Теплообменник схема систем отопления

Содержание
  1. В каких случаях нужен теплообменник для систем отопления
  2. Особенности подключения к системе горячего водоснабжения
  3. Пластинчатые теплообменники области применения
  4. Положительные качества
  5. Из чего состоит современный теплообменник
  6. Двухступенчатая последовательная схема.
  7. Зависимая схема с трёхходовым клапаном и циркуляционными насосами
  8. Данную схему в ИТП применяют при соблюдении условий:
  9. Описание работы схемы ИТП с трёхходовым клапаном
  10. Что такое теплообменник в системе отопления
  11. Что такое теплообменник и пластинчатый в частности
  12. Материал для изготовления пластинчатого теплообменника
  13. Устройство пластин
  14. Требования к прокладкам
  15. Принцип работы теплообменника
  16. Преимущества паяного пластинчатого теплообменника
  17. Системы и особенности теплообмена: задача теплообменника
  18. В многоквартирном доме
  19. В частном доме
  20. От чего зависит эффективность теплообменника
  21. Как правильно выбрать теплообменник

В каких случаях нужен теплообменник для систем отопления

Особенности подключения к системе горячего водоснабжения

Если для сушилки полотенец используется отдельный отвод (последовательное подключение к системе горячего водоснабжения), а вода из него выводится через источники внутри квартиры, то установка полотенцесушителя на горячую воду проводится без дополнительных работ. Но при таком подключении сушки для полотенец снижается температура горячей воды. Его обычно используют в небольших домах.

Цены на сушилки разного типа в магазине

Чаще устройство подключается к водопроводу, заменяя часть стояка, такое можно увидеть в ванной в панельном доме. При установке полотенцесушителя на стояк горячего водоснабжения необходима дополнительная страховка в виде байпаса.

Пластинчатые теплообменники области применения

Пластинчатые теплообменники применяются в системе отопления дома, горячего водоснабжения, в системах кондиционирования в больших коттеджах, школах, садах, бассейнах, в целых микрорайонах, а также в системе отопления домов сельской местности. Широкое применение пластинчатые теплообменники нашли в пищевой промышленности.

Теплообменники для отопления имеют ряд неоспоримых преимуществ по сравнению с остальными устройствами, используемыми для создания подходящего микроклимата.

Подобные отопительные приборы обладают рядом преимуществ над другими видами.

Положительные качества

Среди основных положительных качеств устройства, обеспечивающего отопление, можно отметить следующие:

  • высокий уровень компактности;
  • пластинчатые теплообменники имеют высокий коэффициент теплопередачи;
  • коэффициент тепловых потерь максимально низкий;
  • потери давления находятся на минимальном уровне;
  • выполнение монтажно-наладочных, ремонтных и изоляционных работ требует низких финансовых затрат;
  • при возможном засорении это устройство может быть разобрано, очищено и собрано обратно всего двумя рабочими уже через 4-6 часов;
  • имеется возможность добавить мощность пластинам.

Кроме того, благодаря своей простоте подключение теплообменника к системе отопления может быть осуществлено просто на полу в тепловом пункте или на обычной несущей конструкции блочного теплового пункта. Отдельно стоит отметить низкий уровень загрязняемости поверхности теплообменника, что вызвано высокой турбулентностью потока жидкости, а также благодаря качественной полировке используемых теплообменных пластин. На сегодняшний срок эксплуатации уплотнительной прокладки у ведущих европейских производителей составляет не менее 10 лет. Срок же службы пластин составляет 20-25 лет. Стоимость замены уплотнительной прокладки может составлять 15-25% от общей стоимости всего агрегата.

Очень важно, что после проведения детального расчета конструкцию современного пластинчатого теплообменника можно изменить под необходимые и указанные в техническом задании характеристики (вариативность конструкции и изменяемость задачи). Абсолютно все пластинчатые теплообменники устойчивы к высокому уровню вибрации

У современных аппаратов системы отопления последствия возможных гидроударов сведены практически к нулю.

Из чего состоит современный теплообменник

Теплообменник современного типа состоит из нескольких частей, каждая из которых играет свою важную роль:

  • неподвижной плиты, к которой присоединяются все подводимые патрубки;
  • прижимной плиты;
  • теплообменных пластин со вставленными прокладками уплотнительного типа;
  • верхней и нижней направляющих;
  • задней стойки;
  • шпилек с резьбой.

На данном изображении представлен кожухотрубный теплообменник.

Благодаря такой уникальной конструкции теплообменник способен обеспечивать наиболее эффективную компоновку всей поверхности используемого теплообменника, что дает возможность создавать небольшой по габаритам аппарат отопления. Абсолютно все пластины в собранном пакете одинаковы, только часть из них развернута к другой под углом в 180 градусов. Именно поэтому во время необходимого стягивания всего пакета должны образовываться каналы. Именно через них во время процесса нагрева и протекает рабочая жидкость, принимающая участие в теплообмене. Благодаря такой компоновке элементов системы достигается правильное чередование каналов.

Читайте также:  Алюминиевый радиатор отопления объем одной секции

На сегодняшний день можно смело утверждать, что теплообменники пластинчатого типа из-за своих технических характеристик являются более популярными. Ключевой элемент любого современного теплообменника — это теплопередающие пластины, которые изготавливаются из стали, не подверженной коррозии, толщина пластин находится в диапазоне от 0,4 до 1 мм. Для изготовления используется высокотехнологичный метод штамповки.

Во время работы пластины прижимаются друг к другу, образуя тем самым щелевые каналы. Лицевая сторона каждой из таких пластин имеет специальные канавки, куда специально устанавливается резиновая контурная прокладка, которая обеспечивает полную герметичность каналов. Всего имеется четыре отверстия, два из них необходимы для обеспечения подвода и отвода нагреваемой среды к каналу, а два другие отвечают за предотвращение случаев перемешивания греющей и нагреваемой сред. На случай прорыва одного из малых контуров пластинчатые теплообменники защищены дренажными пазами.

Если имеет место большая разница в расходе сред и совсем небольшое отличие в конечных температурах, то есть возможность многократно использовать теплообменный процесс, который будет происходить через петлеобразное направление потоков.

Двухступенчатая последовательная схема.

Сетевая
вода разветвляется на два потока: один
проходит через регулятор расхода РР, а
второй через подогреватель второй
ступени, затем эти потоки смешиваются
и поступают в систему отопления.

При
максимальной температуре обратной воды
после отопления 70ºС
и
средней нагрузке горячего водоснабжения
водопроводная вода практически
догревается до нормы в первой ступени,
и вторая ступень полностью разгружается,
т.к. регулятор температуры РТ закрывает
клапан на подогреватель, и вся сетевая
вода поступает через регулятор расхода
РР в систему отопления, и система
отопления получает теплоты больше
расчетного значения.

Если
обратная вода имеет после системы
отопления температуру 30-40ºС
, например, при плюсовой температуре
наружного воздуха, то подогрева воды в
первой ступени недостаточно, и она
догревается во второй ступени. Другой
особенностью схемы является принцип
связанного регулирования. Сущность его
состоит в настройке регулятора расхода
на поддержание постоянного расхода
сетевой воды на абонентский ввод в
целом, независимо от нагрузки горячего
водоснабжения и положения регулятора
температуры. Если нагрузка на горячее
водоснабжение возрастает, то регулятор
температуры открывается и пропускает
через подогреватель больше сетевой
воды или всю сетевую воду, при этом
уменьшается расход воды через регулятор
расхода, в результате температура
сетевой воды на входе в элеватор
уменьшается, хотя расход теплоносителя
остается постоянным. Теплота, недоданная
в период большой нагрузки горячего
водоснабжения, компенсируется в периоды
малой нагрузки, когда в элеватор поступает
поток повышенной температуры. Снижение
температуры воздуха в помещениях не
происходит, т.к. используется
теплоаккумулирующая способность
ограждающих конструкций зданий. Это и
называется связанным регулированием,
которое служит для выравнивания суточной
неравномерности нагрузки горячего
водоснабжения. В летний период, когда
отопление отключено, подогреватели
включаются в работу последовательно с
помощью специальной перемычки. Эта
схема применяется в жилых, общественных
и промышленных зданиях при соотношении
нагрузок
Выбор схемы зависит от графика центрального
регулирования отпуска теплоты: повышенный
или отопительный.

Преимуществом
последовательной
схемы по сравнению с двухступенчатой
смешанной является выравнивание
суточного графика тепловой нагрузки,
лучшее использование теплоносителя,
что приводит к уменьшению расхода воды
в сети. Возврат сетевой воды с низкой
температурой улучшает эффект теплофикации,
т.к. для подогрева воды можно использовать
отборы пара пониженного давления.
Сокращение расхода сетевой воды по этой
схеме составляет (на тепловой пункт)
40% по сравнению с параллельной и 25% — по
сравнению со смешанной.

Недостаток
– отсутствие возможности полного
автоматического регулирования теплового
пункта.

Зависимая схема с трёхходовым клапаном и циркуляционными насосами

Зависимая схема подключения теплового пункта системы отопления к источнику тепла с трёхходовым клапаном регулятора теплового потока и циркуляционно-смесительными насосами в подающем трубопроводе системы отопления.

Читайте также:  Резьбовые герметики для отопления антифризом

Данную схему в ИТП применяют при соблюдении условий:

1 Температурный график работы источника тепла (котельной) превышает либо равен температурному графику системы отопления. Тепловой пункт подключённый по данной принципиальной схеме может работать как с подмесом к подаче потока из обратного трубопровода, так и без него, то есть пустить теплоноситель из подающего трубопровода тепловой сети напрямую в систему отопления.

Например расчётный температурный график системы отопления 90/70°C, равен температурному графику источника, но источник независимо от внешних факторов всё время работает с температурой на выходе 90°C, а для системы отопления подавать теплоноситель с температурой в 90°C нужно лишь при расчётной температуре наружного воздуха (для Киева -22°C). Таким образом в тепловом пункте к воде, поступающей от источника будет подмешиваться остывший теплоноситель из обратного трубопровода пока температура наружного воздуха не опустится до расчётного значения.

2 Подключение теплового пункта выполнено к безнапорному коллектору, гидравлической стрелке или теплотрассе с разницей давлений между подающим и обратным трубопроводом не более 3м.вод.ст..

3 Давление в обратном трубопроводе источника тепла в статическом и динамическом режимах превышает как минимум на 5м.вод.ст высоту от места подключения теплового пункта до верхней точки системы отопления (статику здания).

4 Давление в подающем и обратном трубопроводе источника тепла, а также статическое давление в тепловых сетях не превышают максимально допустимого давления для системы отопления здания подключённой к данному ИТП.

5 Схема подключения теплового пункта должна обеспечивать автоматическое качественное регулирование системой отопления по температурному или временному графику.

Описание работы схемы ИТП с трёхходовым клапаном

Принцип работы данной схемы схож с работой первой схемы за исключением того, что трёхходовым клапаном может быть полностью перекрыт отбор из обратного трубопровода, при котором весь теплоноситель, поступающий от источника тепла без подмеса будет подан в систему отопления.

В случае полного перекрытия подающего трубопровода источника тепла, как и в первой схеме, в систему отопления будет подаваться только вышедший из неё теплоноситель, отбираемый из обрата.

Зависимая схема с трёхходовым клапаном, циркуляционными насосами и регулятором перепада давления.

Применяется при перепаде давления в месте подключения ИТП к тепловой сети превышающем 3м.вод.ст.. Регулятор перепада давления в данном случае подбирается для дросселирования и стабилизации располагаемого напора на вводе.

Что такое теплообменник в системе отопления

Немногие знают, как поступает горячая вода в дома и каким образом осуществляется центральное отопление. Одним из элементов этой большой сети являются теплообменники, которые работают как от небольших котельных, так и общегородских ТЭЦ.

Разберем подробнее, что такое теплообменник в системе отопления, как работает и особенности его выбора.

Стандартный разборный теплообменник

Что такое теплообменник и пластинчатый в частности

Теплообменник — это аппарат, задача которого передавать тепло от одной среды к другой без их смешивания. Есть два наиболее распространенных типа этого оборудования:

Кожухотрубные. Внутри находится комплект изолированных трубок, которые вставлены в кожух. Через него происходит циркуляция холодной воды, а нагревательным элементом выступают внутренние трубки, через которые проходит горячая жидкость.

Пластинчатые. Принцип работы тот же, но передатчиком тепла является комплект пластин. Они достаточно компактные, однако в эффективности теплообмена не уступают кожухотрубным теплообменникам.

Материал для изготовления пластинчатого теплообменника

Пластинчатые теплообменники могут быть нескольких типов:

Разборные представляют собой большое количество плоских элементов. Они легко разбираются для промывки и ремонта, поэтому многие ТЭЦ и ИТП используют именно этот вариант.

В основе паяных содержится комплект пластин, которые спаяны между собой. Поэтому собрать и разобрать устройство невозможно.

В полусварных теплообменниках пластины свариваются по парам. С внешней стороны устанавливаются уплотнения, а парные элементы привариваются между собой. Такой вариант часто используют в работе с агрессивными средами.

Читайте также:  Кому позвонить чтобы узнать про отопление

В сварных аппаратах все пластины свариваются между собой без добавления уплотнителей. Одна из жидкостей проходит по гофрированному каналу, а вторая — по трубчатому.

Главными элементами пластинчатого теплообменника являются комплект пластин и уплотнительные прокладки, которые расположены между пластинами. Выбор материалов зависит от среды, которую необходимо нагревать.

Пластины — главный элемент нагревательной системы

Устройство пластин

Внутренние пластины имеют одинаковый состав и устройство. Для теплообменников, используемых в коммунальной энергетике, в большинстве случаев применяется нержавеющая сталь типа AISI316.

Реже встречаются более дорогие металлы, например, титан или латунь. Такие материалы могут работать с агрессивными средами. К примеру, их можно найти в теплообменниках морских судов, где агрессивным элементом является морская вода.

Требования к прокладкам

Материал уплотнительных прокладок — это полимерные соединения, в составе которых преимущественно каучук. При выборе нужно учитывать агрессивность теплоносителей:

EPDM — пресная вода с гликолем;

Нитрил — жидкости с маслянистой средой, например, технические масла;

Витон — жидкости, которые нужно нагревать до температуры выше 100 градусов по Цельсию.

Принцип работы теплообменника

Пластины теплообменника имеют по 4 отверстия, по одному в каждом углу, которые предназначены для входа и выхода греющей и нагреваемой среды:

Одна пара необходима для прохождения первичного теплоносителя с высокой температурой, который подается с ТЭЦ.

Вторая пара — для вторичного теплоносителя, который подается, например, в систему отоплен

ия. Он изначально холодный, поэтому нагревается за счет первичной жидкости.

Для более интенсивного теплообмена, устройство каналов выполнено таким образом, что при прохождении теплоносителя внутри теплообменника создается турбулентное завихрение потока. Так достигается максимальное сопротивление течению, турбулентность потока уменьшает образование накипи на пластинах.

Преимущества паяного пластинчатого теплообменника

Паянный теплообменник имеет несколько основных достоинств наряду с другими типами устройств:

стоимость, в сравнении с разборным, — на 30% меньше;

конструкция выдерживает температуру до 200 градусов по Цельсию;

небольшой размер и масса, так как зажимов и уплотнительных прокладок нет;

подходит для установки в частном доме и подключению к котлу;

спайка проводится с добавлением никеля или меди, которые устойчивы к любым агрессивным средам.

Системы и особенности теплообмена: задача теплообменника

Пластинчатые теплообменники можно использовать в различных системах на промышленных объектах и жилых зданиях.

В многоэтажных домах преимущество отдается разборным аппаратам

В многоквартирном доме

В подключении систем отопления и горячего водоснабжения чаще участвует стандартный разборный аппарат. Причин его установки в многоквартирном доме несколько:

срок эксплуатации — от 25 лет, однако уплотнения необходимо менять каждые 5-10 лет;

устройство легко разбирается и поддается ремонту;

мощность можно регулировать самостоятельно, изменив количество пластин.

Такой вариант теплообменника для отопления подходит и для промышленных зон.

Самостоятельный ремонт теплового оборудования недопустим

В частном доме

В частном доме рекомендовано использовать паяный теплообменник по нескольким причинам:

подходит для агрессивной среды;

срок службы аппарата — 15 лет;

гарантирует высокий КПД, благодаря минимальной потере тепловой энергии и высокому уровню теплоотдачи;

так как в конструкции нет уплотнений, протечки невозможны.

Сборка устройства достаточно проста и не занимает много времени.

Оборудование требует регулярную проверку уплотнителей и чистку от накипи

От чего зависит эффективность теплообменника

Качество работы оборудования зависит от:

объема энергии, необходимого для передачи;

организации ремонтных работ.

От этих параметров зависит общая стоимость оборудования и обслуживания, которые влияют на работу устройства.

Как правильно выбрать теплообменник

При установке аппарата в жилом доме требуется сделать детальный расчет. В него входят несколько характеристик:

площадь отапливаемых помещений или примерный расход горячей воды;

температура первичного теплоносителя;

температура холодной воды.

Расчеты проводятся компанией-поставщиком оборудования, которая на основе результатов предлагает варианты теплообменников, которые подойдут для использования в указанных целях.

Оцените статью