⋅ ∆Tтп = 12000/4187⋅60 = 0,048 кг/с.
  5. Расход через байпас G3 = G11G1 = 0,573 – 0,048 = 0,535 кг/с.

Таким образом, расход в контуре тёплого пола в данном примере должен быть в 12 раз выше, чем в котловом контуре.

Как правило, циркуляционный насос при проектировании выбирается с некоторым запасом, поэтому он может перекачивать через байпас большее количество теплоносителя, чем требуется по проекту. К тому же, и температура теплоносителя в первичном контуре может по факту оказаться меньше расчётной. Именно для корректировки этих расхождений с расчётными данными служит балансировочный клапан 4, которым можно ограничить расход через байпас.

Насосно-смесительные узлы VT.COMBI и VT.COMBI.S

В насосно-смесительных узлах VT.COMBI и VT.COMBI.S (рис. 2, 3) приготовление теплоносителя с пониженной температурой происходит при помощи двухходового термостатического клапана, управляемого либо термоголовкой с капиллярным термочувствительным элементом, установленном в линии подающего коллектора (модель VT.COMBI), либо аналоговым сервоприводом, который работает под управлением контроллера VT.К200.М (модель VT.COMBI.S). Контроллер с датчиками температуры теплоносителя и наружного воздуха не входит в комплект поставки насосно-смесительного узла и приобретается отдельно.

Читайте также:  Воздушное отопление твердым топливом

В линии подмеса узла установлен балансировочный клапан, который задаёт соотношение между количествами теплоносителя, поступающего из обратной линии вторичного контура и прямой линии первичного контура, а также уравнивает давление теплоносителя на выходе из контура тёплых полов с давлением после термостатического регулировочного клапана.

От настроечного значения Kvb этого клапана и установленного скоростного режима насоса зависит тепловая мощность смесительного узла.

Узел адаптирован для присоединения к нему коллекторных блоков с межосевым расстоянием 200 мм и горизонтальным смещением между осями коллекторов 32 мм. При этом коллекторные блоки могут присоединяться как на входе, так и на выходе насосно-смесительного узла. Это позволяет использовать этот узел в комбинированных системах отопления (рис. 4), где отопление тёплым полом совмещается с радиаторным отоплением.

Рис. 4. Узел VT.COMBI.S в комбинированной системе отопления

Насосно-смесительный узел VT.DUAL

Насосно-смесительный узел VT.DUAL (рис. 5 и 6) состоит из двух модулей (насосного и термостатического), между которыми монтируется коллекторный блок контура тёплого пола. Для смешения используется трехходовой термостатический клапан, управляемый термоголовкой с капиллярным термочувствительным элементом, установленным на обратный коллектор вторичного контура.

Рис. 5. Насосно-смесительный узел VT.DUAL

Предохранительный термостат подающего коллектора останавливает насос в случае превышения настроечного значения температуры, прекращая циркуляцию в петлях тёплого пола.

Рис. 6. Узел VT.DUAL с коллекторным блоком (подключение справа)

Конструкция узла предусматривает перепускной контур с балансировочным клапаном, сохраняющим неизменным расход теплоносителя в первичном контуре при перекрытии петель тёплого пола.

Элементы узла устанавливаются не вертикально, а под углом 9°, что вызвано горизонтальным смещением осей коллекторного блока. Это позволяет подключать узел к подводящим трубопроводам как справа, так и слева.

Насосно-смесительный узел VT.VALMIX

Насосно-смесительный узел VT.VALMIX (рис. 7) отличается от узла VT.COMBI меньшей монтажной длиной и отсутствием перепускного клапана. Узел рассчитан на установку циркуляционного насоса монтажной длиной 130 мм. Ручной воздухоотводчик узла расположен на регулировочной втулке балансировочного клапана вторичного контура.

Узел поставляется с термоголовкой VT.3011, имеющей диапазон настройки температур от 20 до 62 °С. Вместо термоголовки может быть установлен аналоговый термоэлектрический сервопривод VT.TE3061, работающий под управлением контроллера VT.K200.М. Узел поставляется без циркуляционного насоса.

Рис. 7. Насосно-смесительный узел VT.VALMIX

Насосно-смесительный узел VT.TECHNOMIX

Так же как узел VT.VALMIX, узел VT.TECHNOMIX (рис. 8) рассчитан на установку циркуляционного насоса длиной 130 мм, но имеет несколько большую монтажную длину.

Кроме того, входные и выходные патрубки узла находятся в одной плоскости, поэтому узел монтируется к коллекторному блоку под углом 9°, и может устанавливаться как справа от обслуживаемого коллекторного блока, так и слева от него.

Узел поставляется с термоголовкой VT.5011, имеющей диапазон настройки температур от 20 до 60 °С.

Вместо термоголовки может быть установлен аналоговый термоэлектрический сервопривод VT.TE3061, работающий под управлением контроллера VT.K200.М. Узел поставляется без циркуляционного насоса.

Сравнение насосно-смесительных узлов VALTEC

Таблица 1. Сравнительная таблица насосно-смесительных узлов VALTEC

Рейтинг производителей смесительного узда для водяных полов

Разнообразные варианты обустройства теплого пола с каждым годом становятся все популярнее. Это эффективный способ дополнительного или даже основного источника отопления в доме. Вне зависимости от напольного покрытия (будь то плитка, ламинат, керамогранит и т.д.) электрический или водяной пол способен равномерно обогревать все помещение. Это снижает дискомфорт для жильцов, позволяя ходить босиком по полу даже зимой.

Основа системы – это смеситель, с выбором и установкой которого у новичков часто возникают проблемы. Самые распространенные вопросы заключаются в непонимании, как работает смесительный узел для теплого пола и каким он должен быть.

Стандартная схема

Самый надежный способ – это приобретение заводской продукции, прошедшей опрессовку и гидроиспытания. Смеситель для теплого пола небольшой по размеру. Он должен иметь гарантию на 100%-ю герметичность всевозможных соединений, а также рациональное расположение элементов управления.

Читайте также:  Водяной все для водоснабжения

Для максимально комфортной и легкой установки производят щиты и маскировочные шкафы для смесителей, не забывая про организацию доступа к регулирующим элементам.

Коллектор состоит из насоса и клапана. На рынке существуют расширенные комплектации, но первый вариант наиболее распространенный. Насос расположен в самом узле, но для надежности и эффективности рекомендуется приобретать дополнительное устройство и устанавливать его на насосно-смесительный узел. Это позволит расширить диапазон температур. На коллектор обязательно монтируется предохранитель, отключающий устройство в экстренной ситуации.

Выбираем смесительный узел

Подбирая термостатический смеситель для теплых полов важно изучить следующие критерии:

  1. Площадь обогреваемого помещения.
  2. Количество трубопроводов.
  3. Функционал.
  4. Стоимость.

В первую очередь, смесительные узлы для теплого пола разделяются на три типа:

  1. Последовательный. Предназначен для отопления больших помещений.
  2. Параллельный. Его главное отличие от остальных видов смесительных узлов заключается в разделении потоков воды на несколько потребителей. Данный коллектор более сложный по своему устройству и его установка может потребовать более квалифицированного монтажа и дополнительных расчетов. Однако, параллельный коллектор для теплого пола позволяет регулировать температуру для каждого помещения индивидуально.
  3. Комбинированный. Это наиболее сложный тип. Установка комбинированного коллектора позволит использовать одновременно как параллельный, так и последовательный тип.

Смеситель для теплого водяного пола оснащается двухходовым или трехходовым клапаном.

Последний подразумевает наличие трех ходов в клапане. Смешивание теплоносителей для теплого пола происходит путем смешивания горячей воды с холодным материалом. Такой клапан обычно оснащен контролирующим температуру приводом. Трехходовые клапаны прочные и надежные.

Двухходовые варианты более востребованы на рынке при установке теплого водяного пола. Они не столь прихотливы в обслуживании, перемешивание теплоносителя в них происходит постоянно, а риск повреждения или разрушения корпуса сводится к 0. Оборудование пропускает меньшее количество жидкости, но обычно ее достаточно для равномерного и эффективного отопления помещения площадью до 200 метров.

На рынке представлен широкий выбор смесителей от различных производителей насосного оборудования. Разберемся, какой смесительный узел выбрать для теплых полов.

Aquahit

Насосно-смесительный узел для теплого пола Aquahit хорошо востребован на рынке отопительного оборудования.

Абсолютно вся продукция компании проходит испытания, имеет сертификаты качества и гарантию производителя. Aquahit учитывает скорость роста рынка и успешно подстраивается под него, используя новейшие технологии в производстве.

Компания TIM существует на рынке производителей оборудования для теплых водяных полов уже 25 лет. Она включает в себя 6 производств, которые функционируют в Китае. Коммерческие филиалы TIM находятся в России, Италии, Франции и Соединенных Штатах Америки.

Продукция отличается эксклюзивностью. Смесительные узлы TIM оптимизируют работу всего теплого пола. Надежность продукции обеспечивается высоким уровнем качества используемых в производстве материалов и квалификацией специалистов. Ассортимент продукции включает в себя более 5 000 наименований товаров. Все они изготавливаются на высококачественном оборудовании с соблюдением актуальных стандартов качества.

Stout

Насосное оборудование STOUT широко востребовано среди дистрибьюторов продукции для обустройства теплого водяного пола. Бренд представляет собой объединенную воедино систему ведущих предприятий Европы. Два основных производства марки расположены в Италии (латунные фитинги, коллекторы) и в Испании (трубы PE-XA-EVON). Кроме того, бренд STOUT включает в себя заводы ITAP SpA, Luxor, ICMA и General Fitings.

Идея создания марки Stout заключалась в том, чтобы предложить покупателю высокотехнологичное оборудование с длительной гарантией в среднем ценовом сегменте. Каждое производство в Европе, относящееся к бренду Stout, занимается изготовлением определенного типа продукции. Подобный подход гарантирует высокое качество каждого наименования, в том числе и комплектующих для теплого водяного пола.

Рекламная компания всех производств осуществляется под единым брендом Stout, что способствует популяризации европейской марки на российском рынке оборудования для отопления и водоснабжения.

При производстве продукции в классические конструкции регулярно вносятся изменения с целью адаптации под российские условия эксплуатации.

Grundfos

Grundfos является одним из ведущих производителей на рынке насосного оборудования. Компания ежегодно подтверждает звание законодателя тенденций в области производства оборудования для водоснабжения.

Специалисты Grundfos производят насосное оборудование почти для всех отраслей и сфер их применения. Продукция этой компании отличается высоким уровнем надежности и качества.

Фирма была основана в 1974 году двумя специалистами в области производства оборудования для отопления и водоснабжения. Через 4 года она запустила производство коллекторов для теплых водяных полов, а еще через 4 – радиаторных вентилей.

Читайте также:  Водяное отопление котел baxi

Icma принимает участие в российских выставках продукции с 1999 года. Именно тогда началось активное сотрудничество с Россией. Производственные площади и головной офис фирмы находятся в г.Курджионо в Италии. В Icma трудятся более 100 человек.

Руководство организации вкладывает много усилий в исследовательские процессы (около 10% от прибыли). Благодаря этому фирма реализует технологичное оборудование, адаптированное под российский рынок.

Распространенным типом продукции Icma является система учета Concal, термостатические вентили и головки.

Мультибокс Meibes

Фирма Meibes – это производитель энергооборудования в Германии. Также Meibes входит в состав холдинга Aalberts Industries N.V.

Компания лидирует в комплексном развитии направления Climate Control. Оно заключается в снижении потребления электроэнергии и сохранении экологии, что также применяется при монтаже теплых водяных полов.

Весь ассортимент компании делится на пять направлений:

  • готовые решения для котельных;
  • комплексы внутренней инженерии;
  • централизованное отопление;
  • термостатическая арматура.

Компания Meibes – лидер в области изготовления продукции для обустройства теплого пола. Она регулярно награждается сертификатами качества и премиями в области развития энергоэффективных технологий.

Сборка смесительного узла

Коллекторно-смесительный узел для теплого пола возможно собрать самостоятельно. Для этого потребуется:

  1. Насос.
  2. Тройники из металла или пластика.
  3. Термоклапан.
  4. Обратный клапан.
  5. Шаровой кран.
  6. Воздухоотводчик.
  7. Термометр.
  8. Фильтр очистки.

Перед началом сборки водяного пола необходимо нарисовать полный чертеж (схему) для определения верного количества контуров и правильного расчета выходов коллектора. Специалисты рекомендуют приобретать коллекторы в сборке, но при желании их спаивают самостоятельно из полипропилена с сечением в три четверти дюйма. Однако, стоит оснастить уголки фитингами, это увеличит себестоимость изделия. Соединения обрабатываются силиконом.

Для самостоятельной сборки смесительного узла для теплого пола потребуются краны из латуни. Термометры помогают контролировать температурный режим. Один будет показывать температуру поступающей жидкости, второй – после нагревания, а третий – в результате прохождения цикла обогрева пола.

Что касается термоклапана, то он необходим для регулировки движения горячей воды по системе. Рекомендуется использовать однотрубные клапаны с маркировкой G. Двухходовой клапан оснащен термоголовкой с датчиком. Именно она помогает регулировать устройство. Датчик устанавливается на трубе за насосом.

На байпас монтируют балансировочный клапан, регулирующий проток обратного хода. Он поможет регулировать объем производительности насоса и его напор. Вместо байпаса можно использовать сантехнические краны. Однако, их регулировка осуществляется только с помощью шестигранника. Насос будет отвечать за регулярный, равномерный и бесперебойный поток теплоносителя. Так как циркуляционного насоса для работы водяного пола недостаточно, то смесительный узел снабжается дополнительным насосом.

Смесительный узел для теплого пола с насосом продается вместе с перечисленными выше комплектующими. Также в комплекте иногда используют:

  • Обратный клапан. Он необходим для предотвращения протечки.
  • Фильтр очистки. Его используют для исключения попадания больших твердых включений.
  • Воздухоотводчик. Необходим для удаления воздушных подушек.
  • Сливной кран.
  • Кран Маевского.
  • Расходомер. Устанавливается на подающую часть.
  • Термостат. Он необходим для экстренного отключения насоса при резком возрастании температуры теплоносителя.
  • 3-ходовые и 4-ходовые клапаны.

Количество и расположение некоторых элементов отличается в отопительных элементах помещений. Главное – это правильные расчет и открытый доступ к необходимым элементам регулировки для экстренных перенастроек или демонтажа. Трубы в отопительной системе используются из различных материалов, но наиболее надежными считается сталь, полипропилен и металлопластик.

Собирая смеситель теплого пола с интеллектуальным насосом стоит убедиться в отсутствии воды в электронных приборах. Процесс сборки состоит из трех этапов:

  1. Сборка смесительного узла для теплого пола.
  2. Монтаж электроники.
  3. Подключение к сети.

Настройка системы занимает больше времени, чем его сборка и установка. Для каждой отопительной системы модель, комплектация и модификация смесительного узла подбираются индивидуально. При отсутствии опыта установки или разработки теплого пола рекомендуется приобретать готовое оборудование.

Рынок готовых смесительных узлов богат и разнообразен. Автономный смесительный узел для теплого пола рекомендуется покупать только в совокупности с проверенными и надежными комплектующими. При возникновении сложностей с расчетами и выбором модели рекомендуется обращаться к специалистам. Это позволит снизить риск покупки неподходящего оборудования, а также исключить возникновение потребности в приобретении нового прибора.

Оцените статью