Сопротивление элементов системы отопления
Расчет гидравлического сопротивления в системе отопления.
Ниже будут реальные задачи.
Вы, конечно, можете воспользоваться специальными программами, для этого, но пользоваться программами весьма затруднительно, если вы не знаете основ гидравлики. Что касается некоторых программ, то в них не разжевываются формулы, по которым происходит гидравлический расчет. В некоторых программах не описываются некоторые особенности по разветвлению трубопроводов, и нахождению сопротивления в сложных схемах. И весьма затруднительно считать, это требует дополнительного образования и научно-технического подхода.
В этой статье я раскрываю для Вас абсолютный расчет (алгоритм) по нахождению гидравлического сопротивления. |
Существуют местные гидравлические сопротивления, которые создают различные элементы систем, например: Шаровый кран, различные повороты, заужения или расширения, трайники и тому подобное. Казалось бы, с поворотами и сужениями понятно, а расширения в трубах тоже создают гидравлические сопротивления.
Протяженность прямой трубы тоже создает сопротивление движению. Вроде прямая труба без сужений, а все равно создает сопротивление движению. И чем длиннее труба, тем больше сопротивление в ней.
Эти сопротивления, хоть и отличаются, но для системы отопления они просто создают сопротивление движению, а вот формулы по нахождению этого сопротивления отличаются между собой.
Для системы отопления не важно, какое это сопротивление местное или по длине трубопровода. Это сопротивление одинаково действует на движение воды в трубопроводе.
Сопротивление будем измерять в метрах водяного столба. Также сопротивление можно обзывать как потеря напора в трубопроводе. Но только однозначно это сопротивление измеряется в метрах водяного столба, либо переводится в другие единицы измерения, например: Bar, атмосфера, Па (Паскаль) и тому подобное.
Что такое сопротивление в трубопроводе?
Чтобы понять это рассмотрим участок трубы.
Манометры, установленные на подающей и обратной ветке трубопроводов, показывают давление на подающей трубе и на обратной трубе. Разница между манометрами показывает перепад давления между двумя точками до насоса и после насоса.
Для примера предположим, что на подающем трубопроводе (справа) стрелка манометра указывает на 2,3 Bar, а на обратном трубопроводе (слева) стрелка манометра показывает 0,9 Bar. Это означает, что перепад давления составляет:
Величину Bar переводим в метры водяного столба, оно составляет 14 метров.
Очень важно понять, что перепад давления, напор насоса и сопротивление в трубе — это величины, которые измеряются давлением (Метрами водяного столба, Bar, Па и т.д.)
В данном случае, как указано на изображение с манометрами, разница на манометрах показывает не только перепад давления между двумя точками, но и напор насоса в данном конкретном времени, а также показывает сопротивление в трубопроводе со всеми элементами, встречающимися на пути трубопровода.
Другими словами, сопротивление системы отопления это и есть перепад давления в пути трубопровода. Насос создает этот перепад давления.
Устанавливая манометры на две разные точки, можно будет находить потери напора в разных точках трубопровода, на которые Вы установите манометры.
На стадии проектирования нет возможности создавать похожие развязки и устанавливать на них манометры, а если имеется такая возможность, то она очень затратная. Для точного расчета перепада давления манометры должны быть установлены на одинаковые трубопроводы, то есть исключить в них разность диаметров и исключить разность направление движения жидкости. Также манометры не должны быть на разных высотах от уровня горизонта.
Ученые приготовили для нас полезные формулы, которые помогают находить потери напора теоретическим способом, не прибегая к практическим проверкам.
Разберем сопротивление водяного теплого пола. Смотри изображение.
Труба металлопластиковая 16мм, внутренний диаметр 12мм. длина трубы 40 м. По условию обогрева, расход в контуре должен быть 1,6 л/мин Поворотов 90 градусов соответствует: 30 шт. Температура теплоносителя (воды): 40 градусов Цельсия. |
Для решения данной задачи были использованы следующие материалы:
Первым делом находим скорость течения в трубе.
Q= 1,6 л/мин = 0,096 м 3 /ч = 0,000026666 м 3 /сек.
V = (4•0,000026666)/(3,14•0,012•0,012)=0,24 м/с
Находим число Рейнольдса
ν=0,65•10 -6 =0,00000065. Взято из таблицы. Для воды при температуре 40°С.
Δэ=0,01мм=0,00001м. Взято из таблицы, для металлопластиковой трубы.
Далее сверяемся по таблице, где находим формулу по нахождению коэффициента гидравлического трения.
У меня попадает на первую область при условии
4000 0,25 = 0,3164/4430 0,25 = 0,039
Далее завершаем формулой:
h=λ•(L•V 2 )/(D•2•g)= 0,039•(40•0,24•0,24)/(0,012•2•9,81)= 0,38 м.
Находим сопротивление на поворотах
h=ζ•(V 2 )/2•9,81=(0,31•0,24 2 )/( 2•9,81)= 0,00091 м.
Данное число умножаем на количество поворотов 90 градусов
В итоге полное сопротивление уложенной трубы составляет: 0,38+0,0273=0,4 м.
Теория о местном сопротивление
Хочу подметить процесс вычисления местных сопротивлений на поворотах и различных расширений и сужений в трубопроводе.
Потеря напора на местном сопротивление находится по этой формуле:
h-потеря напора здесь она измеряется в метрах. ζ-Это коэффициент сопротивления, он будет находиться дополнительными формулами, о которых напишу ниже. V — скорость потока жидкости. Измеряется [Метр/секунда]. g — ускорение свободного падения равен 9,81 м/с 2 |
В этой формуле меняется только коэффициент местного сопротивления, коэффициент местного сопротивления для каждого элемента свой.
Подробнее о нахождение коэффициента
Обычный отвод в 90 градусов.
Коэффициент местного сопротивления составляет примерно единице.
Формула для других углов:
Постепенный или плавный поворот трубы
Постепенный поворот трубы (отвод или закруглённое колено) значительно уменьшает гидравлическое сопротивление. Величина потерь существенно зависит от отношения R/d и угла α.
Коэффициент местного сопротивления для плавного поворота можно определить по экспериментальным формулам. Для поворота под углом 90° и R/d>1 он равен:
для угла поворота более 100°
Для угла поворота менее 70°
Для теплого пола, поворот трубы в 90° составляет: 0,31-0,51 |
где n степень сужения трубы.
ω1, ω2 — сечение внутреннего прохода трубы.
В формулу вставляется скорость течения в трубе с малым диаметром. |
В формулу вставляется скорость течения в трубе с малым диаметром. |
Также существуют и плавные расширения и сужения, но в них сопротивление потоку уже значительно ниже.
Внезапное расширение и сужение встречается очень часто, например, при входе в радиатор получается внезапное расширение, а при уходе жидкости из радиатора внезапное сужение. Также внезапное расширение и сужение наблюдается в гидрострелках и коллекторах.
Более детально о разветвлениях поговорим в других статьях.
Находим сопротивление для радиаторной системы отопления. Смотри изображение.
Труба металлопластиковая 16мм, внутренний диаметр 12мм. Длина трубы 5 м. По условию обогрева, расход в контуре радиатора должен быть 2 л/мин Плавных поворотов 90 градусов соответствует: 2 шт. Отводов 90 градусов: 2шт. Внезапное расширение на входе в радиатор: 1шт. Внезапное сужение на выходе из радиатора: 1шт. Температура теплоносителя (воды): 60 градусов Цельсия. |
Для начала посчитаем сопротивление по длине трубопровода.
Первым делом находим скорость течения в трубе.
Q= 2 л/мин = 0,096 м 3 /ч = 0,000033333 м 3 /сек.
V = (4•0,000033333)/(3,14•0,012•0,012)=0,29 м/с
Находим число Рейнольдса
ν=0,65•10 -6 =0,000000475. Взято из таблицы. Для воды при температуре 60°С.
Δэ=0,01мм=0,00001м. Взято из таблицы, для металлопластиковой трубы.
Далее сверяемся по таблице, где находим формулу по нахождению коэффициента гидравлического трения. У меня попадает на первую область при условии
4000 0,25 = 0,3164/7326 0,25 = 0,034
Далее завершаем формулой:
h=λ•(L•V 2 )/(D•2•g)= 0,034•(5•0,29•0,29)/(0,012•2•9,81)= 0,06 м.
Находим сопротивление на плавном повороте
h=ζ•(V 2 )/2•9,81=(0,31•0,292)/( 2•9,81)= 0,0013 м.
Данное число умножаем на количество поворотов 90 градусов
Находим сопротивление на коленном (прямом 90°) повороте
Там, где имеется сужение и расширение — это тоже будет являться гидравлическим сопротивлением. Я не стану считать сужение и расширение на металлопластиковых фитингах, так как далее мы все равно затронем эту тему. Потом сами посчитаете.
h=ζ•(V 2 )/2•9,81=(2•0,292)/( 2•9,81)= 0,0086 м.
Данное число умножаем на количество поворотов 90 градусов
Находим сопротивление на входе в радиатор.
Вход в радиатор — это ни что иное как расширение трубопровода, поэтому коэффициент местного сопротивления будем находить для трубы идущий на резкое расширение.
Минимальный диаметр примем за 15мм, а максимальный диаметр у радиатора примем за 25мм.
Находим площадь сечения двух разных диаметров:
ω1 = π • D 2 /4 = 3.14 • 15 2 / 4 = 177 мм 2
ω2 = π • D 2 /4 = 3.14 • 25 2 / 4 = 491 мм 2
h=ζ•(V 2 )/2•9,81=(0,41•0,19 2 )/( 2•9,81)= 0,00075 м.
Находим сопротивление на выходе из радиатора.
Выход из радиатора — это ни что иное как сужение трубопровода, поэтому коэффициент местного сопротивления будем находить для трубы идущий на резкое сужение.
Площади уже известны
ω2 = π • D 2 /4 = 3.14 • 15 2 / 4 = 177 мм 2
ω1 = π • D 2 /4 = 3.14 • 25 2 / 4 = 491 мм 2
h=ζ•(V 2 )/2•9,81=(0,32•0,19 2 )/( 2•9,81)= 0,00059 м.
Далее все потери складываются, если эти потери идут последовательно друг для друга.
Чтобы в ручную не считать всю математику я приготовил специальную программу:
Как произвести гидравлический расчет системы отопления?
Гидравлический расчет системы отопления
Централизованный тип постепенно уступает место автономной системе отопления. Многие принимают решение обогревать помещения собственными силами, желая создать идеальное сочетание экономичности, тепла и комфорта. Именно поэтому особую актуальность приобретает гидравлический расчет системы отопления.
На начальном этапе предстоят финансовые траты. Однако новейшее отопительное оборудование обладает инновационным подходом к процессу регулирования подачи тепла по сравнению со старым, поэтому вложенные деньги быстро окупаются. Но такую гармонию могут обеспечить лишь системы, созданные по всем правилам. Они смогут профессионально преодолеть возникающее гидравлическое сопротивление.
Для чего делается расчет
Вычисления производят в первую очередь для того, чтобы определить такие характеристики циркуляционного насоса, как производительность и напор, которые позволят системе отопления работать с наибольшей эффективностью.
Конечно, какую-то циркуляцию в контуре создаст любой насос, даже самый маломощный, но насколько экономичной будет такая схема? Часто бывает так, что и котел исправно работает и радиаторов в доме достаточно, но они не греют из-за слабой циркуляции в системе.
Чтобы контуры отопления работали в полную силу, необходимо, чтобы насос преодолел гидравлическое сопротивление элементов системы потоку воды в трубах, а также потери давления. Но и насос большей мощности, чем нужно, также приведет к нежелательным эффектам. Кроме повышенного расхода электроэнергии, превышение давления плохо скажется на долговечности соединений, а увеличение скорости продвижения теплоносителя приведет к возникновению шумов.
Правильно рассчитанное гидравлическое сопротивление и качественная регулирующая арматура – наиболее эффективное сочетание.
Соблюдение ключевых условий обеспечивают следующие факторы:
- снабжение отопительных приборов должно осуществляться в достаточном объеме для идеального баланса в помещении при температурных колебаниях воздуха снаружи и в жилище;
- минимизация затрат на эксплуатацию, чтобы преодолеть системное гидравлическое сопротивление;
- снижение капитальных затрат во время прокладки отопления.
Что учитывается в расчете?
Перед тем как начинать вычисления, следует выполнить ряд графиче
ских действий (часто для этого применяется специальная программа). Гидравлический расчет предполагает определение показателя баланса тепла помещения, в котором происходит отопительный процесс.
Для расчета системы рассматривается самый протяженный контур отопления, включающий наибольшее количество приборов, фитингов, регулирующей и запорной арматуры и наибольший перепад давления по высоте. В расчете участвуют такие величины:
- материал трубопроводов;
- суммарная длина всех участков трубы;
- диаметр трубопровода;
- изгибы трубопровода;
- сопротивление фитингов, арматуры и отопительных приборов;
- наличие байпасов;
- текучесть теплоносителя.
Чтобы учесть все эти параметры существуют специализированные компьютерные программы, как пример — «НТП Трубопровод», «Oventrop CO», HERZ С.О. версии 3.5. или множество их аналогов, облегчающие специалистам производство расчетов.
Они содержат необходимые справочные данные по каждому элементу системы теплоснабжения и позволяет автоматизировать сам расчет. Однако проделать львиную долю работы, определить узловые точки и внести все данные для расчета и особенности схемы трубопровода придется пользователю. Для удобства целесообразно постепенно заполнять заранее созданную форму в MS excel.
Сделать верные расчеты в части преодоления сопротивления – это самый трудоемкий, но нео
бходимый шаг при проектировании отопительных систем водяного типа.
Выбор радиаторов и длины участков трубопровода
Необходимо определиться с видом устройств для отопления и проставить места их расположение на плане помещения. Далее должно быть принято решение об итоговой конфигурации отопительной системы, вида трубопровода (однотрубный или двухтрубный), арматуры для запора и регулирования (клапана, регуляторы, вентили, датчики давления, расхода и температуры).
Затем на вычерченной схеме указывается номер тепловых нагрузок и точная длина участков, для которых производится расчет. В заключении определяется «циркулирующее кольцо». Оно представляет собой контур замкнутого вида, который включает в себя все последовательные трубопроводные участки, на которых ожидается повышенный расход носителя тепла на расстоянии от источника, излучающего теплоэнергию, до самого дальнего прибора отопления (при двухконтурной системе) или до приборной ветки (при однотрубной системе) и назад к отопительному механизму.
Нюансы
При гидравлическом расчете с помощью компьютера excel – не единственная, хоть и наиболее простая. Для данного вида подсчетов разработаны специализированные программы, с которыми работать значительно проще.
В роли расчетного трубопровода обычно выступает участок, имеющий неизменный расход носителя тепла и постоянный диаметр. Так будет проще получить правильные данные. Он определяется по тепловому балансу помещения.
Нумерация участков должна происходить от теплового источника. Чтобы обозначить узловые точки на трубопроводе, который осуществляет подачу, в местах ответвлений применяют буквы алфавита. На магистралях сборного типа в соответствующих узлах их обозначают штрихами (пример хорошо это иллюстрирует).
Узловые точки на ответвлениях приборных веток обозначаются арабскими цифрами. Каждая соответствует номеру этажа, если применяется система горизонтального типа, или номеру ветки-стояка с приборами, если речь идет о вертикальной системе. В номер всегда входят две цифры – начало и конец участка. Длина трубопроводных участков определяется по плану, который вычерчивается в масштабе. Точность составляет 0,1 м.
Расчет однотрубной системы отопления рекомендуется проводить при одинаковых (постоянных) или различных (переменных) перепадах температуры воды в стояках методом характеристик сопротивления. При этом следует применять верхнюю разводку, при которой обеспечивается движение воды к отопительному прибору «сверху-вниз».