- Таблица для расчета теплоотдачи теплого пола
- Особенности установки
- Несколько советов
- Расчет потребности в тепле
- Расчет теплоотдачи для пленочного нагревателя
- Расчет теплоотдачи для греющего кабеля
- Расчет теплоотдачи для водяного теплого пола
- Теплые полы
- Теория и практика
- Излучающая эффективность теплого пола и комфорт в помещении
- Укладка теплого пола
- Расчет параметров теплого пола
- Пример расчета:
Таблица для расчета теплоотдачи теплого пола
Теплый пол – это отличная возможность для каждого обеспечить уютный микроклимат и тепло в собственном доме. Такая система потребляет минимальное количество электроэнергии, даря необходимую теплоту в помещении.
При этом она с легкостью сочетается с любыми типами напольных покрытий, включая линолеум, ковролин, кафельную плитку и ковровое покрытие. Система гарантирует надежность, долговечность, стойкость к влаге, безопасность и легкость монтажа.
Особенности установки
Важным преимуществом конструкции выступает возможность равномерно распределить теплый воздух по жилой площади. При этом удается сэкономить до 12% энергии на общий обогрев помещения. Важно помнить о необходимости учитывать отдельные факторы во время эксплуатации.
Отопительная система должна работать в температурном диапазоне, который не превышает 60 градусов. Если упустить этот момент, возможна порча имущества. Сама поверхность водяного пола должна иметь оптимальную температуру, чтобы удовлетворять потребности. Это не только позволит добиться высокого комфорта эксплуатации, но и будет гарантировать отсутствие возможных заболеваний для ног. Чаще всего это значение достигает 26 градусов.
Чтобы монтаж был правильным, нужно позаботиться о том, чтобы расчет следующих параметров был корректным:
- Потребности пространства в тепле. Этот параметр определяется климатической зоной, качеством изоляции и габаритами помещения.
- Рассчитываемая удельная мощность отопления в перерасчете на каждый квадрат площади, которая будет обогреваться.
- Будет ли покрыта необходимость помещения в тепле посредством теплого водяного пола.
Несколько советов
Прежде чем осуществлять расчет потребности теплоотдачи, нужно учесть некоторые моменты. Первоначально нужно определить максимальную теплопроводность материалом, которые расположены выше трубы, пленок и кабелей, выступающих в качестве нагревательных элементов. Эффективность теплоотдачи зависит по прямо пропорциональному закону от тепловой мощности, по обратно пропорциональному от сопротивления покрытия.
Все трубы и материалы, которые будут расположены ниже уровня нагревательного элемента должны отличаться высокой теплоизоляцией. Это исключит возможные потери тепла через покрытия. Если монтаж и расчет осуществлены правильно, то теплоизоляция будет блокировать передачу тепла и отражать тепловое излучение.
Необходимость в тепловой мощности определяется теплоизоляцией и ее качеством. Предпочтительно придерживаться нормативов, которые будут гарантировать высокие эксплуатационные характеристики и комфорт.
Помните о том, что, если вы выбрали теплый пол, не стоит загромождать его массивными мебельными конструкциями. Это не принесет должного результата обогрева, а также возможен перегрев и порча мебели под воздействием температур.
Пример укладки теплого пола в кухне
Расчет потребности в тепле
Расчет потребности показателей представлен следующим алгоритмом:
- По формуле Q=S/10. Здесь Q – потребность тепла в киловаттах, S – площадь помещения, метр квадратный.
- Каждый кубический метр объема пространства требует 40 ватт тепла.
- Крайние этажи требуют в расчете 1,2-1,3 дополнительных коэффициента. Для частных построек он составляет 1,5.
- Дополнительно расчет требует по 100 ватт на каждое стандартное окно, по 200 ватт на балконы или двери.
- Нужно учитывать коэффициенты в зависимости от территориальной местности и климатической зоны.
При желании можно обращать внимание на слои ограждающих конструкций и их толщину. Это позволит добиться более точных расчетов.
Расчет теплоотдачи для пленочного нагревателя
Номинальная мощность в этом случае составляет 150-220 Ватт. Нужно понимать, что сам пленочный нагреватель – это слой фольгоизола для трубы. Он представляет собой вспененный полиэтилен, поверхность которого покрыта фольгой. Из-за этого часть тепла рассеивается, ведь эффективность зависит от толщины.
Чтобы задать температуру стандартного или водяного пола в заданном диапазоне, используют терморегуляторы. Значение обычно не достигает 40 градусов, а после эксплуатации необходимо отключать элемент и давать ему время для остывания. Из этого следует, что теплоотдача составляет около 70 ватт на каждый квадратный метр.
Расчет теплоотдачи для греющего кабеля
Греющий кабель отличается удельной теплоотдачей в 20-30 ватт на каждый квадратный метр. Расчет количества основан н шагах укладки. Дополнительно обращают внимание на следующее:
- Шаг варьируется в диапазоне от 10 до 30 см. Чем он больше, тем более явный характер будет носить неравномерность нагрева.
- Длина кабеля определяется по следующей формуле – L=S/Dx1,1. Здесь S – площадь в квадратных метрах, 1,1 – коэффициент для учета изгибов, D – шаг укладки.
Помните, что кабель будет уложен не по всей площади. Поэтому нужно определиться со средними показателями, добиваясь максимальной эффективности. Каждый квадратный метр позволяет получить до 120 Ватт тепла при этом комфортная температура будет оставаться.
Таблица соотношения мощности и длины нагрева кабеля
Расчет теплоотдачи для водяного теплого пола
В отдельных случаях есть возможность сэкономить, если имеется источник тепла. Его можно использовать только в том случае, если цена за каждый киловатт намного ниже, чем стоимость электроэнергии.
В этом случае нужно учитывать следующее:
- Температуру теплоносителя для трубы. Она обычно достигает 50 градусов и превышает температуру поверхности. Таблица поможет определить предпочтительные значения.
- Шаг укладки водяного пола. С его уменьшением количество тепла увеличивается при передаче стяжке. Нужно учитывать здесь и диаметр трубы.
- Температура воздуха. С ее уменьшением тепловой поток увеличивается.
- Диаметр трубы, по которой осуществляется движение теплоносителя.
Если шаг составляет 250 миллиметров, каждый квадратный метр позволяет получить по 82 ватта. При шаге в 150 мм – 101 ватт, а при шаге в 100 мм – 117 ватт. Таблица включает в себя все эти данные. В зависимости от этих значений нужно осуществлять проектирование теплого водяного пола.
Зависимость теплого потока от шага труб и температуры теплоносителя
Помните о необходимости рассчитать тепловой поток с поверхности водяного пола. Чаще всего он достигает 12,6 Вт (м2хС). Это значение будет прямо пропорциональным перепаду температур.
Теплые полы
Теория и практика
Технология теплых полов в последнее время существенно модернизировалась. Теплый пол теперь обеспечивает максимальный комфорт в помещении, поскольку современная технология позволяет значительно уменьшить конвективные процессы, объемы перемещаемых загрязняющих веществ и масштаб теплового воздействия в отношении человека, а также – что не менее важно – сократить габариты такой системы отопления и улучшить параметры относительной влажности в помещении.
Настоящий прорыв в развитии систем отопления, расположенных под полом, состоялся в начале 1980-х годов, когда изменился подход к оценке тепловой изоляции ограждающих конструкций здания в сторону сокращения теплопотерь. Сегодня тепло, излучаемое теплым полом, имеет тот оптимальный уровень, с помощью которого обеспечивается эффективное отопление жилых помещений, когда нет нужды дополнять такие системы отопительными радиаторами – при этом температура поверхности не создает людям дискомфортных ощущений. Кроме того, влажность, имеющая тенденцию к недостаточности в самую холодную погоду, теперь существенно более благоприятна, чем прежде, поскольку при лучистом отоплении при равной результирующей температуре она коррелируется с более низкой температурой воздуха. Приведем пример. Предположим, нам требуется обеспечить в помещении при помощи системы теплого пола активную температуру 20 °С. Температура поверхности пола составит 26 °С, при этом из каждой геометрической точки во всех направлениях испускаются инфракрасные лучи, как показано на рис. 1. Лучи попадают в стены, потолок и все твердые тела, находящиеся в помещении. В свою очередь сами нагреваемые таким образом поверхности из каждой своей геометрической точки во всех направлениях тоже испускают инфракрасные лучи, так что собственная температура всех ограждающих конструкций всегда выше температуры воздуха. В нашем примере, показанном на рис. 1, если мы примем как данность, что все ограждения имеют однородный характер, следует, что их средняя температура составляет 23 °С. Для получения требуемой результирующей температуры воздух в помещении нагревается до уровня 17 °С, определяемого экранированным термометром. При такой температуре воздух при равных значениях абсолютной влажности будет иметь более высокую относительную влажность по сравнению с воздухом помещения, отапливаемого системой воздушного отопления, где, чтобы получить ту же самую результирующую температуру 20 °С, потребуется нагреть воздух до 23 °С при средней температуре ограждений 17 °С.
Таблица 1 Классы стойкости цементной стяжки в зависимости от движущейся нагрузки | |||||||||||||||
|
Таблица 2 Максимально допустимые значения температуры поверхности пола в зависимости от типа помещения | |||||||||||||
|
Расчет параметров теплого пола
После того как выбран тип теплого пола (тип теплоизолятора и подложки, тип трубопровода, толщина излучающей стяжки и вид окончательной отделки), весь расчет сводится к определению четырех основных параметров, а именно:
• температуры поверхности пола в корреляции с температурой воздуха, °С;
• межосевого расстояния между трубками змеевика, см;
• излучающей способности, Вт/м 2 ;
• теплового перепада между средней температурой теплоносителя и температурой воздуха, К.
Следует обратить внимание на номограмму на рис. 9, относящуюся к системе теплого пола с нижним алюминиевым отражающим слоем по полистирену толщиной 30 мм и стяжкой l = 1,4 Вт/м (К) толщиной 45 мм над змеевиком.
Расчет верен при условии, что температура воздуха на улице не опускается ниже –15 °С, а ограждающие конструкции отвечают требованиям соответствующих регламентов по теплоизоляции.
Пример расчета:
• допустим, для теплого пола требуется излучающая способность 90 Вт/м 2 , проводим вертикальную линию от значения 90 по абсциссе до верхней таблички, где у значения температуры воздуха q 20 °С мы найдем допустимое значение температуры поверхности пола 27,7 °С;
• берем перепад Dq С между средней температурой воды в змеевике 32 °С и температурой воздуха q 20 °С, равный 12 К;
• на пересечении линий определяем точку Р, соответствующую межосевому расстоянию между витками змеевика в пределах от 15 до 20 см.
Теперь можно перейти к поиску точки Р1, отличной от Р, к примеру, увеличив межосевое расстояние между витками до 25 см, если, допустим, средняя температура воды в змеевике будет 40,5 °С.
Получаем перепад Dq С между средней температурой воды в змеевике и температурой воздуха, равный 20,5 К, который, например, соответствует воде на входе 43 °С и выходе – 38 °С с Dq циркулирующей воды 5 К.
В этом случае температура поверхности пола в штатном режиме остается в допустимых рамках (28,7 °С), а излучающая способность теплого пола составляет 100 Вт/м 2 . Анализ номограммы помогает понять динамику излучающего отопления: при тех же температурных параметрах уменьшение межосевого расстояния между витками змеевика ведет к росту температуры поверхности пола, но для обеспечения такого же комфорта при уменьшении межосевого расстояния между витками змеевика придется понизить температуру теплоносителя, что в итоге не дает никаких плюсов, напротив, одни только минусы – рост стоимости системы, увеличение энергопотребления и теплопотерь. Таким образом, если позволяют обстоятельства, рекомендуемая средняя рабочая температура теплоносителя составляет 40 °С с межосевым расстоянием между витками змеевика 20–30 см с учетом того, что в ванных комнатах, где обычно межосевое расстояние необходимо уменьшить, определенное повышение температуры поверхности пола никому не повредит. В табл. 2 приведены максимально допустимые значения температуры поверхности пола в зависимости от типа помещения и используемой одежды. Указанные значения имеют характер осторожной оценки, поскольку имеется множество переменных факторов, способных повлиять в той или иной степени на рабочие параметры системы, например: окончательная отделка пола (облицовочная плитка, мрамор, дерево, ковролин), назначение помещения (гостиная, туалет, спальня), продолжительность пребывания людей и их положение (сидя, стоя, в движении) и даже тип обуви. Определив по имеющейся номограмме значение общей излучающей способности теплого пола, необходимо сделать пару поправок, соответственно, во-первых, на толщину и теплопроводность окончательной отделки пола (отличная теплопроводность у мрамора, затем в порядке убывания следуют плитка, терракота, деревянный паркет, линолеум и, наконец, различные виды ковролина) и, во-вторых, на толщину цементной стяжки: индекс 1,00 при толщине бетона 45 мм в соответствии с вышеуказанными рекомендациями. Имеются рекомендации и по длине змеевика. Лучше, если все змеевики будут иметь одинаковую общую длину, что обеспечивается аккуратным внимательным расчетом и опытом. Это позволит получить сбалансированную сеть и обойтись без локальной компенсации нагрузки (например, при помощи сужающих отсечных клапанов), что само по себе шумно, да и накладно. Для сохранения требуемого гидравлического баланса можно прибегнуть к трубопроводам разного диаметра. Потери нагрузки рассчитываются на основе данных, предоставляемых изготовителем или импортером, поскольку у разных производителей даже однотипные изделия могут существенно отличаться, например по шероховатости и, соответственно, общему снижению давления.
Достаточно большие межосевые расстояния между витками змеевика (в пределах от 20 до 30 см) позволяют не только уменьшить затраты на приобретение труб и оплату работ по укладке, но и иметь умеренную потерю давления с меньшими затратами на насос, не говоря о снижении шума и меньших эксплуатационных расходах.
|
Если, к примеру, все змеевики в системе имеют длину порядка 65 м (комната площадью 16 м 2 с межосевым расстоянием витков 25 см дает примерно такую длину), потеря давления в каждом змеевике на трубке внутренним диаметром 16 мм составит примерно 8 450 Па при скорости воды 0,38 м/с, общей плотностью теплового потока 100 Вт/м 2 и общей теплопроизводительностью 1 600 Вт/м 2 . Напомним здесь предыдущий пример, где средняя температура циркулирующей воды составляет 40,5 °С с перепадом Dq С между средней температурой воды в змеевике и температурой воздуха 20,5 К, что соответствует воде на входе 43 °С и выходе – 38 °С с Dq циркулирующей воды 5 К. Расчетная температура поверхности пола – 28,7 °С. Для сравнения можно взять такой же теплый пол с межосевым расстоянием витков 10 см, а не 25 см. Тогда придется снизить температуру воды до среднего уровня 32,5 °С с перепадом Dq С между средней температурой воды в змеевике и температурой воздуха 12,5 К, что соответствует воде на входе 35 °С и выходе 30 °С с Dq циркулирующей воды 5 К. Расчетная температура поверхности пола в этом случае также 28,7 °С, но длина змеевика увеличивается до 144 м с одновременным ростом потери давления от 8 450 до 18 750 Па. Проектировщику надо теперь увеличить Dq циркулирующей воды до 6 К и выше, что позволит снизить потери давления. Но если слишком увеличить Dq , например до 8 К, температура на выходе из змеевика также может излишне понизиться, в нашем примере до 28,5 °С, т. е. до уровня температуры поверхности теплого пола, иначе говоря, слишком близко к порогу, за которым уже не происходит эффективного теплообмена.
Отсюда ясна бесполезность малых межосевых расстояний витков. Наша рекомендация – отдавать предпочтение более редким и более коротким змеевикам с умеренной пропускной способностью.
Перепечатано с сокращениями из журнала «RCI».
Перевод с итальянского С. Н. Булекова.
Научное редактирование выполнено С. Н. Хоревым, главным инженером проекта по специальности отопление и вентиляция.