Теплообменник для системы отопления принцип работы

В каких случаях нужен теплообменник для систем отопления?

Часто в отоплении мы слышим слово «теплообменник». Вещица довольна интересная и применяется в разных ситуациях. В этой статье мы поговорим с Вами о том, что такое теплообменник для систем отопления и какой у него принцип работы.

Что такое теплообменник?

Теплообменник — устройство, внутри которого происходит теплообмен между двумя теплоносителями, имеющими разные температуры. Устройство и принцип работы теплообменника разделим на несколько подпунктов.

Виды теплообменников

Различают несколько видов данного устройства. Все теплообменники делятся на:

  • трубчатые;
  • пластинчатые — неразборные (паяные), разборные.

Трубчатые теплообменники — по сути труба большего диаметра, в которую вварены трубки меньшего диаметра.

Пластинчатые теплообменники — устройства, состоящие из набора пластин, в которых отштампованы волнистые каналы и поверхности для прохождения жидкости. Пластины укрепляются между собой стяжками и прокладками из резины.

Пластинчатые агрегаты более легки в ремонте. Также они имеют меньшие габариты. В трубчатых агрегатах теплообмен происходит в трубе малого диаметра, находящейся в трубе большого диаметра. Поэтому их можно использовать при высоких давлениях, а пластинчатые нельзя.

Из каких материалов изготавливают теплообменники

При изготовлении теплообменников для систем отопления используют различные материалы: нержавеющая сталь, силумин (сплав алюминия и кремния), латунь (используются для систем высокого давления), медь (используются в пивной промышленности, где нужно резко охладить пиво за счет эффекта большой теплопроводности) и другие.

Принцип работы теплообменника

Рассмотрим пластинчатый паяный теплообменник для систем отопления, который собран на заводе. У него есть четыре выхода (два контура). Теплообменник служит разделителем потоков по температуре, по давлению. Таким образом, можно разделить различные теплоносители, жидкости и кислоты.

Разберём принцип работы теплообменника для отопления в доме. На один контур теплообменника подключаются теплые полы, а на другой контур — теплоцентраль (подача и обратка). Напрямую подключать центральный теплоноситель к теплым полам нельзя, так как это может привести к их порче за короткий промежуток времени. На это есть ряд весомых причин

  • в центральных теплосетях большое давление.
  • большая температура
  • в теплоносителе содержится много химических реактивов и растворенного железа.

На помощь приходит теплообменник, который позволяет разделить потоки и сделать в квартире автономную систему теплого пола с маленьким рабочим давлением 1,5 бар и чистой водой.

Теплообменник состоит из трех групп пластин:

  1. Набранная пластина из центральной системы отопления с большой температурой и высоким давлением,
  2. Набранная пластина автономной системы отопления с небольшим давлением,
  3. Разделительная пластина, которая имеет небольшую толщину и осуществляет процесс передачи тепла от центральной системы отопления к автономной системе.

Мощность теплообменника зависит от количества пластин и их размеров. На любой теплообменник необходимо поставить очистительный фильтр, который будет удерживать различные грубые частицы (стружки, окалины, мелкие частицы). Периодически его необходимо промывать специальными средствами. В настоящее время на рынке представлен большой выбор подобных средств.

Читайте также:  Разборка насоса системы отопления

Внешний вид устройства

На любом теплообменнике нанесены технические характеристики:

  • максимальная рабочая температура, например, 200 °C;
  • максимальное рабочее давление, например, 30 бар;
  • тестовое давление, например, 43 бара.

Указывается страна-производитель, технический паспорт на языке производителя, схема, обозначаются контуры. В случае необходимости паспорт можно перевести на русский язык. Устройство и принцип работы теплообменника от разных производителей иногда могут немного отличаться. Но суть остается одна.

Контуры теплообменника для отопления могут располагаться как вертикально, так и диагонально. На принцип работы это не влияет. Наиболее простое устройство — это диагональное расположение. В данном случае теплообменник необходимо вмонтировать строго в вертикальном положении.

Горячая вода из центральной системы отопления сверху вниз будет поступать в теплообменник, передавая свое тепло автономной системе через разделительную систему. На входе это будет очень горячая вода, на выходе уже вода с упавшей температурой. В контуре автономной системы теплоноситель будет идти снизу вверх. Внизу вода нагревается незначительно, а чем ближе к верху, тем нагрев будет сильнее. За счет такого устройства системе будет легче работать.

Процесс подачи воды в теплообменник осуществляется на принудительной циркуляции. Теплоэлектростанция работает на своих насосах. А автономная система теплого пола в квартире будет работать на своем циркуляционном насосе.

Установка теплообменника

Используя инструкцию по монтажу, необходимо правильно закрепить теплообменник. Он прижимается к стене за счет специальной консоли или крепежной ленты. Также можно установить теплообменник за счет уголка, который крепится к низу теплообменника. Плюс он завяжется трубами.

Дополнительно нужно смонтировать фильтры. Должен быть хотя бы фильтр грубой очистки на контур теплоэлектростанции. Если подключается к старой отопительной системе, то необходимо два фильтра. Один внизу, другой вверху.

Нужны краны и американки. Последние представляют собой быстроразъемные резьбовые соединения. Как правило, обычная простая американка состоит из четырех частей: двух резьбовых фитингов, накидной гайки и прокладки.

Очень важный момент при монтаже — это диаметр подключения, потому что прибор довольно компактный. В нем небольшой объем теплоносителя. Зазор между пластинами минимальный. Желательно брать такого же диаметра, который нам нужен, или больше. Например, 1 дюйм подключения. Лучше брать с запасом уровень мощности теплообменника. На габариты это не влияет. Буквально больше на один или два сантиметра. Но зато скорость теплосъема значительно увеличивается. Особенно это важно в системах, где теплоэлектростанция дает небольшую температуру. Например, при максимальной подаче температуры воды равной 65-70 °C, надо учесть данный факт, чтобы снять с теплоносителя максимально возможное количество теплоэнергии.

В каких сферах используется теплообменник

Сфера использования теплообменников очень обширная:

  • системы отопления;
  • системы охлаждения;
  • при работе с химикатами;
  • с солнечными коллекторами;
  • для обогрева бассейнов;
  • системы вентиляции;
  • системы кондиционирования;
  • в сфере машиностроения;
  • металлургическая промышленность;
  • фармацевтическая промышленность;
  • пищевая промышленность (сахарная, пивная, молочная и прочие);
  • автомобильная промышленность;
  • химическая промышленность.

Устройство и принцип работы теплообменников влияет на работу различных сфер, среди которых как промышленное производство, так и объекты общественного и культурного значения. Вместе с этим их использование возможно и в системах отопления частных жилых домов, где вопрос поддержки температуры стоит наиболее остро. Установка и монтаж теплообменников может быть произведён как самостоятельно, так и при помощи специалистов. Смысл же устройства состоит в равномерном распределении тепла на помещение.

Читайте также:  Запрет установки индивидуальном отопления

Принцип работы теплообменника в системе отопления

Теплообменник для отопления представляет собой техническое устройство, передающее тепло между горячей и холодной средой. Приборы этого типа, применяемые для отопительных систем, делятся на несколько категорий в зависимости от принципа работы, взаимодействия сред, способа передачи тепла, а также направления движения носителя и потребителя тепла. При выборе теплообменного аппарата для дома или бани учитывают особенности конкретной системы отопления, плюсы и минусы прибора, его конструкцию и дополнительный функционал.

Устройство и принцип работы теплообменника

Конструкция теплообменного прибора напрямую зависит от его типа. Современные приборы для обогрева состоят из двух прижимных плит с отверстиями, к которым подключаются дополнительные элементы трубопровода. Носитель и потребитель тепла также поступают внутрь прибора благодаря наличию отверстий. Принцип работы теплообменника достаточно простой, его можно рассмотреть на примере пластинчатого агрегата. Поток тепла в таком приборе влияет на гофрированный слой в нем, постепенно набирающий скорость в процессе работы.

После запуска первого этапа среды начинают перемещаться навстречу друг другу с обеих сторон во избежание смешивания. На пластинах, расположенных параллельно, формируются рабочие каналы, во время перемещения по ним в каждой среде происходит тепловой обмен, в результате чего тепло выходит за пределы агрегата. В домашних или банных пластинчатых агрегатах внутренние потоки могут идти по схеме одноходового или многоходового типа с учетом технических характеристик и конкретных условий.

Перед выбором прибора полезно почитать информацию о том, для чего нужен теплообменник, узнать о типах агрегата, правилах его монтажа и эксплуатации.

Виды по принципу работы

По способу взаимодействия сред тепловые обменники могут быть поверхностными и смесительными. Схема подключения смесительного теплообменника считается более сложной.

Смесительные

В основе работы смесительных агрегатов лежит контакт двух веществ и смешивание потребителя и носителя тепла. Смесительный теплообменник для отопления делится на несколько категорий, сюда входят градирни с дымоходом, паровые барботеры, а также конденсаторы барометрического типа и сопловые подогреватели.

Поверхностные

Поверхностный теплообменник работает в котельной за счет передачи тепла сквозь контактную поверхность. Это могут быть пластины или труба в зависимости от типа прибора. Среды внутри таких агрегатов не смешиваются между собой, в чем заключается их главное отличие от смесительных аналогов.

По принципу передачи тепла поверхностные тепловые обменники делятся на два типа: регенеративные и рекуперативные.

  • Принцип действия рекуперативного теплообменника основан на непрерывной передаче тепла сквозь контактную поверхность. Таким образом работают многие приборы пластинчатого типа.
  • Стандартный или вторичный регенеративный агрегат предназначен для охлаждения и нагревания воздуха. В этих устройствах движение носителя и потребителя тепла происходит в периодическом режиме. Такие установки часто применяются в офисных многоэтажных зданиях.

Рекуперативные приборы делятся на две категории в зависимости от поверхности. Она может быть изготовлена из труб, такой вариант предназначен для работы в условиях высоких перепадов давления. Приборы с листовой поверхностью более компактны и имеют небольшой вес, поэтому монтаж теплообменника этого типа почти не доставляет проблем.

Кожухотрубные

Кожухотрубной прибор изготовлен из ребристых труб, увеличивающих площадь поверхности, которая передает тепло. Он может иметь конструкцию, включающую трубные решетки, с жесткой сцепкой всех деталей и элементов. Решетки в таком устройстве привариваются к стенкам корпуса, на сцепке к нему прикрепляются трубы. Конструкция с плавающей головкой считается более совершенной, аппараты этого типа стоят дороже, но считаются более практичными.

Читайте также:  Расчет радиаторов отопления будерус

Погружные

Приборы такого типа часто устанавливают в многоэтажках. В них установлен змеевик в форме цилиндра, размещенный в сосуде с жидкостью. За счет простой конструкции время на отдачу тепла заметно сокращается.

Спиральные

Обвязка такого теплообменника состоит из металлических листов, скрученных в спираль и закрепленных на крене. Агрегатам этого типа нужна хорошая герметизация. Также нужно учесть, что установка спирального теплообменника требует специальных навыков. Спиральные приборы не используют в системах с давлением более 10 кгс/см2.

Пластинчатые

Пластинчатые приборы заслуженно считаются наиболее совершенными и идеально подходят как для частных домов, так и для производственных помещений. Они не доставляют проблем во время сборки и чистки, имеют минимальную степень сопротивления гидравлике. Схема подачи рабочей среды в них может осуществляться тремя способами: прямоточным, смешанным и противоточным.

Достоинства и недостатки

Современные агрегаты просты в обслуживании и не доставляют проблем во время разбора и промывания устройства. Пластинчатые теплообменники, которые устанавливают чаще всего, загрязняются медленнее за счет повышенной турбулентности и качественной полировки.

Тепловые агрегаты от ведущих производителей служат дольше по сравнению с водяными бойлерами, котлами ГВС и печами для домов и гаражей. Средний срок службы агрегата составляет около 10-20 лет. У большинства устройств практически нет недостатков за исключением необходимости чистить прибор по мере его загрязнения. Чтобы сократить скопление грязи внутри устройства, нужно всегда использовать качественный теплоноситель.

Правила выбора

В список основных критериев, на которые необходимо обращать внимание при выборе, входит:

  • тип и качество применяемого теплового носителя;
  • простота разборки и сборки;
  • тип передачи тепла;
  • возможность наращивать объем мощности в процессе эксплуатации.

Пластинчатые обменники чаще используют для систем охлаждения и подогрева холодильников и бассейнов, спиральные применяют в различных сферах промышленности, горизонтальные лучше подходят в качестве устройств подогрева.

Эксплуатация и уход

Своевременный осмотр, профилактика и замена деталей помогут сэкономить на ремонте и покупке нового прибора. На работе агрегата негативно сказывают процессы коррозии и эрозии деталей, фрикционный износ во время повышенной вибрации, а также воздействие высоких температур.

Если не устранить проблемы вовремя, конструкция может выйти из строя. Очистку устройства можно проводить самостоятельно или доверить ее специалисту.

Популярные производители

На российском рынке хорошо зарекомендовали себя разборные и паяные тепловые обменники от брендов РИДАН и ASTERA, отличающиеся высоким уровнем качества и доступностью необходимых запасных элементов.

Из зарубежных брендов покупатели чаще выбирают дизельные и стандартные устройства от ALFA LAVAL, DANFOSS и SONDEX.

При выборе агрегата нужно учитывать особенности системы в целом, смету, если речь идет о проекте, требования по количеству кВт, а также другие необходимые параметры.

Оцените статью