Технический отчет по балансировке системы отопления

Технический отчет по балансировке системы отопления

Группа: New
Сообщений: 2
Регистрация: 2.11.2009
Пользователь №: 40350

СОДЕРЖАНИЕ
технических отчетов по теплоснабжению.

I. ПНР тепловых сетей:
1. Аннотация
2. Характеристика объекта
3. Определение тепловых нагрузок
4. Гидравлический расчет теплосети
— схема тепловых сетей
— пъезометрический график теплосети
5. Расчет дроссельных устройств
6. Расчет тепловых потерь
7. Расчет объемов воды
8. Разработка теплового режима
— температурный график
9. Выводы и рекомендации
10. Приложения
— эскиз дроссельной диафрагмы
11. Перечень используемой литературы

ПНР внутренних систем отопления зданий:
1. Аннотация
2. Характеристика отопительно-вентиляционного оборудования
3. Определение тепловых нагрузок
4. Результаты испытаний установки приточных систем
5. Расчет объемов воды
6. Выводы и рекомендации
7. Приложения
— температурный график
— карта настроек балансировочных клапанов
8. Перечень используемой литературы

Группа: New
Сообщений: 11
Регистрация: 29.9.2015
Из: Москва
Пользователь №: 278884

Больной вопрос!
Мы субподрядная организация по внутренним системам ОВ и ВК.
Заказчик тоже просит нас предоставить ему технический отчет по проведению пусконаладочных работ по внутренним системам отопления и горячего водоснабжения.
Первый раз с этим столкнулись!

Есть какие-то нормы/законы/ещё что-то, кто должен это составлять и предоставлять?

Нам вообще сказали, что это должен делать Заказчик. Так ли это?

Как всё это написать тогда?

В отчет по ИТП они не включили внутренние сети!

Группа: Участники форума
Сообщений: 3628
Регистрация: 24.4.2005
Из: Красноярск
Пользователь №: 710

Инженер у вас есть в штате? Желательно наладчик. Скажите ему, пусть сделает.

Группа: New
Сообщений: 11
Регистрация: 29.9.2015
Из: Москва
Пользователь №: 278884

Тут начинается самое интересное. У нас была по балансировке замена с Danfoss на Cimberio. Проектировщики ничего менять не стали (по Danfoss в проекте была карта балансировки). Мы настраивали вручную по показаниям теплосчетчика.

Если самим сейчас написать эту карту настроек балансировочных клапанов — что в ней нужно обозначить: номер квартиры, наименование клапана и его показания?

Прошу прощения, если задаю весьма глупые вопросы. Только начинаю со всем этим разбираться!

Как получить отчет о тепловых испытаниях отопительных систем

Как получить отчет о тепловых испытаниях отопительных систем

Отчет о тепловых испытаниях отопительных систем является одним из требований Ростехнадзора для ввода новых отопительных систем, тепловых энергоустановок и тепловых сетей в эксплуатацию.

Требования Ростехнадзора базируются на Приказе от 7 апреля 2008 г. N 212 «Об утверждении порядка организации работ по выдаче разрешений на допуск в эксплуатацию энергоустановок»

Требование указано в пункте 7 Приказа и звучит следующим образом:

Должностное лицо Службы для выдачи разрешения на допуск в эксплуатацию тепловых энергоустановок и тепловых сетей рассматривает заявление установленного образца и перечень прилагаемых документов одним из которых является –

– технические отчеты о проведенных испытаниях (измерениях), включая отчет о тепловых испытаниях отопительных систем с определением теплозащитных свойств ограждающих конструкций и теплоаккумулирующей способности зданий.

На практике это означает, что вам необходимо:

  • Провести испытания отопительной системы.
  • Разработать отчет и акт о проведенных испытаниях.
  • Сделать тепловизионное обследование ограждающих конструкций.
  • Разработать отчет о тепловизионном обследовании объекта.

Теперь давайте детально разберемся как это происходит.

Читайте также:  Газовые котлы риннай для отопления частного дома

Испытание отопительной системы

Испытания системы отопления проводятся в соответствии с СП 73.13330.2016 Внутренние санитарно-технические системы зданий. СНиП 3.05.01-85

Порядок проведения испытаний согласно СП 73.13330.2016:

После завершения монтажных работ должны быть выполнены испытания

  • систем отопления,
  • теплоснабжения,
  • внутреннего холодного и горячего водоснабжения,
  • систем отопления на равномерный прогрев отопительных приборов,
  • теплогенераторов

– гидростатическим или манометрическим методом с составлением акта, а также промывка всех систем.

По необходимости, индивидуальные испытания смонтированного оборудования с составлением акта.

Манометрические испытания происходят следующим образом:

  • Систему необходимо заполнить воздухом с избыточным давление в 0,15 МПа.
  • При обнаружение мест утечки воздуха или дефектов необходимо снизить давление и устранить дефекты.
  • Система признается прошедшей испытание если под давлением падение давления не превысит 0,01 МПа.

Гидростатические испытания происходят следующим образом:

  • Систему необходимо заполнить водой (при полном удалении воздуха).
  • Повысить давление до пробного, которое в 1,5 раза превышает рабочее.
  • Выдержать систему под давлением в течение не менее 5 минут.
  • Снизить давление и опорожнить систему.
  • Система признается прошедшей испытание если отсутствуют течи, а падение давления во время испытания не превысит 0,02 МПа.

При индивидуальных испытаниях теплового оборудования необходимо выполнить следующие работы:

  • Проверить соответствие оборудования рабочей документации и проекту.
  • Проверить работу оборудования на холостом ходу и под нагрузкой в течении одного часа.

Во время испытаний необходимо провести замеры параметров системы теплоснабжения:

  • давления,
  • расхода и
  • температуры сетевой воды

на входе и выходе системы отопления.

Свести полученные данные в таблицу.

Сверить фактические данные с проектными показателями.

Также, необходимо выполнить выборочные замеры температуры воздуха в помещениях.

Результаты измерений фактической температуры воздуха в помещениях свести в таблицу и сверить с нормативными требованиями по микроклимату.

Балансировка системы отопления

Системы отопления практически всех конфигураций требуют балансировки, исключение составляет только разводка по петле Тихельмана. Мы рассмотрим три возможных способа провести балансировку, расскажем о преимуществах, недостатках и уместности каждого из методов, дадим практические рекомендации.

В чем суть балансировки

Гидравлические системы отопления по праву считаются наиболее сложными. Их эффективная работа возможна только при условии глубокого понимания физических процессов, скрытых от визуального наблюдения. Совместная работа всех устройств должна обеспечивать поглощение теплоносителем максимального количества тепла и его равномерным распределением по всем нагревательным приборам каждого контура.

Режим работы каждой гидросистемы основан на взаимосвязи двух обратно пропорциональных величин: гидравлического сопротивления и пропускной способности. Именно ими определяется расход теплоносителя в каждом узле и части системы, а стало быть и количество подводимой к радиаторам тепловой энергии. В общем случае расчёт расхода для каждого отдельно взятого радиатора отражает высокую степень неравномерности: чем больше удалён нагревательный прибор от теплового узла, тем выше влияние гидродинамического сопротивления труб и ответвлений, соответственно теплоноситель циркулирует с меньшей скоростью.

Задача балансировки системы отопления — гарантировать, что проток в каждой части системы будет иметь примерно одинаковую интенсивность даже при временных изменениях режимов работы. Тщательная балансировка позволяет добиться такого состояния, когда индивидуальная регулировка термостатирующих головок не оказывает существенного влияния на прочие элементы системы. При этом сама возможность балансировки должна предусматриваться ещё на этапе проектирования и монтажа, ведь для настройки системы необходима как специальная арматура, так и технические данные на оборудование котельной . В частности, обязательна установка на каждом радиаторе запорных клапанов, в простонародье называемых дросселями.

Особенности работы с разными видами разводки

Однотрубные системы отопления поддаются балансирующей регулировке наиболее просто. Всё благодаря тому, что суммарный проток через радиатор и связывающий байпас всегда одинаков и не зависит от пропускной способности установленной арматуры. Поэтому в системах типа «Ленинградка» работа ведётся не столько над балансировкой протока, сколько над уравнением количества тепла, выделяемого теплоносителем в радиаторах. Говоря проще, главная цель балансировки в таком случае — обеспечить, чтобы к наиболее удалённому радиатору вода поступала при достаточно высокой температуре.

Читайте также:  Что энергоэкономичнее масляный радиатор или конвектор

В двухтрубных тупиковых системах действует несколько иной принцип. Каждый радиатор системы представляет собой своего рода шунт, гидравлическое сопротивление которого ниже, чем у всей остальной группы, расположенной далее по направлению протока. Из-за этого значительная часть теплоносителя протекает через шунт обратно к тепловому узлу, в то время как циркуляция далее по системе имеет гораздо меньшую интенсивность. В таких системах отопления приходится трудиться именно над выравниванием протока в каждом радиаторе путем изменения пропускной способности арматуры.

Двухтрубные попутные системы отопления балансировки не требуют вовсе, но при этом имеют сравнительно высокую материалоёмкость. В этом вся прелесть петли Тихельмана : путь, который проходит теплоноситель в цепи каждого радиатора, примерно одинаков, благодаря чему эквивалентность протока в каждой точке системы поддерживается автоматически. Похожим образом дело обстоит с лучевыми системами отопления и водяным тёплым полом: выравнивание протока выполняется на общем коллекторе по поплавковым расходомерам.

Расчётное моделирование

Наиболее конструктивный и правильный метод регулировки — с помощью построения расчётной модели гидравлической системы отопления. Это можно выполнить в таком программном обеспечении как Danfoss CO и Valtec.PRG, либо же в платных продуктах вроде AutoSnab 3D. Не следует бояться платного ПО: как вы увидите позже, его стоимость не идёт ни в какое сравнение с затратами на специальные устройства автоматической балансировки, при этом расчётный проект гидравлической системы предоставит полное представление о системе, режимах её работы и физических процессах, происходящих в каждой точке.

Балансировка с помощью программных расчётов производится посредством построения точной виртуальной копии системы отопления. В разных рабочих средах механизм моделирования протекает с некоторыми отличиями, тем не менее, все программы такого рода имеют дружественный и понятный пользователю интерфейс. Очень важно, чтобы построение выполнялось действительно точно: с указанием каждого фитинга, элемента арматуры, поворотов и ответвлений, присутствующих в реальной системе. Вот какие потребуются исходные данные:

  • паспортные данные котла: мощность, КПД, напорно-расходный график, рабочее давление.
  • сведения о циркуляционном насосе: скорость протока и напор;
  • тип теплоносителя;
  • материал и условный проход труб, температура окружающей их среды;
  • технические сведения обо всей запорной и регулирующей арматуре, коэффициенты местных сопротивлений (КМС) каждого элемента;
  • паспортные данные на запорные клапаны, зависимость их пропускной способности от падения давления и степени открытия.

После построения модели системы вся работа сводится к тому, чтобы обеспечить равенство расхода теплоносителя на каждом радиаторе. Для этого искусственно занижают пропускную способность запорных клапанов на тех радиаторах и цепях, где наблюдается существенное увеличение протока по сравнению с остальными. Когда виртуальная балансировка выполнена, для каждого радиатора выписывают Kvs — коэффициенты пропускной способности. Используя таблицу или график из паспорта клапана, определяют необходимое число оборотов регулировочного штока, после чего эти данные используют для балансировки реальной системы в натуре.

Эмпирический способ

Конечно, отрегулировать систему отопления при числе радиаторов до десяти можно и без предварительного расчёта. Однако этот метод достаточно трудоёмок и занимает очень много времени. Кроме прочего, при такой балансировке не удаётся предусмотреть изменение расхода при работе термостатирующих головок, что сильно снижает точность балансировки.

Читайте также:  Аогв для отопления закрытого типа

Алгоритм ручной балансировки несложен, для начала необходимо перекрыть абсолютно все радиаторы в системе. Это делается для того, чтобы максимально близко сравнять температуру теплоносителя на входе и выходе из теплового узла. Весь этот процесс занимает около часа, при этом необходимо установить циркуляционный насос на максимальную скорость и убедиться в отсутствии воздушных пробок в системе.

Следующий шаг — полное открытие запорного клапана на наиболее удалённом радиаторе (зачастую на последнем радиаторе этот клапан не устанавливается вовсе). Спустя 10–15 минут проводится измерение температуры нагрева крайнего радиатора, она при дальнейшей балансировке будет использоваться как эталонная.

Далее нужно приоткрыть запорный клапан на предпоследнем радиаторе. Степень открытия должна быть такой, чтобы нагрев произошёл до эталонной температуры и при этом на последнем радиаторе температура нагрева не снизилась. Грань очень тонкая, и работа сильно осложняется инерционностью радиаторов: после каждого изменения положения штока клапана на алюминиевом радиаторе необходимо выждать не менее 15 минут, на чугунном — порядка 30–40 минут. В этом и есть вся суть ручной балансировки: продвигаясь от наиболее удалённого радиатора к самому первому в цепочке необходимо снижать пропускную способность, обеспечивая поддержание одинаковой температуры на каждом нагревательном приборе. Регулировка должна проводиться очень тонко и аккуратно, ведь резкое увеличение протока в середине контура приведёт к падению температуры в отдалённой его части, соответственно нужно будет потратить еще 15–20 минут, чтобы вернуть систему к исходному состоянию.

Отладка в автоматическом режиме

Существует некая золотая середина между двумя описанными выше способами. Специальное оборудование для автоматической балансировки гидравлических систем отопления позволяет провести настройку с очень высокой точностью и в достаточно короткие сроки. На текущий момент основным техническим решением для таких целей считается «умный» насос Grundfos ALPHA 3, укомплектованный съёмным передатчиком, а также фирменное приложение для мобильных устройств. Средняя цена комплекта оборудования составляет порядка $300.

В чём суть затеи? Насос обладает встроенным расходомером и может обмениваться данными со смартфоном или планшетом, где производится обработка всей информации. Приложение работает как путеводитель: пошагово направляет пользователя и указывает, какие манипуляции нужно проводить над разными частями системы отопления. При этом в базе приложения сохраняются отдельные комнаты с указанным числом нагревательных приборов, имеется возможность выбирать разные типы радиаторов, указывать их мощность, необходимые нормы обогрева и прочие данные.

Процесс происходит предельно просто и полностью демонстрирует алгоритм работы программы. После сопряжения с передатчиком и подготовки к работе от системы отключаются все радиаторы, это необходимо для измерения нулевого расхода. После этого запорные клапаны на каждом радиаторе поочередно открываются полностью. При этом расходомер в насосе отмечает изменения в протоке и определяет максимальную пропускную способность каждого нагревательного прибора. После того как все радиаторы будут внесены в базу программы, производится их индивидуальная регулировка.

Настройка запорного клапана на радиаторах происходит в режиме реального времени. Приложение имеет звуковую индикацию для возможности работы в труднодоступных местах. Балансировка требует тонкой подстройки запорного штока до такого положения, при котором текущий расход в системе сравняется со значением, рекомендованным программой. По завершении работы с каждым радиатором приложение формирует отчёт, в который включены все нагревательные приборы системы и расход теплоносителя в них. После выполнения балансировки насос ALPHA 3 может быть снят и заменён на другой с аналогичными параметрами производительности.

Оцените статью