Пусконаладочные работы в инженерных системах
А. Н. Орехов, генеральный директор ООО «СФ ЗЕВС»
А. В. Таран, коммерческий директор ООО «СФ ЗЕВС»
Завершение строительно-монтажных работ в инженерных системах не является окончательным этапом и не дает возможности ввести здание в эксплуатацию. Этому предшествует важный этап – пусконаладочные работы. Только после их окончания строительный объект может
Выполнение пусконаладочных работ уместно будет рассмотреть на примере здания, насыщенного инженерными системами. Скажем, детского сада со встроенным медицинским центром, построенного по индивидуальному проекту. Рассматриваемое здание прямоугольное в плане, переменной этажности (1–3 этажа), на 180 мест. Под частью здания имеется подвал, а над частью третьего этажа – венткамера подпора воздуха. Здания (помещения) ДОУ должны быть оборудованы системами хозяйственно-питьевого, противопожарного и горячего водоснабжения, канализацией и водостоком в соответствии со СНиП 2.04.01–85*.
В здании запроектированы и смонтированы следующие системы:
- водоснабжения;
- противопожарного водопровода;
- хозяйственно-бытовой канализации;
- ливневой канализации;
- отопления;
- вентиляции;
- противодымной вентиляции;
- индивидуальный тепловой пункт;
- водоподготовка бассейна.
Порядок проведения пусконаладочных работ регламентируется СНиП 30505–84 «Технологическое оборудование и технологические трубопроводы», СНиП 30505–86 «Электротехнические устройства», СНиП 30507–85 «Системы автоматизации» и СНиП 30501–85 «Внутренние санитарно-технические системы».
Пусконаладочные работы и испытания в каждом случае носят конкретный, индивидуальный характер. В зависимости от вида оборудования могут продолжаться до 72 ч. Качество пусконаладочных работ во многом зависит от уровня технических знаний, опыта проводящих их специалистов, а также от качества проекта, строительных и монтажных работ.
Сложность пусконаладки зависит от специфики оборудования каждого конкретного объекта. Наибольшую сложность представляет поиск причин, которые лежат в основе сбоев оборудования.
Испытание инженерных систем
Перед выполнением пусконаладочных работ необходимо произвести опрессовку систем. Опрессовка – это гидравлическое испытание закрытой системы избыточным давлением. По завершении монтажных работ монтажными организациями должны быть выполнены:
- испытания систем отопления, теплоснабжения, внутреннего холодного и горячего водоснабжения и котельных гидростатическим или манометрическим методом с составлением акта, а также промывка систем;
- испытания систем внутренней канализации и водостоков с составлением акта;
- индивидуальные испытания смонтированного оборудования с составлением акта;
- тепловое испытание систем отопления на равномерный прогрев отопительных приборов.
Испытания систем с применением пластмассовых трубопроводов следует производить с соблюдением требований СН 478–80. Испытания должны производиться до начала отделочных работ. Применяемые для испытаний манометры должны быть поверены в соответствии с ГОСТ 8.002–71.
При индивидуальных испытаниях оборудования должны быть выполнены следующие работы:
- проверка соответствия установленного оборудования и выполненных работ рабочей документации и требованиям нормативных документов;
- испытание оборудования на холостом ходу и под нагрузкой в течение 4 ч непрерывной работы. При этом проверяются балансировка колес и роторов в сборе насосов и дымососов, качество сальниковой набивки, исправность пусковых устройств, степень нагрева электродвигателя, выполнение требований к сборке и монтажу оборудования, указанных в технической документации предприятий-изготовителей.
Испытания гидростатическим методом систем отопления, теплоснабжения, котлов и водоподогревателей должны производиться при положительной температуре в помещениях здания, а систем холодного и горячего водоснабжения, канализации и водостоков – при температуре не ниже 5 °C. Температура воды должна быть также не ниже 5 °C.
В данной статье мы рассмотрим пусконаладку систем водоснабжения, хозяйственно-бытовой и ливневой канализации ДОУ (дошкольного образовательного учреждения). Далее рассмотрим особенности систем здания, а также основные аспекты проводимых пусконаладочных работ.
Водоснабжение
В здании смонтированы система горячего и холодного водоснабжения, выполненная по стояковой системе из стальных оцинкованных труб. На всех ответвлениях, а также перед всеми водоразборными приборами установлены отключающие краны, системы оборудованы регуляторами давления «после себя», обеспечивающими равное давление в системах холодного и горячего водоснабжения.
Полотенцесушители в санузлах, а также нагревательные приборы в шкафах для сушки одежды подключаются к системе горячего водоснабжения.
На период летнего профилактического отключения системы горячего водоснабжения теплоснабжение указанных приборов должно обеспечиваться бойлерами с подключением к электросиловым установкам. Проектом не была предусмотрена их установка. Отсутствие бойлеров было выявлено на стадии монтажа и было заключено дополнительное соглашение на их установку.
Основной особенностью системы является наличие в части санузлов (детских) смесительных термостатов, ограничивающих температуру поступающей к водоразборным кранам воды значением в 40 °C для исключения у детей ожогов горячей водой.
В комплекс пусконаладочных работ в системах ГВС и ХВС входят:
- испытание системы водоснабжения;
- промывка систем от шлама, грязи и окалины;
- прочистка фильтров;
- настройка регуляторов давления на магистралях холодной и горячей воды на 3,5 бар;
- настройка термостатов на требуемую температуру.
Испытание систем водоснабжения. Системы внутреннего холодного и горячего водоснабжения должны быть испытаны гидростатическим или манометрическим методом с соблюдением требований ГОСТ 24054–80, ГОСТ 25136–82.
Величину пробного давления при гидростатическом методе испытания следует принимать равной 1,5 избыточного рабочего давления. Гидростатические и манометрические испытания систем холодного и горячего водоснабжения должны производиться до установки водоразборной арматуры.
Выдержавшими испытания считаются системы, если в течение 10 мин. нахождения под пробным давлением при гидростатическом методе испытаний не обнаружено падения давления более 0,05 МПа (0,5 кгс/см 2 ) и капель в сварных швах, трубах, резьбовых соединениях, арматуре и утечки воды через смывные устройства.
По окончании испытаний гидростатическим методом необходимо выпустить воду из систем внутреннего холодного и горячего водоснабжения.
Манометрические испытания системы внутреннего холодного и горячего водоснабжения следует производить в следующей последовательности: систему заполнить воздухом пробным избыточным давлением 0,15 МПа (1,5 кгс/см 2 ), при обнаружении дефектов монтажа на слух следует снизить давление до атмосферного и устранить дефекты; затем систему заполнить воздухом давлением 0,1 МПа (1 кгс/см 2 ), выдержать ее под пробным давлением в течение 5 мин. Система признается выдержавшей испытание, если при нахождении ее под пробным давлением падение давления не превысит 0,01 МПа (0,1 кгс/см 2 ).
Промывка систем водоснабжения. Промывка систем водоснабжения производится до установки водоразборной арматуры. При промывке система водоснабжения полностью заполняется водой, затем перекрывается вентиль, соединяющий систему с наружными сетями. Далее к спускным кранам, служащим для опорожнения стояков, подсоединяются шланги для отведения загрязненной воды в канализацию.
Подобная промывка не может гарантировать удаления всего шлама. Сейчас на российском рынке широко представлены специальные аппараты для промывки систем водоснабжения, отопления, а также теплообменного и другого подобного оборудования.
Принцип работы аппарата для мойки заключается в создании смеси воздуха и воды, подаваемой в систему импульсно. Сжатый воздух подается компрессором, подключенным к мойке. Смесь воздуха и воды проходит через промываемое оборудование и отводится в канализацию. Пульсацию можно пошагово изменять (оптимизировать), удлиняя или сокращая расстояние между импульсами, в зависимости от цели применения.
Если установка еще не подключена к системе питьевого водоснабжения, следует использовать близлежащие гидранты. С помощью двух гибких шлангов мойку подключают к системе сразу после водосчетчика и фильтра воды. Если система водоснабжения не подключена к наружным сетям, то для промывки системы можно воспользоваться гидрантами, находящимися в непосредственной близости от здания. Для работы мойки необходимо определенное фактическое давление в сети (у ряда производителей – не менее 2 бар). Если это значение не достигается, нужно установить запасную емкость с повысительным насосом, поддерживающем необходимое давление. Направление мойки снизу вверх. Если длина трубопровода превышает 100 м, то необходимо промывать систему частями с помощью промежуточного подключения мойки.
Необходимо последовательно открывать заглушки, закрывающие места будущего присоединения водоразборной арматуры и промывать, пока промывочная вода, отводящаяся в канализацию, не станет прозрачной.
После промывки необходимо провести очистку фильтров. К крану в нижней заглушке фильтра, служащем для удаления шлама, грязи и окалины, присоединяется шланг, который предназначен для отведения в канализацию. Вентиль после фильтра закрывается. Вода из магистрали выходит в дренаж и выносит с собой механические примеси, отложившиеся на фильтрующей сетке.
Следующий этап пусконаладочных работ – настройка регуляторов давления. Регулятор давления – это тип регулирующей арматуры, который устанавливается на трубопроводе и служит для выравнивания давления в системе. Данный тип трубопроводной арматуры чаще всего является арматурой прямого действия, т.е. работает без использования дополнительных источников энергии.
Принцип работы оборудования достаточно прост: регулятор настраивается на какое-либо значение давления (которое поддерживается до или после него) или перепада давления посредством настройки с помощью ограничительного кольца по показаниям манометра на корпусе клапана. При изменении давления в трубопроводе соответственно изменяется и сила воздействия на мембрану, которая играет роль чувствительного элемента и реагирует на изменение давления в трубопроводе. Разностью между силой, воздействующей на мембрану, и силой пружины конус регулятора перемещается в новое положение, выравнивая давление.
Регулятор настраивается на требуемое давление путем изменения сжатия настроечной пружины. Настройка выполняется с использованием диаграмм настройки в соответствии с инструкцией фирмы-производителя или манометров.
Схема промывки системы водоснабжения в соответствии с DIN 1988
Канализация
В здании запроектирована система хозяйственно-бытовой и ливневой канализации. В здании по нормам принята следующая высота установки детских санитарных приборов от пола помещения до верха борта прибора:
- умывальники для детей 3–4 лет – 0,4 м;
- для детей 4–7 лет – 0,5 м;
- глубокий душевой поддон – 0,6 м;
- мелкий душевой поддон – 0,3 м (при высоте расположения душевой сетки над днищем поддона 1,6 м).
В помещениях душевых, постирочной, а также в моечной и заготовочном цехе пищеблока полы оборудованы сливными трапами с соответствующими уклонами полов к отверстиям трапов.
Ввиду отсутствия в данном здании каких-либо технических устройств в системе канализации (насосы, клапаны с электроприводом) пусконаладочные работы сводятся к проверке герметичности и проходимости систем.
Испытания систем внутренней канализации выполняются методом пролива воды путем одновременного открытия 75% санитарных приборов, подключенных к проверяемому участку в течение времени, необходимого для его осмотра.
Выдержавшей испытание считается система, если при ее осмотре не обнаружено течи через стенки трубопроводов и места соединений.
Испытания отводных трубопроводов канализации, проложенных в земле или подпольных каналах, выполняются до их закрытия наполнением водой до уровня пола первого этажа.
Испытания участков систем канализации, скрываемых при последующих работах, должны выполняться проливом воды до их закрытия с составлением акта освидетельствования скрытых работ согласно обязательному приложению 6 СНиП 3.01.01–85.
Испытание внутренних водостоков следует производить наполнением их водой до уровня наивысшей водосточной воронки. Продолжительность испытания должна составлять не менее 10 мин.
Водостоки считаются выдержавшими испытание, если при осмотре не обнаружено течи, а уровень воды в стояках не понизился.
О наладке и режимах систем отопления
И.М. Сапрыкин, ООО ПНТК «Энергетические технологии», г. Нижний Новгород
В статье предлагается метод определения расхода теплоносителя через отопительные приборы по результатам измерения трех температур: теплоносителя на входе и выходе; температуры воздуха в помещении. Метод может быть полезен при проектировании и наладке систем отопления зданий и является более точным по сравнению с существующим методом для практических расчетов в нерасчетных режимах, особенно при малых температурных напорах и малых расходах теплоносителя.
Качество теплоснабжения (отопления) предполагает обеспечение расчетной температуры внутреннего воздуха в отапливаемом помещении независимо от колебаний температур наружного воздуха. Для этого разработаны специальные температурные графики центрального или местного регулирования.
Любая вновь смонтированная или подвергнутая реконструкции система теплоснабжения требует тепловой и гидравлической наладки.
Одной из главных задач наладки систем теплоснабжения является распределение теплоносителя по потребителям пропорционально их тепловым нагрузкам.
О методе контроля качества наладочных мероприятий в системах теплоснабжения
Ранее в [1] был предложен метод контроля качества наладочных мероприятий в системах теплоснабжения, включающих источник тепловой энергии, тепловые сети и внутренние системы отопления.
Метод содержит безразмерные показатели, позволяющие осуществлять контроль за обеспечением тепловых нагрузок и расходов теплоносителя, которые можно получить по результатам измерения двух температур теплоносителя до и после системы отопления.
Если для отдельного отапливаемого помещения определить qоб просто, измерив температуру внутреннего воздуха, то для здания в целом это довольно сложно.
Однако информация о qоб здания содержится в «отклике» системы — значении температуры теплоносителя τ2 в обратном трубопроводе на выходе из системы отопления. Эта температура зависит от ряда постоянных и переменных параметров, главными из которых являются температура наружного воздуха tнр, температура теплоносителя на входе в систему τλ, суммарная поверхность нагрева отопительных приборов F. Так как температуры относительно легко поддаются измерению, то информацию о qоб здания можно получить, измерив фактические температуры теплоносителя и температуру наружного воздуха. Естественно, что при этом заранее должны быть известны расчетные температуры теплоносителя и расчетные температуры внутреннего и наружного воздуха.
Параметр g имеет постоянное значение во всем диапазоне температур наружного воздуха. Параметр g может быть определен не только для отдельной системы отопления, но и для системы теплоснабжения в целом.
В налаженных системах теплоснабжения (с принудительной циркуляцией теплоносителя) несоблюдение на источнике теплоты температурного режима приведет к отклонению qоб от нормы qоб≠1, а расход теплоносителя при этом останется в норме g=1. При изменении гидравлического режима на источнике, или при несанкционированном изменении пропускной способности сужающего устройства (например, дроссельная диафрагма) у потребителя изменятся оба параметра qоб и g. Последнее обстоятельство может быть выявлено по отклонению g от 1.
В уравнении (2) отсутствует значение температуры внутреннего воздуха, т.к. для систем теплоснабжения в целом эта температура неизвестна. Однако, усредненная в целом по системе температура внутреннего воздуха определяется через qоб: tB=tH+Δtp*qTeK*qo6·
На основании показателей qоб, g возможно определить: текущее фактическое теплопотребление отдельного здания; суммарный расход теплоносителя в системе отопления; величину коррекции сужающего устройства.
Используя уравнения (2) и (3), можно достаточно просто осуществлять наладку и контроль режимов теплоснабжения.
Данный метод начал успешно применяться с 2001 г. сначала для наладки, а затем для контроля тепловых и гидравлических режимов в системах теплоснабжения на базе 18 водогрейных котельных в г. Дзержинске Нижегородской области.
Наладка систем отопления
Одной из главных задач наладки системы отопления является распределение теплоносителя по стоякам и отопительным приборам пропорционально их тепловым нагрузкам. При расчетных тепловых потерях через наружные ограждения отапливаемого помещения через отопительные приборы с расчетными поверхностями нагрева необходимо пропускать расчетные расходы теплоносителя.
Установить расчетные расходы через отопительные приборы или стояки при наладке системы отопления не представляет трудностей в случае обеспечения на вводе системы в подающем трубопроводе расчетной температуры теплоносителя. Для этого необходимо изменением сопротивления дроссельного устройства установить температуру теплоносителя на выходе, соответствующую температурному графику.
Если же температурный график на вводе не обеспечивается, то становится неясно, какую температуру теплоносителя устанавливать на выходе из отопительного прибора или стояка.
В стационарном (неизменном во времени) состоянии системы отопления достаточно достоверными показателями потокораспределения теплоносителя по отопительным приборам и стоякам являются температуры теплоносителя на входе и выходе и температура внутреннего воздуха помещения, в котором установлен данный прибор (средневзвешенная по помещениям, в которых проходит стояк). Для отдельного отопительного прибора или стояка системы отопления влияние температуры внутреннего воздуха может быть весьма существенно.
Для определения относительного расхода теплоносителя через отдельный отопительный прибор, стояк или ветку системы отопления в зависимости от фактических температур теплоносителя и температуры внутреннего воздуха предлагается уравнение:
Из уравнения (4) следует, что расход теплоносителя в отопительном приборе (стояке) при его известных расчетных параметрах может быть определен путем измерения трех температур: теплоносителя на входе и выходе прибора и температуры внутреннего воздуха в помещении.
Знание фактического расхода теплоносителя через отопительный прибор (стояк) открывает возможность выбора или целенаправленной коррекции сужающих устройств (дроссельных диафрагм, балансировочных клапанов и т.д.).
Для практического определения фактического расхода теплоносителя удобно пользоваться заранее составленной табл. 1, рассчитанной по уравнению (4). Пример: T1=43 °C,T2=34 0 C,,tB=16 О C — относительный расход g=0,77.
В качестве следующего примера приведена реакция на изменение температурных режимов отпуска теплоты трех отопительных приборов, принадлежащих одной системе отопления. Установленные поверхности нагрева приборов равны расчетным f=1. Рассмотрены три температурных режима: нормальный (температурный график) τ1=τΓ; «недотоп» τ^ τΓ. Расчетные температуры: наружный воздух tнр=-30 ОC; теплоноситель в подающем трубопроводе τ1ρ=95 ОC; в обратном трубопроводе τ2ρ=70 ОC. Текущие температуры: наружный воздух tн=-12 ОC; теплоноситель по температурному графику в подающем трубопроводе τ1г=71,7 ОC; в обратном трубопроводе τ2г=55,7 ОC.
В результате измерений температур прибора № 1 определено, что через прибор протекает расчетный расход теплоносителя д»1. В режиме «не-дотопа» при снижении температуры теплоносителя на входе до τ1=60 ОC температура воздуха в помещении снизится до tв=15,2 ОC, температура теплоносителя на выходе снизится до τ2=47 ОC, при этом «недотоп» составит 15% (qоб=0,85). В режиме «перетопа» при повышении температуры теплоносителя на входе до τ^δΟ ОC температура воздуха в помещении повысится до tв=23,5 ОC, температура теплоносителя на выходе повысится до τ2=62 ОC, при этом «перетоп» составит 11% (qоб=1,11).
В результате измерений температур приборов № 2, 3 определено, что: через прибор № 2 протекает заниженный расход д»0,7; через прибор № 3 протекает завышенный расход g≈1,42.
Результаты расчета сведены в табл. 2.
Уравнение (4) получено следующим образом.
В основу расчета температурных графиков регулирования тепловых нагрузок систем отопления положена эмпирическая зависимость коэффициента теплопередачи отопительного прибора kср от среднего по площади прибора температурного напора: kcp=a-(tcp-tB)n, где a — постоянная, зависящая от конструкции отопительного прибора и способа подачи теплоносителя.
Методика, базирующаяся на применении тср, показывает достаточную точность для практических расчетов в тех случаях, когда температуры теплоносителя существенно больше температуры внутреннего воздуха в помещении. В нерасчетных режимах, особенно при малых температурных напорах и малых расходах теплоносителя, вычисления по этой методике дают завышенные результаты. Предлагаемая ниже методика в этих диапазонах режимов дает более точные результаты, что существенно при наладке.
Граничные условия интегрирования уравнения (6): по поверхности от 0 до R по температурам от хл до τ2.
В результате интегрирования получится уравнение, описывающее зависимость расхода теплоносителя от площади поверхности теплообмена и 3-х температур: теплоносителя на входе и выходе прибора и температуры внутреннего воздуха в помещении:
Расход теплоносителя относительно своего расчетного значения — см. уравнение (4).
Средний интегральный температурный напор:
Из последнего выражения (8) видно, что температурный напор не зависит от закона изменения коэффициента теплопередачи вдоль поверхности прибора, а зависит только от конечных температур.
Сравнение методов с различными законами формирования коэффициентов теплопередачи, постоянным k=const и переменным k=var вдоль отопительного прибора, приведено в табл. 3. По форме табл. 3 аналогична табл. 2, только в ячейках дано отношение расходов gk=const/gk=var.
Из табл. 3 следует, что при расходах существенно меньших расчетных значений g