- Расчёт и Подбор Теплообменника ГВС (горячего водоснабжения)
- Расчёт теплообменника
- Подбор теплообменника
- Температурный режим и точка излома
- Схемы подключения
- Теплообменник горячего водоснабжения расчет
- Расчет пластинчатых теплообменников для ГВС
- Какие параметры учитывает программа
- Как работать в онлайн-калькуляторе
- Дополнительные виды расчета
- Заказ и получение
- Расчет теплообменника: пример. Расчет площади, мощности теплообменника
- Базовые понятия теплообмена для расчета
- Виды теплообмена
- Методы составления теплового баланса
- Устройство и принцип работы
- Механизмы теплопередачи в расчете теплообменников
- Выбор теплообменного оборудования для ГВС
- Конвекционный механизм передачи тепла
- Схемы подключения
- Коэффициент теплоотдачи в расчете теплообменников
- Применение пластинчатого вида для ГВС
- Расчет средней разности температур
- Типы теплообменников для систем ГВС
- Пример расчета теплообменника
- Специальные формулы
- Изготовление теплообменников для горизонтальных котлов
- Приступаем к монтажу
- Установка прибора с регистром
- Монтаж устройства с емкостью
- Что это такое и для чего он нужен
- Монтаж котла
Расчёт и Подбор Теплообменника ГВС
(горячего водоснабжения)
Расчёт для ГВС парал. схемы
Расчёт для Отопления
Расчёт для ГВС двухступ. схемы
Устройство и конструкция
Установка и подключение
Данный online расчёт теплообменника предназначен для формирования запроса на подбор теплообменного аппарата и отправки его производителям пластинчатых теплообменников, разумеется при вашем желании.
Расчёт теплообменника
При расчёте пластинчатого теплообменника пренебрегают незначительными тепловыми потерями с его корпуса и считают, что всё тепло отданное греющим теплоносителем передаётся нагреваемой воде. Поэтому между греющим и нагреваемым контуром должен соблюдаться тепловой баланс.
Количество тепла полученное при подстановке в формулу параметров греющего контура, должно равняться количеству тепла полученному при подстановке параметров нагреваемого контура.
Q [кВт] = 1.163 · G [т/ч] · dt [°C]
Подбор теплообменника
Каждый производитель теплообменных аппаратов использует пластины уникальных конфигураций, поэтому не существует единой универсальной методики расчёта пластинчатых теплообменников, а подбор выполняют на специальном программном обеспечении.
Нам же необходимо лишь оформить запрос и отправить его производителю пластинчатых теплообменных аппаратов, что и делает данный расчёт.
Температурный режим и точка излома
Наличие систем децентрализованного подогрева воды для бытового горячего водоснабжения в тепловых сетях накладывает на их температурные режимы обязательства по поддержанию температуры воды в подающем трубопроводе выше температуры горячей воды на 10-15°C, обычно это 65-70°C.
Таким образом в тепловых сетях работающих по температурному графику и снижающих температуру воды в подающем трубопроводе при повышении температуры наружного воздуха, всегда есть так называемая «точка излома» в которой для систем отопления можно было бы уже подавать и более холодную воду, но вода подаётся с температурой 65°C, чтобы ей можно было нагреть горячую воду для системы горячего водоснабжения. Подобный температурный режим при отсутствии регулирования влечёт за собой некоторый перетоп в системе отопления, но зато избавляет тепловую сеть от обязательств по централизованному подогреву и транспортировке горячей воды для системы ГВС.
Поэтому в греющем контуре температуру воды на входе в теплообменник принимают 65°C, а на выходе задаются температурой 30°C.
В нагреваемом контуре задаются темературой 5°C на входе в теплообменник и 55°C на выходе из него.
Схемы подключения
Существует две основные схемы установки теплообменных аппаратов в системе горячего водоснабжения, это двухступенчатая смешанная и параллельная.
Двухступенчатые смешанные схемы используют в системах с централизованным теплоснабжением для первичного подогрева воды поступающей в систему горячего водоснабжения водой вышедшей из системы отопления. Расчёт теплообменника для двухступенчатой смешанной схемы подключения системы горячего водоснабжения.
Параллельные схемы подключения используют, как в современных системах с централизованным теплоснабжением, так и в системах с автономными источниками тепла. Данный расчёт и представлен на этой странице.
Теплообменник горячего водоснабжения расчет
Группа: Участники форума
Сообщений: 136
Регистрация: 11.1.2006
Пользователь №: 1830
В СНиПе Тепловвые сети нашел пункт который впринципе и есть ответ на мои вопросы звучит так:
1. По поводу температуры воды:
При расчете поверхности нагрева водо-водяных водоподогревателей для систем горячего водоснабжения и отопления температуру воды в подающем трубопроводе тепловой сети следует принимать равной температуре в точке излома графика температур воды или минимальной температуре воды, если отсутствует излом графика температур, а для систем отопления — также температуру воды, соответствующую расчетной температуре наружного воздуха для проектирования отопления. В качестве расчетной следует принимать большую из полученных величин поверхности нагрева
Из этого вывод:
— температура в точке излома графика я не знаю;
— минимальная температура воды будет в летний период 70/30;
— а если брать как для отопления то график 90/70;
Т.к. при 70/30 запас будет по мощности больше чем при 90/70 то согласно СНиПу надо брать «принимать большую из полученных величин поверхности нагрева» (тобишь график 70/30)
2. По поводу % мощности и количества теплообменников:
Число водо-водяных водоподогревателей следует принимать:
два параллельно включенных, каждый из которых должен рассчитываться на 100% теплового потока — для систем отопления зданий не допускающих перерывов в подаче теплоты:
два, рассчитанных на 75% теплового потока каждый, — для систем отопления зданий, сооружаемых в Северной строительно-климатической зоне;
один — для остальных систем отопления;
два параллельно включенных в каждой ступени подогрева, рассчитанных на 50% теплового потока каждый, — для систем горячего водоснабжения.
При максимальном тепловом потоке на горячее водоснабжение до 2 МВт допускается предусматривать в каждой системе подогрева один водоподогреватель горячего водоснабжения, кроме зданий, не допускающих перерывов в подаче теплоты на горячее водоснабжение
Вивод: Брать по 50% как-то стрёмно особенно если один теплообменник полетит и пока его заменят. А вот 60-70% я думаю намного лучше но и дороже конечно.
А еще вопросик а если к моей схеме добавить две обводные линии, на случай если полетит первая или вторая ступень.
Просто интересно согласование пройдет эта схема при наличии этих линий.
Расчет пластинчатых теплообменников для ГВС
На сайте доступен расчет пластинчатых теплообменников. Эта функция для вашего удобства реализована в двух вариантах: упрощенном и полном.
Упрощенный открывается во всплывающем окне при клике по закладке в правой части сайта. Он содержит минимум исходных параметров и выдает примерную сумму, которая может измениться при учете дополнительных характеристик.
Полный вариант открывается на отдельной странице — здесь же есть подробная инструкция по использованию онлайн-калькулятора. Данная страница посвящена тому, как вычислить стоимость теплообменников для систем горячего водоснабжения (ГВС).
Какие параметры учитывает программа
Программа вычисляет стоимость теплообменного оборудования по семи параметрам:
1–2. Температура на входе. Включает два значения — для нагреваемой стороны (вода/пар,пропиленгликоль или этиленгликоль) и нагревающей (иная рабочая среда). Это уровень нагрева воды перед теплообменником и другой рабочей среды после него. Измеряется в градусах Цельсия.
3–4. Температура на выходе. Это уровень нагрева воды после аппарата и другой жидкости до попадания в него. Единицы измерения — также градусы Цельсия. Для воды эта величина будет выше температуры на входе, для другой среды — ниже.
5. Тип греющей среды. Нагреваемая среда в теплообменнике для ГВС может быть только водой, а вот другая жидкость, передающая воде тепло, может быть разной. Применяют технические масла, воду, водяной пар, гликоли (двухатомные спирты).
6. Источник энергии. Для корректной работы теплообменников важно учитывать, откуда будет поступать тепловая энергия. Вариантов два: центральное отопление или домовая автономная котельная система с водогрейным бойлером.
7. Тепловая мощность. Другое название — тепловая нагрузка. Это объем тепловой энергии, отдаваемый оборудованием в рабочую среду. Данная характеристика определяет функциональные возможности агрегата и измеряется в киловаттах. Тепловую мощность рассчитывают по формуле P = m×cp×Δt, где m — расход среды, ср — удельная теплоемкость, равная для воды комнатной температуры 4,18 кДж/(кг*°С), Δt — разница температур среды на входе и выходе в пределах одного контура (одной среды).
Как работать в онлайн-калькуляторе
Введите исходные данные в поля и нажмите кнопку «Рассчитать». Советуем заполнять все графы на странице — в противном случае программа сможет предоставить только очень приблизительную сумму, которая будет далека от точной стоимости теплообменников.
Для работы калькулятору необходимо не менее пяти заполненных полей. Если вы вводите минимум исходных данных, рекомендуем заполнить графы в разных категориях, например, по два параметра в разделах «Греющая» и «Нагреваемая сторона», тепловую нагрузку. С помощью калькулятора вы сократите время подготовительных работ, и наши менеджеры смогут быстрее составить договор и сформировать заказ.
Дополнительные виды расчета
Предыдущие разделы описывают расчет стоимости оборудования с учетом тех свойств, которые должны быть у него для решения ваших задач. Иногда, чтобы правильно выбрать теплообменник, необходимо вычислить некоторые технические характеристики.
Чаще всего применяют три метода количественной оценки:
- Общий тепловой. Позволяет вычислить необходимое для поддержания нужной температуры количество тепловой энергии. Оценку производят по формуле Q = G×c×Δt, где G — расход теплоносителя в килограммах в час, c — теплоемкость теплоносителя в Дж/кг*град, а Δt — разность температур среды на входе и выходе. Формула применима и к нагревающей, и к нагреваемой сторонам.
- Конструктивный. Применяют для вычисления размеров необходимой конструкции, например, площади поверхности теплообмена F, размера сечения S и количества каналов среды m. Например, для вычисления размера сечения берут формулу S = G/(w×ρ), где G — расход теплоносителя в кг в час, w — скорость потока, постоянная для разных веществ и достигающая 50 кг/м 2 ×с у пара, ρ — плотность.
- Гидравлический. Используют для оценки гидравлического сопротивления — неизбежной потери части напора потока при ее прохождении по оборудованию. Указанную величину вычисляют по формуле ∆Р = (λ×(l/d) + ∑ζ) × (ρ×w/2), где λ — коэффициент трения, l — длина трубы в метрах, d — диаметр трубы в метрах, ∑ζ — сумма индексов удельного сопротивления, ρ — плотность, w — скорость потока.
Онлайн-калькулятор на нашем сайте позволяет определить только стоимость моделей теплообменников с заданными техническими параметрами. Произвести более сложные вычисления в нем не удастся. Если вам необходимо это сделать, воспользуйтесь приведенными формулами, чтобы установить нужные значения величин.
Заказ и получение
В нашей компании можно купить теплообменники марки «Ридан». На сайте можно не только оценить стоимость ,но и запросить точную сумму — пришлем расчет на почту в течение часа после обращения. Оформите заказ на сайте в короткой форме заявки, напишите нам на почту [email protected] или позвоните. В Перми работает наш офис, откуда можно самостоятельно забрать заказ. В остальные регионы теплообменники доставляют проверенные партнерские компании. Все грузы застрахованы.
Предлагаем широкий ассортимент теплообменников Ридан
Расчет теплообменника: пример. Расчет площади, мощности теплообменника
Базовые понятия теплообмена для расчета
Расчет теплообменников производится при использовании базовой информации о теплообменных законах.
В этой статье рассмотрим некоторые понятия, применяемые при таких расчетах.
- Удельная теплоемкость является количеством теплоэнергии, требуемой для того чтобы нагреть 1 килограмм вещества на 1 градус Цельсия. На основании сведений о теплоемкости показывается то, насколько сильно аккумулируется тепло. Для расчетов теплоэнергии берется среднее значение теплоемкости в определенном интервале температурных показателей.
- Количество теплоэнергии, нужное для того чтобы нагреть 1 кг вещества от нулевой до требуемой температуры, называется удельной энтальпией.
- Удельная теплота химических превращений является количеством теплоэнергии, выделяемой в процессе химической трансформации какой-либо единицы веса вещества.
- Удельная теплота фазовых превращений определяет количество тепловой энергии, поглощаемое или выделяемое при превращении какой-либо единицы массы вещества из твердого в жидкое, из жидкого в газообразное агрегатное состояние и т.д.
Онлайн калькулятор расчета теплообменнника от поможет получить решение через 15 минут. Или вы можете воспользоваться теорией для теплообменника пластинчатого типа, которая изложена ниже в этой статье, и произвести необходимые расчеты самостоятельно.
Виды теплообмена
Теперь поговорим о видах теплообмена — их всего три. Радиационный — передача теплоты за счет излучения. Как пример, можно вспомнить принятие солнечных ванн на пляже в теплый летний день. И такие теплообменники даже можно встретить на рынке (ламповые нагреватели воздуха). Однако чаще всего для обогрева жилых помещений, комнат в квартире мы покупаем масляные или электрические радиаторы. Это пример другого типа теплообмена — конвекционного. Конвекция бывает естественной, вынужденной (вытяжка, а в коробе стоит рекуператор) или с механическим побуждением (с вентилятором, например). Последний тип намного эффективнее.
Однако самый эффективный способ передачи теплоты — это теплопроводность, или, как её ещё называют, кондукция (от англ. conduction — «проводимость»). Любой инженер, собирающийся провести тепловой расчет теплообменника, прежде всего задумывается о том, чтобы выбрать эффективное оборудование в минимальных габаритах. И достичь этого удаётся именно за счет теплопроводности. Примером тому служат самые эффективные на сегодняшний день ТОА — пластинчатые теплообменники. Пластинчатый ТОА, согласно определению, — это теплообменный аппарат, передающий теплоту от одного теплоносителя другому через разделяющую их стенку. Максимально возможная площадь контакта между двумя средами в совокупности с верно подобранными материалами, профилем пластин и их толщиной позволяет минимизировать размеры выбираемого оборудования при сохранении исходных технических характеристик, необходимых в технологическом процессе.
Методы составления теплового баланса
Тепловой баланс может быть составлен внешним или внутренним методом. Первый связан с использованием величин удельных энтальпий, второй – с использованием величин теплоемкостей.
Для расчета тепловой нагрузки при внутреннем методе применяются различные формулы, что зависит от того, каким образом происходит протекание теплообменных процессов.
Если при теплообменном процессе не используются никакие превращения, а соответственно тепловые выделения или поглощения, рассчитать тепловую нагрузку можно за следующей формулой
Если при теплообменном процессе конденсируется пара или испаряется жидкость, протекают определенные химические реакции, тепловой баланс вычисляется по следующей формуле
Основанием для расчета теплового баланса в случае применения внешнего метода выступает факт поступления или выхода равного количества энергии в теплообменное устройство за определенную единицу времени. Внутренний метод отличается от внешнего тем, что при первом используются данные о процессах теплообмена, а при втором – данные внешних показателей.
Тепловой баланс по внешнему методу вычисляется таким образом:
Величина Q1 определяет количество энергии, поступающей в устройство и выходящей из него за единицу времени.
Для установления количества тепловой энергии, передающегося между различными средами, необходимо вычислить разницу энтальпий с использованием формулы
Теплообменный процесс может происходить и с использованием определенных химических или фазовых превращений. При этом количество тепловой энергии вычисляется за формулой
Устройство и принцип работы
Современные теплообменные аппараты – это агрегаты, работа которых базируется на разных принципах:
- оросительные;
- погружные;
- паяные;
- поверхностные;
- разборные;
- оребренно-пластинчатые;
- смесительные;
- кожухотрубные и прочие.
Но пластинчатые теплообменники ГВС и отопления выгодно отличаются из ряда других. Это нагреватели проточного характера. Установки представляют собой ряд пластин, между которыми формируются два канала: горячий и холодный. Они разделены стальной и резиновой прокладкой, поэтому перемешивание сред исключается. Пластины собраны в один блок. Этот фактор и обуславливает функционал устройства. Пластины тождественны по размерам, но расположены на развороте в 180 градусов, что является причиной формирования полостей, по которым транспортируются жидкости. Так формируется чередование холодных и горячих каналов и формируется теплообменный процесс.
Рециркуляция в оборудовании данного типа происходит интенсивно. От материала прокладок, количества пластин, их размеров и вида зависят условия, в которых будет эксплуатироваться теплообменник для систем горячего водоснабжения. Установки, выполняющие подготовку горячей воды, обустроены двумя контурами: один для ГВС, другой для обогрева помещений. Пластинчатые установки безопасны, производительны и используются в следующих сферах:
- подготовка носителя тепла в ГВС, в системах вентиляции и отопления;
- охлаждение пищевых продуктов и технических масел;
- горячее водоснабжение душевых на предприятиях;
- для подготовки носителя тепла в системах напольного отопления;
- для подготовки носителя тепла на пищевых, химических и фармацевтических предприятиях;
- нагрев воды для бассейнов и другие теплообменные процессы.
Механизмы теплопередачи в расчете теплообменников
Тремя основными видами для осуществления теплообмена являются конвекция, теплопроводность и излучение.
При теплообменных процессах, протекающих в соответствии с принципами механизма теплопроводности, теплоэнергия передается в виде переноса энергии упругих атомных и молекулярных колебаний. Переход данной энергии между разными атомами производится в направлении к снижению.
Расчет характеристик передачи тепловой энергии по принципу теплопроводности осуществляется по закону Фурье
Данные поверхностной площади, коэффициенте теплопроводности, температурном градиенте, периоде прохождения потока применяются для вычисления количества теплоэнергии. Понятием температурного градиента определяется изменение температуры в направлении теплопередачи на ту или иную единицу длины.
Коэффициент теплопроводности является скоростью теплообменного процесса, т.е. количеством тепловой энергии, проходящей через какую-либо единицу поверхности в единицу времени.
Как известно, металлы характеризуются наибольшим коэффициентом теплопроводности относительно других материалов, что обязательно должно учитываться при каких-либо расчетах теплообменных процессов. Что касается жидкостей, то они, как правило, имеют относительно меньший коэффициент теплопроводности по сравнению с телами в твердом агрегатном состоянии.
Вычислить количество передаваемой тепловой энергии для расчета теплообменников, при которых теплоэнергия передается между различными средами через стенку, можно с использованием уравнения Фурье. Она определяется как количество теплоэнергии, проходящей через плоскость, которая характеризуется очень малой толщиной:
После выполнения некоторых математических операций получаем следующую формулу
Можно сделать вывод, что падение температуры внутри стенки производится в соответствии с законом прямой линии.
Выбор теплообменного оборудования для ГВС
Если инженерный расчет теплообменников отопления и горячего водоснабжения был сделан правильно, и в здании установлена грамотно подобранная модель оборудования с учетом условий эксплуатации, можно рассчитывать на надежную работу оборудования в течение 15 лет. Не стоит пренебрегать услугами профессиональных мастеров, это сформирует дополнительные гарантии производительности и безопасности системы.
На российском рынке представлены установки от именитых брендов и пластинчатые теплообменники российского производства, вторые не менее надежны, но доступны по стоимости. Так, пользуется спросом теплообменник для системы горячего водоснабжения Ридан (группа компаний Данфосс), его предпочитают купить даже состоятельные потребители. Поэтому выбор устройства лучше делать не по торговой марке, а согласно параметрам конкретного строения и техническим характеристикам аппарата. Лучше, если это сделает профессионал.
Конвекционный механизм передачи тепла
Конвекция является еще одним способом передачи теплоэнергии. Она представляет собой передачу энергии объемами среды посредством их взаимного перемещения. Теплопередачей при этом называется передача теплоэнергии между рабочей средой и стенкой. Определение количества передаваемой тепловой энергии связано с использованием закона Ньютона
,где a является коэффициентом теплоотдачи.
При турбулентном движении среды на изменение данного коэффициента влияют величины:
- физические характеристики теплоемкости, плотности и иной текучей среды;
- условия, при которых теплоотдающая поверхность омывается жидким или газообразным веществом;
- условия, которыми ограничивается поток, такие как длина, поверхностные шероховатости и др.
Итак, коэффициент теплоотдачи является функцией некоторых величин, что можно увидеть по следующей формуле
Благодаря методу анализа размерностей может быть выведена взаимосвязь критериев подобия, которыми характеризуется теплоотдача при турбулентном движении потока в различной по форме трубах.
Для вычисления этой связи используется такая формула
Схемы подключения
Если вы решили использовать пластинчатый теплообменник для отопления и ГВС в системе, то перед подбором определенной модели необходимо рассмотреть тип схемы подключения. Есть три варианта:
- Независимая конфигурация подключения от теплоснабжения (так подключается бойлер).
- Параллельная конфигурация или 1-ступенчатая предполагает монтаж оборудования параллельно отопительной коммуникации. Регулирование выполняется одним клапаном. Процесс представляет собой постоянное фиксирование заданной температуры среды. Это простая структура, обеспечивающая достаточный теплообмен, но потребляет большие объемы теплоносителя и предполагает подключение насосных станций. Эта схема экономична по монтажу.
- Двухступенчатая конфигурация гарантирует рациональное использование энергии обратного потока. Подготовка жидкости выполняется в 2-х агрегатах. Первый нагревает воду до 40 градусов, второй продолжает процедуру и доводит показатели до заданной нормы. Это +60 градусов. Второй пластинчатый теплообменник ГВС может быть подключен параллельно или последовательно, в зависимости от выбранной инженерной схемы. Этот способ характеризуется низким расходом теплоносителя – до 40% и высоким КПД. Эта схема обеспечит экономию в процессе эксплуатации.
От грамотного выбора схемы подключения зависят расходы в эксплуатации и будут ли люди получать достаточное количество горячей воды. Но чтобы схемы были работоспособны, необходимо грамотно подобрать теплообменник для отопления. В параметрах учитывается связка гидравлического режима водоснабжения и отопления.
Коэффициент теплоотдачи в расчете теплообменников
В химической технологии часто можно встретить случаи обмена теплом между 2-мя текучими средами через разделяющую стенку. Процесс теплообмена проходит в три этапа. Поток теплоэнергии для установившегося процесса характеризуется неизменностью.
Сначала рассчитывается тепловой поток, проходящий от одной среды к стенке, затем через стенку поверхности, передающей тепло, а после этого от стенки к другой рабочей среде.
Таким образом, расчеты проводятся с помощью трех формул
Результатом решения уравнений является формула
Применение пластинчатого вида для ГВС
Нагрев воды от теплосети полностью обоснован с экономической точки зрения – в отличие от классических водонагревательных котлов, использующих газ или электроэнергию, устройство работает исключительно на отопительную систему. В результате конечная стоимость каждого литра горячей воды оказывается для домовладельца на порядок ниже.
Пластинчатый вариант для горячего водоснабжения использует тепловую энергию теплосети для нагрева обычной водопроводной воды. Нагреваясь от пластин устройства, горячая вода поступает к точкам водоразбора – кранам, смесителям, душевую в ванной комнате и пр.
Расчет средней разности температур
Поверхность теплообмена рассчитывается при определении требуемого количества теплоэнергии посредством теплового баланса.
Расчет требуемой теплообменной поверхности осуществляется с использованием той же формулы, что и при расчетах, осуществляемых раннее:
Температура рабочих сред, как правило, изменяется при протекании процессов, связанных с теплообменом. То есть будет фиксироваться изменение разности температур вдоль теплообменной поверхности. Следовательно, рассчитывается средняя разница температур. Вследствие нелинейности изменения температур осуществляется расчет логарифмической разности
Противоточное движение рабочих сред отличается от прямоточного тем, что требуемая площадь теплообменной поверхности в данном случае должна быть меньше. Для вычисления разности температурных показателей при использовании в одном и том же ходу теплообменника и противоточного, и прямоточного потоков используется следующая формула
Основная цель проведения расчета заключается в вычислении требуемой площади теплообменной поверхности. Тепловая мощность задается в техническом задании, но в нашем примере мы произведем и ее расчет с той целью, чтобы проверить само техзадание. В некоторых случаях бывает и так, что в исходной информации может оказаться ошибка. Нахождение и исправление такой ошибки является одной из задач грамотного инженера. Использование подобного подхода очень часто связано со строительство небоскрёбов с целью разгрузки оборудования по давлению.
Типы теплообменников для систем ГВС
Среди множества типов различных агрегатов бытовых условиях используются только два – пластинчатые и кожухотрубные. Последние практически исчезли с рынка вследствие больших габаритов и низкого КПД.
Пластинчатый ГВС представляет собой ряд гофрированных пластин на жесткой станине. Все пластины идентичны по размерам и конструкции, но следуют в зеркальном отражении друг к другу и разделяются специальными прокладками – резиновыми и стальными. В результате строгого чередования между парными пластинами образуются полости, которые заполняются теплоносителем или нагреваемой жидкостью – смешение сред полностью исключено. Через направляющие каналы две жидкости движутся навстречу друг другу, заполняя каждую вторую полость, и так же, по направляющим, выходят из аппарата отдав/получив тепловую энергию.
Чем выше количество или размер пластин в устройстве – тем больше площадь полезного теплообмена и выше производительность. У многих моделей на направляющей балке между станиной и запорной (крайней) плитой остается достаточно пространства, чтобы установить несколько плит аналогичного типоразмера. В этом случае дополнительные плиты всегда устанавливаются парами, иначе потребуется менять направление «вход-выход» на запорной плите.
Схема и принцип работы пластинчатого ГВС
Все пластинчатые устройства можно разделить на:
- Разборные (состоят из отдельных плит)
- Паяные (герметичный корпус, не разборные)
Преимущество разборных агрегатов заключается в возможности их доработки (добавление или удаление пластин) – в паяных моделях эта функция не предусмотрена. В регионах с низким качеством водопроводной воды такие экземпляры можно разбирать и очищать от мусора и отложений вручную.
Пример расчета теплообменника
Для расчета требуемой мощности (Q0) используется формула теплового баланса. Здесь Ср выступает в качестве удельной теплоёмкости (табличного значения). Чтобы упростить расчеты, можно взять приведённый уровень теплоемкости
Следует учитывать, что в соответствии с формулой, вне зависимости от стороны, по которой проводится расчет.
Далее необходимо найти требуемую поверхностную площадь, исходя из основного уравнения теплопередачи, где k является коэффициентом теплопередачи, а ΔТср.лог. – среднелогарифмическим температурным напором, вычисляемым по формуле:
При неопределенном коэффициенте теплопередачи теплообменник пластинчатого типа рассчитывается более сложным методом. По формуле можно вычислить критерий Рейнольдса.
Найдя в таблице значение критерия Прандтля, которое нам необходимо, можно вычислить критерий Нуссельта формулы, где n = 0,3 – при охлаждении жидкости, n = 0,4 – при нагреве жидкости.
Далее на основании формулы можно вычислить коэффициент теплоотдачи от любого теплоносителя к стенке, а в соответствии с формулой определить коэффициент теплопередачи, подставляемый в формулу, с помощью которого вычисляется площадь поверхности теплообмена.
Специальные формулы
Расчет основывается на уравнении теплопередачи Q = F×k×Δt, где Q означает объем теплового потока (Вт), F — площадь поверхности в м2, k — коэффициент передаваемого тепла, а Δt — разность в показателях температур теплоносителей на входе и выходе из агрегата.
Чтобы вычислить площадь поверхности, используют формулу F=Q/k×Δt. Формула теплопередачи учитывает конструктивные особенности агрегата. Рассмотрев их, можно выделить значения t1 и t2, чтобы рассчитать F. Для вычислений используется формула Q=G1cp1(t1вх–t1вых)=G2cp2(t2вых–t2вх), где G1и G2 обозначают расход массы греющего и нагреваемого теплоносителя, cp1 и cp2 — удельную теплоемкость по нормативам. Обмениваясь энергией, теплоносители меняют температуру, поэтому t1вх и t1вых, t2вх и t2вых выводятся в проверочном расчете для сравнения с фактическими температурными показателями. Важно учесть коэффициент теплоотдачи среды и конструктивные особенности теплообменного оборудования. Детальный конструкторский расчет предполагает составление схемы теплообменных агрегатов, включая схему движения теплоносителя.
Стандартные размеры элементов и коэффициенты теплоотдачи учитывают в ГОСТах. Чтобы не ошибиться, можно ознакомиться с примерами расчетов для разных типов теплового оборудования. Простые подсчеты выполняются на онлайн-калькуляторе, куда вносятся соответствующие параметры. Для сложных систем понадобятся опыт и знания, а также потребуется соответствующее программное обеспечение. Избежать ошибок можно, если доверить проведение расчетов специалистам.
Изготовление теплообменников для горизонтальных котлов
Горизонтальный котел на твердом топливе обычно имеет довольно значительные габариты и предназначается не только для отопления помещения, на его верхней поверхности можно расположить варочную плиту. Самый простой способ своими руками соорудить подобный котел — это использовать металлические трубы, которые собираются по определенной схеме.
Схема работы простого котла с теплообменником.
Прямоугольный теплообменник создается из труб круглого сечения 40 мм и 50 мм, а также труб прямоугольного сечения 60×40 мм. Прямоугольный профиль используется для стыковки труб с круглым сечением. Для этих целей возможно использовать и трубы с круглым сечением, но это очень тяжелый процесс, требующий большого опыта. Толщина стенок всех используемых труб должна быть 4-5 мм.
После того как рассчитали необходимые размеры теплообменника и сделали заготовки труб необходимого размера, в вертикальных стойках, профиле квадратного сечения, вырезают отверстия под круглые трубы. Рассмотрим пример создания котла отопления для дома площадью около 100 м 2. В передних стойках, если смотреть от топочной дверцы, необходимо прорезать 4 отверстия для труб диаметром 50 мм, в задних стойках в грани с шириной 60 мм также прорезают 4 отверстия. В грани с шириной 40 мм прорезают 4 отверстия по 40 мм.
Таким образом, передняя стойка образует отверстие для топочной дверцы, по бокам от нее идут трубы. Задняя стойка обрамляет и стыкует 40 мм трубы. Нужно помнить, чтобы твердотопливный котел правильно функционировал, необходимо предусмотреть трубы для поступления холодной воды и для выхода горячей, которая будет соединяться с системой отопления дома. Отверстие для холодной воды располагаются в нижней части котла, а для вывода горячей — в верхней. Прорезаются они либо газовым, либо сварочным резаком, они должны быть аккуратные, нужно стараться сделать их ровными, наплывы, которые могут образоваться, удаляются при помощи болгарки.
Схема самодельного котла из труб.
Сборка теплообменника котла, работающего на твердом топливе, начинается с торцевых частей. Стойки и трубы выставляются перпендикулярно на ровной поверхности
После того, как передняя и задняя части собраны, начинается приваривание боковых частей, важно следить за перпендикулярностью граней. Лучше всего делать это вдвоем, кто-то удерживает трубу, кто-то приваривает
Следующим пунктом необходимо приварить отрезки труб для подвода и отвода воды. Затем заварить торцевые части прямоугольного профиля, делается это при помощи кусочков металла размером 60×40 мм.
Очень важно после завершения сварочных работ проверить герметичность швов. Для этого конструкцию нужно установить вертикально, нижнее отверстие закрыть, а через верхнее начать наливать воду
Если протечек не будет, то нужно спустить воду, открыв нижнее отверстие, и можно приступить к монтажу котла.
Приступаем к монтажу
Последовательность выполнения работ зависит от конструктивных особенностей теплообменника.
Установка прибора с регистром
При монтаже в старую печь придется разобрать часть кладки. Последовательность выполнения работ выглядит следующим образом:
- Готовим фундамент для змеевика прямо в полости топки.
- Устанавливаем змеевик.
- Укладываем разобранный ряд кирпичей, оставляя места для входной и выходной части труб.
- Подключаем теплообменник к системе отопления.
До начала эксплуатации резервуар стоит в обязательном порядке проверить на герметичность. Убедиться в отсутствии протечек можно путем заполнения его водой, желательно, под давлением.
Монтаж устройства с емкостью
Наилучший вариант для печи или камина. Изготавливается из металлического бака и двух медных трубок. Объем бака, как правило, составляет около 20 литров. При отсутствии готового изделия резервуар достаточного объема изготавливается своими руками путем сваривания листовой стали.
Для изготовления теплообменника следует использовать материал толще 2,5 мм. Сварку стоит производить таким образом, чтобы толщина формируемого шва была минимальной.
Резервуар необходимо установить на 1 метр выше уровня пола, но не дальше 3 метров от печи. В баке проделываются два отверстия: одно около дна, второе – в наивысшей точке с противоположной стороны. Эффективность теплоотдачи зависит от расположения магистралей.
Необходимо стремиться к тому, чтобы минимальное отклонение нижнего отвода в направлении пола составляло 2 градуса. Верхний должен быть подключен под углом 20 градусов в противоположном направлении.
Производится монтаж сливного крана в накопительный бак. Предусматривается еще один кран, предназначенный для слива всей системы, который устанавливается в самой нижней точке. После проверки герметичности система готова к эксплуатации. Эффективность такой печи с теплообменником можно будет по достоинству оценить в холодное время года.
Что это такое и для чего он нужен
Теплообменник – устройство от передачи тепла от нагретой среды к более холодной. Принцип один, конструкций +множество. Теплообменник для дымопровода позволяет отобрать часть энергии отходящих газов и применить ее для обогрева соседнего помещения или нагрева горячей воды.
Устройства для отбора тепла отходящих газов для дымохода можно использовать только в том случае, если труба изготовлена из стали. На современные керамические и сэндвич-конструкции установить теплообменник не получится, так как наружная поверхность утепленной трубы холодная.
Газы, отходящие от современных газовых и пеллетных котлов, негорячие – порядка 200 °С, поэтому получить много тепла от дымохода не получится. От твердотопливных котлов отходят более горячие газы – до 600 °С, и рекуператор позволяет получить довольно значительное количество теплоты для обогрева или нагрева воды.
Максимальное количество тепла от отходящих газов можно получить при эксплуатации не слишком современных традиционных печей, каминов, самодельных буржуек. КПД у этих отопительных приборов небольшой, температура дымовых газов высокая, поэтому немалую часть уходящего тепла можно уловить при помощи теплосъемника. Применение теплосъемников на дымопровод самодельной буржуйки позволяет улавливать до 30-40% энергии дополнительно.
Основная причина установки теплообменника в том, что он позволяет максимально использовать энергию сжигания топлива и экономить расходы на отопление. Кроме того, иногда при отоплении небольших домов экономически нецелесообразно приобретать отопительный прибор с теплообменником и устанавливать систему отопления.
Современный камин или печь хорошо обогревают дома площадью до 70 м² и даже больше, в отоплении нуждаются только некоторые помещения – ванные или дальние спальни, помещения второго этажа или мансарды, вот для их отопления и можно приспособить тепло от рекуператора для дымохода. Иногда теплообменник для дымохода применяют для подогрева воды.
Монтаж котла
После того как будет изготовлен теплообменник и подготовлены детали для корпуса, можно приступить непосредственно к монтажу самого оборудования. Лучше всего это делать на том месте, где будет стоять самодельный котёл на твёрдом топливе. Конструкция получится очень тяжёлой и неподъёмной.
Что надо будет сделать:
- выкладываем кирпичный фундамент, на который затем устанавливаем нижнюю пластину из стального листа;
- вертикально по периметру нижней пластины устанавливаем внутренние стенки теплогенератора;
- внутрь этого корпуса помещаем колосники и сам теплообменник. Здесь надо учесть, что труба для отвода воды должна быть ниже трубы для её подвода;
- устанавливаем внешние стенки;
- между внутренними и внешними стенками располагаем слой промытого и прокалённого песка для повышения КПД;
- привариваем рёбра жёсткости с внешней стороны котла, а на верхнюю часть корпуса прикрепляем оставшийся лист;
- устанавливаем дверки в отверстия и монтируем дымоотвод.
На поверхность конструкции можно установить чугунную плиту и получить возможность приготовления пищи. Или вместо неё приспособить сделанный своими руками нагреватель для воды. В результате всех мероприятий получится экономичный и надёжный самодельный котёл на твёрдом топливе.
Главная > Отопление > Теплообменник для твердотопливного котла. Своими руками.