Теплообменник для отопления здания

В каких случаях нужен теплообменник для систем отопления?

Часто в отоплении мы слышим слово «теплообменник». Вещица довольна интересная и применяется в разных ситуациях. В этой статье мы поговорим с Вами о том, что такое теплообменник для систем отопления и какой у него принцип работы.

Что такое теплообменник?

Теплообменник — устройство, внутри которого происходит теплообмен между двумя теплоносителями, имеющими разные температуры. Устройство и принцип работы теплообменника разделим на несколько подпунктов.

Виды теплообменников

Различают несколько видов данного устройства. Все теплообменники делятся на:

  • трубчатые;
  • пластинчатые — неразборные (паяные), разборные.

Трубчатые теплообменники — по сути труба большего диаметра, в которую вварены трубки меньшего диаметра.

Пластинчатые теплообменники — устройства, состоящие из набора пластин, в которых отштампованы волнистые каналы и поверхности для прохождения жидкости. Пластины укрепляются между собой стяжками и прокладками из резины.

Пластинчатые агрегаты более легки в ремонте. Также они имеют меньшие габариты. В трубчатых агрегатах теплообмен происходит в трубе малого диаметра, находящейся в трубе большого диаметра. Поэтому их можно использовать при высоких давлениях, а пластинчатые нельзя.

Из каких материалов изготавливают теплообменники

При изготовлении теплообменников для систем отопления используют различные материалы: нержавеющая сталь, силумин (сплав алюминия и кремния), латунь (используются для систем высокого давления), медь (используются в пивной промышленности, где нужно резко охладить пиво за счет эффекта большой теплопроводности) и другие.

Принцип работы теплообменника

Рассмотрим пластинчатый паяный теплообменник для систем отопления, который собран на заводе. У него есть четыре выхода (два контура). Теплообменник служит разделителем потоков по температуре, по давлению. Таким образом, можно разделить различные теплоносители, жидкости и кислоты.

Разберём принцип работы теплообменника для отопления в доме. На один контур теплообменника подключаются теплые полы, а на другой контур — теплоцентраль (подача и обратка). Напрямую подключать центральный теплоноситель к теплым полам нельзя, так как это может привести к их порче за короткий промежуток времени. На это есть ряд весомых причин

  • в центральных теплосетях большое давление.
  • большая температура
  • в теплоносителе содержится много химических реактивов и растворенного железа.

На помощь приходит теплообменник, который позволяет разделить потоки и сделать в квартире автономную систему теплого пола с маленьким рабочим давлением 1,5 бар и чистой водой.

Теплообменник состоит из трех групп пластин:

  1. Набранная пластина из центральной системы отопления с большой температурой и высоким давлением,
  2. Набранная пластина автономной системы отопления с небольшим давлением,
  3. Разделительная пластина, которая имеет небольшую толщину и осуществляет процесс передачи тепла от центральной системы отопления к автономной системе.

Мощность теплообменника зависит от количества пластин и их размеров. На любой теплообменник необходимо поставить очистительный фильтр, который будет удерживать различные грубые частицы (стружки, окалины, мелкие частицы). Периодически его необходимо промывать специальными средствами. В настоящее время на рынке представлен большой выбор подобных средств.

Внешний вид устройства

На любом теплообменнике нанесены технические характеристики:

  • максимальная рабочая температура, например, 200 °C;
  • максимальное рабочее давление, например, 30 бар;
  • тестовое давление, например, 43 бара.

Указывается страна-производитель, технический паспорт на языке производителя, схема, обозначаются контуры. В случае необходимости паспорт можно перевести на русский язык. Устройство и принцип работы теплообменника от разных производителей иногда могут немного отличаться. Но суть остается одна.

Читайте также:  Проект водяного отопления своими руками

Контуры теплообменника для отопления могут располагаться как вертикально, так и диагонально. На принцип работы это не влияет. Наиболее простое устройство — это диагональное расположение. В данном случае теплообменник необходимо вмонтировать строго в вертикальном положении.

Горячая вода из центральной системы отопления сверху вниз будет поступать в теплообменник, передавая свое тепло автономной системе через разделительную систему. На входе это будет очень горячая вода, на выходе уже вода с упавшей температурой. В контуре автономной системы теплоноситель будет идти снизу вверх. Внизу вода нагревается незначительно, а чем ближе к верху, тем нагрев будет сильнее. За счет такого устройства системе будет легче работать.

Процесс подачи воды в теплообменник осуществляется на принудительной циркуляции. Теплоэлектростанция работает на своих насосах. А автономная система теплого пола в квартире будет работать на своем циркуляционном насосе.

Установка теплообменника

Используя инструкцию по монтажу, необходимо правильно закрепить теплообменник. Он прижимается к стене за счет специальной консоли или крепежной ленты. Также можно установить теплообменник за счет уголка, который крепится к низу теплообменника. Плюс он завяжется трубами.

Дополнительно нужно смонтировать фильтры. Должен быть хотя бы фильтр грубой очистки на контур теплоэлектростанции. Если подключается к старой отопительной системе, то необходимо два фильтра. Один внизу, другой вверху.

Нужны краны и американки. Последние представляют собой быстроразъемные резьбовые соединения. Как правило, обычная простая американка состоит из четырех частей: двух резьбовых фитингов, накидной гайки и прокладки.

Очень важный момент при монтаже — это диаметр подключения, потому что прибор довольно компактный. В нем небольшой объем теплоносителя. Зазор между пластинами минимальный. Желательно брать такого же диаметра, который нам нужен, или больше. Например, 1 дюйм подключения. Лучше брать с запасом уровень мощности теплообменника. На габариты это не влияет. Буквально больше на один или два сантиметра. Но зато скорость теплосъема значительно увеличивается. Особенно это важно в системах, где теплоэлектростанция дает небольшую температуру. Например, при максимальной подаче температуры воды равной 65-70 °C, надо учесть данный факт, чтобы снять с теплоносителя максимально возможное количество теплоэнергии.

В каких сферах используется теплообменник

Сфера использования теплообменников очень обширная:

  • системы отопления;
  • системы охлаждения;
  • при работе с химикатами;
  • с солнечными коллекторами;
  • для обогрева бассейнов;
  • системы вентиляции;
  • системы кондиционирования;
  • в сфере машиностроения;
  • металлургическая промышленность;
  • фармацевтическая промышленность;
  • пищевая промышленность (сахарная, пивная, молочная и прочие);
  • автомобильная промышленность;
  • химическая промышленность.

Устройство и принцип работы теплообменников влияет на работу различных сфер, среди которых как промышленное производство, так и объекты общественного и культурного значения. Вместе с этим их использование возможно и в системах отопления частных жилых домов, где вопрос поддержки температуры стоит наиболее остро. Установка и монтаж теплообменников может быть произведён как самостоятельно, так и при помощи специалистов. Смысл же устройства состоит в равномерном распределении тепла на помещение.

Теплообменник для системы отопления. 5 советов для правильного подбора.

Теплообменник для отопления представляет собой оборудование, в котором происходит теплообмен между греющим и нагреваемым теплоносителем. Греющий теплоноситель поступает от источника тепла, которым являются тепловые сети или котел. Нагреваемый теплоноситель циркулирует между теплообменником и приборами отопления (радиаторы, теплый пол и т.д.)

Задача этого теплообменника передать тепло от источника тепла к приборам отопления, которые непосредственно отапливают помещение. Контур источника тепла и контур потребителя тепла гидравлически разделены — теплоносители не смешиваются. В качестве рабочих теплоносителей, наиболее часто, используется вода и гликольные смеси.

Читайте также:  Когда батареи отопления включат горячую воду

Принцип работы пластинчатого теплообменника для отопления довольно прост. Рассмотрим пример, где источником тепла является водогрейный котел. В котле происходит нагрев греющего теплоносителя до заданной температуры, далее циркуляционный насос подает этот теплоноситель в пластинчатый теплообменник. Пластинчатый теплообменник состоит из набора пластин. Греющий теплоноситель, протекая по каналам пластины с одной стороны передает свое тепло нагреваемому теплоносителю, который протекает с другой стороны пластины. В результате, нагреваемый теплоноситель повышает свою температуру до расчетного значения и поступает в приборы отопления (например радиаторы), которые уже отдают тепло отапливаемому помещению.

Для любого помещения, в котором есть водяное отопление, теплообменник является важным звеном в системе. Поэтому данное оборудование нашло широкое применение при монтаже тепловых пунктов, воздушного отопления, радиаторного отопления, теплого пола и т.д.

Первым шагом при проектировании системы отопления является определение отопительной нагрузки, т.е. какой мощности нам нужен источник тепла. Отопительная нагрузка определяется исходя из площади и объема здания, при этом учитываются теплопотери здания через все ограждающие конструкции. В несложных ситуациях, можно воспользоваться упрощенным правилом — на 10м2 площади нужно 1 кВт. мощности, при стандартных стенах и высоте потолков 2,7 м. Далее, необходимо определить график, по которому будет работать наш источник тепла (котел). Эти данные указаны в паспорте котла, например подача теплоносителя 90С и обратка теплоносителя 70С. Учитывая температуру греющего теплоносителя, мы можем задать температуру нагреваемого теплоносителя — 80С. С этой температурой он будет поступать в приборы отопления.


Пример расчета теплообменника отопления

Итак, у вас есть отопительная нагрузка и температуры греющего и нагреваемого контуров. Этих данных уже достаточно, чтобы специалист смог рассчитать теплообменник для вашей системы отопления. Мы хотим дать некоторые советы, благодаря которым вы сможете предоставить нам более полную техническую информацию для расчета. Зная все тонкости вашего технического задания, мы сможем предложить наиболее оптимальный вариант теплообменника.

Необходимо знать, жилое или нежилое помещение необходимо отапливать?

Когда качество воды плохое, и в ней присутствуют загрязнения, которые оседают на поверхности пластин и ухудшают теплообмен. Следует учесть запас (10%-20%) по поверхности теплообмена, это повысит цену теплообменника, но вы сможете нормально эксплуатировать теплообменник, не переплачивая за греющий теплоноситель.

При расчете, также необходимо знать, какой тип системы отопления будет применяться. Например, для теплого пола нагреваемый теплоноситель имеет температуру 35-45С, для радиаторного отопления 60С-90С.

Что будет источником тепла — свой котел или тепловые сети?

Планируете ли вы в дальнейшем увеличивать мощность теплообменника? Например, у вас планируется достройка помещения и отапливаемая площадь увеличиться.

Это некоторые примеры пластинчатых теплообменников с ценой и сроком изготовления, которые мы поставляли нашим заказчикам в 2019 году.

1. Пластинчатый теплообменник нн 04, цена — 19 200 руб., срок изготовления 1 день.
Мощность — 15 кВт.
Греющий контур — 105С/70С
Нагреваемый контур — 60С/80С

2. Пластинчатый теплообменник нн 04, цена — 22 600 руб., срок изготовления 1 день.
Мощность — 30 кВт.
Греющий контур — 105С/70С
Нагреваемый контур — 60С/80С

3. Пластинчатый теплообменник нн 04, цена — 32 500 руб., срок изготовления 1 день.
Мощность — 80 кВт.
Греющий контур — 105С/70С
​Нагреваемый контур — 60С/80С

4. Пластинчатый теплообменник нн 14, цена — 49 800 руб., срок изготовления 1 день.
Мощность — 150 кВт.
Греющий контур — 105С/70С
​Нагреваемый контур — 60С/80С

Читайте также:  Размер радиатора отопления дэу нексия

5. Пластинчатый теплообменник нн 14, цена — 63 000 руб., срок изготовления 1 день.
Мощность — 300 кВт.
Греющий контур — 105С/70С
​Нагреваемый контур — 60С/80С

6. Пластинчатый теплообменник нн 14, цена — 83 500 руб., срок изготовления 1 день.
Мощность — 500 кВт.
Греющий контур — 105С/70С
​Нагреваемый контур — 60С/80С

Разновидности теплообменников для отопления: как разобраться в них и выбрать нужный?

Теплообменник — неотъемлемый элемент системы отопления, в котором происходит процесс обмена теплом между несколькими средами.

Существует несколько разновидностей теплообменников.

Для чего нужен теплообменник ГВС в системе отопления

Устройство представляет собой 2 плиты: одна из них статическая, а другая — подвижная. Обе они с отверстиями, между которыми зафиксированы загерметизированные прокладками пластины.

Суть принципа работы такого прибора в том, что пластины гофрированного типа образуют каналы, по которым циркулирует жидкость. Повышение коэффициента переданного тепла от её прогретой части к холодной возникает за счёт увеличения площади контакта.

В пристенном слое гофрированного типа со временем образуется процесс турбулентности. По разным сторонам одной пластины происходит перемещение отдельной среды. Такой способ движения предотвращает их перемешивание.

Прогрев обеих сред возникает вследствие присоединения устройства к трубопроводу. После того как среда закончит своё прохождение по всем каналам, она покинет теплообменник.

Такое оборудование делает возможным:

  • эксплуатировать при необходимости полученного от носителя энергии вторичного тепла для бытовых нужд;
  • применять остаточное тепло при поступлении электроэнергии;
  • формировать необходимый температурный режим для проведения химических процессов;
  • удерживать температурный режим теплоносителя на установленном уровне в бытовых отопительных системах.

Существуют следующие виды теплообменников.

Смесительные водяные

Представляют собой приборы, в которых тепло передаётся через непосредственный контакт двух сред: горячей и холодной.

Суть действия такого теплообменника в том, что в специальной камере соединяются жидкость и пар, скорость которого при этом превышает сверхзвуковое значение.

Разгоняет его до такого показателя расчётное сопло. За счёт такого смешивания и происходит прогрев жидкости и паровая конденсация, а теплоноситель требуемой температуры циркулирует по системе отопления.

Камера прибора предусматривает наличие конденсационного вакуума. Работа теплообменника этой разновидности возможна даже при условии малого парового давления.

Поверхностные

Конструкция таких приборов представлена в виде биметаллических труб с алюминиевым оребрением накатного типа.

В этих устройствах происходит процесс обтекания твёрдого покрытия воздухом. Температуры поверхности и воздушного потока отличаются.

Тепловой обмен между средами осуществляется через стенку с нанесённым на неё специальным теплопроводящим материалом. Контура полностью изолированы друг от друга.

Поверхностные теплообменники делятся на 2 типа:

  • регенеративные (направление потока среды имеет свойство меняться);
  • рекуперативные (обмен теплом от одного теплоносителя к другому осуществляется через неплотные стенки контура, при этом направление потока среды остаётся постоянным).

Рекуперативный и его разновидности

Они подразделяются в соответствие с особенностями конструкции и областью применения.

Кожухотрубчатые

Это самые простые устройства. Они состоят из большого числа маленьких трубопроводов, которые спаяны в единый пучок и помещены в кожух. Такие теплообменники довольно громоздкие и занимают много места.

Применяются в испарителях, холодильниках, нагревателях, конденсаторах.

Погруженные

Представляют собой змеевики плоской либо цилиндрической форм, погруженные в ёмкость с жидкостью.

Эти теплообменники считаются неэффективными вследствие того, что с внешней стороны змеевика наблюдается низкий уровень теплоотдачи, а процесс омывания жидкостью проходит в крайне малом количестве.

Справка! Использование погруженного теплообменника будет продуктивным, если жидкость в ёмкости будет закипать или содержать механические дополнения.

Погруженные аппараты применяются в качестве холодильников и конденсаторов, а также для прогрева воды и растворов технологического типа.

Оцените статью