Теплоноситель для систем солнечного отопления

Заправка гелиосистемы теплоносителем.

Лента статей RSS:

Поиск статей:

Схема обвязки и заправки теплоносителем солнечной водонагревательной установки.

Для круглогодичного использования в климатических условиях нашей страны систему солнечной установки необходимо делать двухконтурную. Где в первичном контуре, солнечные коллекторы – теплообменник, используется антифриз. Антифриз должен быть нетоксичным и в случае попадания его в воду при возможных протечках не должно происходить отравления питьевой воды. Наиболее распространённым является применение для этих целей пропиленгликоля.

Antifrogen / Антифроген SOL HT Clariant является идеальным теплоносителем для солнечных систем обогрева, несущих высокую нагрузку, в том числе и с вакуумными коллекторами.

Выбор концентрации раствора пропиленгликоля зависит от возможной минимальной температуры региона, где будет использоваться установка. Оптимально, чтобы антифриз, используемый в качестве теплоносителя, имел специальные присадки, замедляющие процесс коррозии меди, припоя, латуни, исключающие образование накипи, а также улучшающие смазочные свойства антифриза. Это положительно влияет на эффективность работы циркуляционных насосов. В пакет присадок теплоносителя должны входить также противопенные добавки и компоненты, предотвращающие разрушение уплотнителей (резины, тефлона, паронита).

Кроме того, исходя из наших климатических условий, бак-аккумулятор необходимо устанавливать внутри зданий. Одноконтурные системы и баки-аккумуляторы, устанавливаемые на улице, могут применяться только там, где отсутствует риск отрицательных температур. Для наших условий в большинстве случаев это возможно только в летний период, т.е. для сезонного использования. Так же нужно учитывать, что одноконтурная система подвержена риску образования накипи внутри коллекторов, что приводит к снижению их производительности, необходимо учитывать и жесткость нагреваемой воды.

Существует много схем солнечных водонагревательных установок, мы рассмотрим схему обвязки стандартной установки для приготовления горячей воды с описанием основного оборудования и запорной арматуры. Эту схему можно использовать как базовую.

Принципиальная схема солнечной водонагревательной установки.

Первичный контур состоит из солнечных коллекторов, системы трубопроводов, насоса, мембранного расширительного бака и теплообменника.

В виду того что в солнечных коллекторах возможны высокие температуры, трубопроводы необходимо делать из металлических труб — медных или из нержавеющей стали. Медные трубы целесообразно соединять твердой пайкой. Во всяком случае, на расстоянии не менее 5 метров от солнечных коллекторов все соединения должны быть выполнены на твердой пайке.

Теплообменники могут быть как встроенные в баки-аккумуляторы (обычно змеевиковые), так и расположенные отдельно (например, пластинчатые). Обычно для баков-аккумуляторов объёмом до 1000 литров используются встроенные в бак теплообменники, свыше пластинчатые. Можно использовать как баки-аккумуляторы свыше 1000 литров со встроенными теплообменниками, так и баки-аккумуляторы меньшего объема с пластинчатыми теплообменниками. Но в этих случаях необходимо особенно внимательно относится к расчету достаточности поверхности теплообмена и сравнивать стоимости полученных решений.

Достаточным условием для определения поверхности теплообмена встроенных змеевиковых теплообменников является соотношение 0,15 — 0,2 м² поверхности теплообмена на 1 м² поверхности солнечного коллектора.

Шаровые краны 3 и 4 предназначены для отсечения теплообменника бака-аккумулятора. Краны 7 и 8 предназначены для перекрытия насосной сборки. Кран 7 совместно с кранами 9 и 10 используется для заправки теплоносителя. Кран 11 используется как спускной кран при сливе теплоносителя, слив теплоносителя через краны 9 и 10 затруднен из-за обратного клапана 13. Шаровой кран 12 предназначен для выпуска воздуха через воздухоотводчик 17 в процессе заправки теплоносителем системы. После запуска системы и удаления воздуха из нее кран 12 должен быть закрыт во избежание испарения теплоносителя через открытые воздухоотводчики в периоды стагнации солнечных коллекторов. Так же первичный контур должен быть укомплектован фильтром 18, манометром, предохранительным клапаном 15 настроенным на 6 бар. В поле солнечных коллекторов нужно стараться избегать установки запорной арматуры, иногда целесообразно устанавливать предохранительный клапан 6 бар в поле солнечных коллекторов. Со стороны бака-аккумулятора горячей воды необходимо на вводе холодной воды предусмотреть установку обратного клапана 14, для избежания в случае расширения при нагреве воды, попадания горячей воды в холодный водопровод. Так же предусмотреть в случае если данное оборудование отсутствует в комплектации бака-аккумулятора, предохранительный клапан 16 в 6 бар и кран 5 для выпуска воздуха во время заполнения бака водой. Возможна установка дополнительного мембранного бака для системы ГВС. В качестве догревателя дублера на схеме показан ТЭН 18.

Читайте также:  Продаю электрокотел для отопления

Схема заправки теплоносителем солнечной водонагревательной установки.

Примечание. Жирным контуром выделена открытая запорная арматура и движение теплоносителя, тонким закрытая арматура.

Перед заполнением установки необходимо открыть шаровый кран перед автоматическим воздухоотводчиком расположенным в верхней части поля солнечных коллекторов.

Заполнение теплоносителем первичного контура СВНУ необходимо производить через наполнительную арматуру, состоящую из шарового крана 7 на обратном трубопроводе СВНУ и двух спускных кранов 9 и 10.

Первоначально закрывается запорный шаровой кран 7 на обратном трубопроводе СВНУ и открываются спускные краны справа 10 и 9 слева от него.

Насос для заполнения теплоносителем подключается через шланги к правому спускному клапану 10, и заполнение происходит по маршруту, обратный трубопровод, солнечный коллектор, подающий трубопровод, теплообменник бака-аккумулятора.

После того как из спускного крана 9 начинает поступать теплоноситель, необходимо закрыть этот спускной кран, открыть запорный шаровой кран 7 и продолжать подавать теплоноситель заполняющим насосом до тех пор, пока давление в первичном контуре не достигнет 1,5 бара плюс статическая высота установки. По достижении указанного давления отключается насос и закрывается спускной кран 10. Возможно использовать для заправки краны 10 и 11, но в этом случае после заправки в системе остается больше воздуха и заправка происходит не через фильтр.

Заправку теплоносителем нужно производить только в холодные солнечные коллекторы

После первоначального наполнения возможно небольшое падение давления, это связано с выходом воздуха из системы, в этом случае необходимо добавить теплоноситель с помощью насоса для заполнения, до показания манометра в 1,5 бара плюс статическая высота установки. Дополнение теплоносителя производить в холодные солнечные коллекторы при отключенном циркуляционном насосе.

Проверьте давление воздушной камеры мембранного бака, оно должно соответствовать рабочему давлению установки.

После заправки теплоносителя необходимо снять затенение с остекления солнечных коллекторов. Если заправка производится ранним утром или в пасмурную погоду, то закрывать солнечные коллекторы не обязательно.

В течение 2 суток необходимо убедиться в установлении постоянного давления теплоносителя первичном контуре СВНУ, которое должно быть не ниже 1,5 бара плюс статическая высота установки при холодных СК и не работающем циркуляционном насосе. Недостаточное давление приводит к невозможности циркуляции теплоносителя при нагреве СК. После установления постоянного давления в установке необходимо закрыть шаровые краны перед автоматическими воздухоотводчиками.

Автор Касаткин И.Г.

Производственная компания «АНДИ Групп» рекомендует использовать в гелиосистемах Теплоноситель Antifrogen / Антифроген SOL HT Clariant — готовый к применению теплоноситель с антифризными и ингибирующими свойствами для солнечных систем отопления, работающих при повышенных тепловых нагрузках.

Видео Вячеслава Дружинина.

Советуем прочитать.

Теплоноситель для гелиосистем

Теплоноситель для солнечного коллектора.

Теплоноситель для гелиосистемы выполняет очень важную роль. Он обеспечивает транспортировку тепловой энергии от солнечного коллектора в бак аккумулятор. В трубках абсорбера коллектора теплоноситель нагревается, а затем отдает тепло водонагревателю через теплообменник.

Наиболее подходящим теплоносителем для гелиосистем является вода. Она имеет высокую теплоемкость и общедоступность. Однако использование воды в чистом виде ограничено климатическими зонами, в которых не бывает отрицательных температур. В других же климатических условиях, в том числе и в наших, необходимо предусмотреть предотвращения замерзания воды, поскольку это может разгерметизировать гелиоконтур и привести к поломки солнечных коллекторов. Для этого воду смешивают с пропиленгликолем. В центральной Европе обычно используют 40%-ю концентрацию пропиленгликоля. Эта концентрация соответствует температуре -30 ˚ С как температура начала кристаллизации теплоносителя для гелиосистем.

Пропиленгликоль представляет собой трудновоспламеняемую, нетоксичную жидкость. Его безопасность свидетельствует применение пропиленгликоля в кондитерской и косметической промышленности. Температура кипения около 188˚ С, плотность – 1,04 г/см³. Пропиленгликоль – это органическая жидкость имеющая обычные свойства. Поэтому из-за воздействия высоких температур, которые возникают во время перегрева (стагнации), теплоноситель подвержен окислению. Это может вызвать появление коррозии на некоторых узлах гелиосистемы тем самым вывести ее из строя. Так же, если в жидкости содержится кислород, то это способствует разложению теплоносителя и образованию твердых отложений. Исследования показали, что в негерметичных системах с постоянным поступлением кислорода этот процесс возникает гораздо чаще, чем вследствие стагнации при высоких температурах.

Читайте также:  Надежность металлопластиковых труб для отопления

Для увеличения срока службы теплоносителя, а как следствие всей гелиосистемы в жидкость добавляют специальные антиокислительные присадки. Это обеспечивает поддержание pH-среды в щелочном диапазоне (≥ 7,0). Это гарантирует длительную защиту от коррозии. Однако слишком большое количество добавок в теплоноситель гелиосистемы приводит к ухудшению теплоемкости, поэтому основной задачей производителей является достижения оптимального баланса физических свойств жидкости.

На изображении показан начальный вид теплоносителя с (pH 8,2) и после эксплуатации (pH 6,7), а так же твердые отложения.

Теплоноситель для гелиосистем, подвергающийся незначительным термическим нагрузкам, может прослужить до 10 лет. В солнечных сплит системах с возможными длительными периодами стагнации (например, если гелиосистема спроектирована с возможностью поддержки отопления) теплоноситель может прослужить значительно меньше. Рекомендуется после первых двух-трех лет эксплуатации гелиосистемы проверять показатели кислотности теплоносителя каждый год.

Вывод: Очень важно использовать в гелиосистемах качественный теплоноситель, поскольку он продлит срок службы всей гелиоустановки.

На российском рынке сейчас достаточно большое количество незамерзающих теплоносителей. Но, не все теплоносители одинаково полезны. Дело в том, что химический состав большинства теплоносителей очень вреден как для котлов, так и для резиновых прокладок в системе. Со временем уплотнения начинают разъедаться, и зарастают накипью. Чтобы таких проблем не было Производственная компания «АНДИ Групп» рекомендует использовать Теплоноситель Antifrogen SOL HT компания Clariant – мирового лидера в области специализированных химических реагентов.

Antifrogen SOL HT. Готовый к применению теплоноситель с антифризными и ингибирующими свойствами для солнечных систем отопления, работающих при повышенных тепловых нагрузках.

Теплоноситель для солнечных систем отопления

Лента статей RSS:

Поиск статей:

Теплоноситель для гелиосистемы.

Теплоноситель для гелиосистемы выполняет очень важную роль. Он обеспечивает транспортировку тепловой энергии от солнечного коллектора в бак аккумулятор. В трубках абсорбера коллектора теплоноситель нагревается, а затем отдает тепло водонагревателю через теплообменник.

Очень важно использовать в гелиосистемах качественный теплоноситель, поскольку он продлит срок службы всей гелиоустановки.

Принцип работы теплоносителя в гелиосистеме.

Гелиосистема (система солнечного горячего водоснабжения) включает в себя основные компоненты:

1. солнечные коллекторы;

2. насосный модуль с группой безопасности;

4. бак аккумулятор;

5. дублирующий источник энергии.

В солнечных коллекторах циркулирует теплоноситель или вода (циркуляция в контуре гелиосистемы обеспечивается за счет насоса или за счет естественной циркуляции возникающей при разнице температуры). Нагреваясь в солнечном коллекторе, теплоноситель передает тепловую энергию баку аккумулятору по средствам теплообменника (теплообменник может быть встроен в бак в виде змеевика или может использоваться наружный теплообменник). Вода в баке накапливает тепловую энергию. Этот процесс происходит автоматически благодаря контроллеру, регулирующему работу насоса в гелиосистеме. В случае необходимости автоматика запускает дублирующий источник энергии.

Свойства пропиленгликоля как теплоносителя для гелиосистем

Наиболее подходящим теплоносителем для гелиосистем является вода. Она имеет высокую теплоёмкость и общедоступность. Однако использование воды в чистом виде ограничено климатическими зонами, в которых не бывает отрицательных температур. В других же климатических условиях необходимо предусмотреть предотвращения замерзания воды, поскольку это может разгерметизировать гелиоконтур и привести к поломки солнечных коллекторов. Для этого воду смешивают с пропиленгликолем. В центральной Европе обычно используют 40%-ю концентрацию пропиленгликоля. Эта концентрация соответствует температуре -30˚ С как температура начала кристаллизации теплоносителя для гелиосистем.

Пропиленгликоль представляет собой трудновоспламеняемую, нетоксичную жидкость. Его безопасность свидетельствует применение пропиленгликоля в кондитерской и косметической промышленности. Температура кипения около 188˚ С, плотность – 1,04 г/см³. Пропиленгликоль – это органическая жидкость имеющая обычные свойства. Поэтому из-за воздействия высоких температур, которые возникают во время перегрева (стагнации), теплоноситель подвержен окислению. Это может вызвать появление коррозии на некоторых узлах гелиосистемы тем самым вывести ее из строя. Так же, если в жидкости содержится кислород, то это способствует разложению теплоносителя и образованию твердых отложений. Исследования показали, что в негерметичных системах с постоянным поступлением кислорода этот процесс возникает гораздо чаще, чем вследствие стагнации при высоких температурах.
Для увеличения срока службы теплоносителя, а как следствие всей гелиосистемы в жидкость добавляют специальные антиокислительные присадки. Это обеспечивает поддержание pH-среды в щелочном диапазоне (≥ 7,0). Это гарантирует длительную защиту от коррозии. Однако слишком большое количество добавок в теплоноситель гелиосистемы приводит к ухудшению теплоемкости, поэтому основной задачей производителей является достижения оптимального баланса физических свойств жидкости.>

Читайте также:  Пайка медной системы отопления

На изображении показан начальный вид теплоносителя с (pH 8,2) и после эксплуатации (pH 6,7), а так же твердые отложения.

Теплоноситель для гелиосистем, подвергающийся незначительным термическим нагрузкам, может прослужить до 10 лет. В солнечных системах с возможными длительными периодами стагнации (например, если гелиосистема спроектирована с возможностью поддержки отопления) теплоноситель может прослужить значительно меньше. Рекомендуется после первых двух-трех лет эксплуатации гелиосистемы проверять показатели кислотности и темперературу замерзания при помощи рефрактометра теплоносителя каждый год.

Расход теплоносителя в солнечном коллекторе.

В гелиосистемах с принудительной циркуляцией теплоносителя основополагающим фактором является удельный расход теплоносителя. Этот параметр измеряется в литрах/час на 1 м² площади абсорбера солнечных коллекторов. Гелиосистема может работать с различными значениями удельного расхода теплоносителя. Значение может зависеть как от конструкции гелиосистемы и солнечных коллекторов, так и географического места эксплуатации гелиосистемы.

Циркуляция теплоносителя в солнечном коллекторе.

Во время циркуляции, увеличение расхода теплоносителя при одинаковой производительности солнечного коллектора уменьшает разность температур в контуре гелиосистемы (разница между температурой подачи теплоносителя в солнечные коллектора и температурой выхода), а уменьшение расхода ведет к увеличению разности температур.

При высоком значении разницы температур (т.е. при уменьшении расхода) средняя температура солнечных коллекторов будет возрастать, соответственно КПД падает. Однако, в таком режиме циркуляции требуется меньшее электроэнергии при работе циркуляционного насоса и можно использовать магистральные трубы меньших диаметров. Значительное увеличение расхода (Снижение разницы температур) с целью повышения коэффициента полезного действия нецелесообразно, поскольку это повлечет за собой необходимость использования более мощного насоса с высокой производительностью, поэтому эти затраты не будут компенсированы. Так же потребуется использовать трубопроводы с более высокими диаметрами. Это повлечет за собой удорожание все системы и повышение значения тепловых потерь из-за увеличения площадей трубы.

Различают три основных режима циркуляции:

режим с расходом до 30 л/(ч · м2).

режим с расходом более 30 л/(ч · м2).

режим с регулируемым расходом теплоносителя.

Оптимальный расход теплоносителя в солнечных коллекторах.

При проектировании гелиосистемы с принудительной циркуляцией теплоносителя очень важно добиться оптимального значения расхода. Удельный расход должен быть таким, чтобы была обеспечена надежная циркуляция по всему гелиоконтуру и наиболее эффективный теплосъем солнечной энергии. Различные производители указывают различные значения удельного расхода для своих солнечных коллекторов.

Оптимальным значением для гелиосистем с плоскими коллекторами считается значение 25 л/(ч · м²) при полной мощности насоса.

Для некоторых типов вакуумных трубчатых солнечных коллекторов (коллекторы с прямоточным каналом) значение 40 л/(ч · м²) считается оптимальным.

Для солнечных вакуумных коллекторов с тепловой трубкой «Heat pipe» значение такое же, как для плоских коллекторов 25 л/(ч · м²).

Что характерно, что с развитием гелиотехники оптимальное значение расхода теплоносителя изменялось, так, например, 5 лет назад для плоских коллекторов оптимальным считалось значение 40 л /(ч · м²).

Наиболее эффективными являются системы с регулируемым (переменным) расходом теплоносителя. Значение расхода устанавливается автоматически посредствам контроллера и зависит от температуры в баке аккумуляторе и уровня солнечного излучения. Контроллер меняет значение расхода от 100% (максимальное значение) до 20%, регулируя в реальном времени мощность, подаваемую на насос, тем самым ускоряя или замедляя циркуляцию теплоносителя.

Однако в системах с использованием трубчатых солнечных коллекторов с прямоточным каналом режим с регулируемым расходом не рекомендуется, поскольку это нарушает равномерную циркуляцию теплоносителя через солнечный коллектор. При сложной гидравлической схеме коллекторного поля с несколькими параллельно подключенными коллекторными группами режим с регулируемым расходом требует особо точного проектирования и настройки.

На российском рынке сейчас достаточно большое количество незамерзающих теплоносителей. Но, не все теплоносители одинаково полезны. Дело в том, что химический состав большинства теплоносителей очень вреден как для котлов, так и для резиновых прокладок в системе. Со временем уплотнения начинают разъедаться, и зарастают накипью. Чтобы таких проблем не было Производственная компания «АНДИ Групп» рекомендует использовать Теплоноситель Antifrogen SOL HT компания Clariant – мирового лидера в области специализированных химических реагентов.

Antifrogen SOL HT / Антифроген SOL HT
Готовый к применению теплоноситель с антифризными и ингибирующими свойствами для солнечных систем отопления, работающих при повышенных тепловых нагрузках.

Заинтересовались?

Для получения подробной информации обратитесь к нам удобным для Вас способом:

solar@andi-grupp.ru +7(495)748-11-76

Оцените статью