- Теплообменник для ГВС от отопления — виды и варианты установки
- Принцип работы
- Как использовать теплообменники для получения ГВС от отопления
- Виды теплообменников для горячей воды
- Пластинчатые
- Кожухотрубные
- Схемы подключения
- Параллельная (стандартная)
- Двухступенчатая
- Для чего нужен теплообменник в системе отопления
- Зависимая система теплоснабжения, работающая без теплообменника.
- Независимая система теплоснабжения с теплообменником.
- Как подключить теплый пол к системе отопления через теплообменник.
Теплообменник для ГВС от отопления — виды и варианты установки
Наличие теплой воды — нормальное требование для комфортного существования. Вот только далеко не везде есть возможность подключиться к централизованному источнику горячей воды. В большинстве частных домов и в некоторых многоэтажках приходится заботиться об этом самостоятельно. Один из вариантов — использовать теплообменник для горячей воды от отопления. Во всяком случае, в отопительный сезон будете с горячей водой.
Принцип работы
Теплообменники для приготовления воды ГВС работают по бесконтактному принципу. Устройство их может быть разным, но принцип действия не отличается — работают они по принципу теплопередачи. Есть нагретый теплоноситель (в данном случае из системы отопления), который подается в трубы/каналы теплообменника. Горячий теплоноситель отдает часть тепла трубкам, по которым течет. По другим, параллельно расположенным каналам, течет вода, которую необходимо нагреть. Контактируя с нагретыми теплоносителем стенками, она нагревается. Именно так и работает теплообменник для горячей воды от отопления.
Принципиальная схема использования теплообменника для подготовки горячей воды от отопления
Чтобы нагрев был эффективным, теплообменник должен быть сделан из материала с высокой теплопроводностью. Обычно это металлы — медь, нержавеющая сталь. Медь — дорогой металл, но имеет отличную теплопроводность. Нержавеющая сталь хуже проводит тепло, но за счет прочности стенки могут быть очень тонкими, что делает такие теплообменники тоже эффективными.
Как использовать теплообменники для получения ГВС от отопления
Есть несколько возможностей нагревать воду для бытовых нужд при помощи теплообменника и отопления:
- Нагрев проточной воды. Недостаток — ограниченные возможности по расходу горячей воды, отсутствие запаса, сложность реализации поддержания стабильной температуры (надо организовывать узел подмеса или ставить контроллер). Достоинства — требуется мало места, малое количество компонентов.
- Нагрев воды в какой-то емкости. Теплообменник для горячей воды от отопления опускается в какую-то емкость, заполненную водой. По сути, это уже бойлер косвенного нагрева. Но в нем установлен теплообменник и подключается он к ГВС. Но речь сейчас не о них, так что не в этой статье.
Самый элементарный теплообменник — труба, по которой бежит теплоноситель
Виды теплообменников для горячей воды
Вообще, существует много конструкций теплообменников, так как они используются часто, в различных устройствах. Поговорим подробнее о наиболее доступных, надежных и эффективных. Для бытовых целей используются два вида:
- Пластинчатые (паянные или разборные).
- Кожухотрубные.
Теплообменник для горячей воды от отопления: в частном секторе используются два типа — пластинчатые (слева) и кожухотрубные (справа)
В них тепловые среды — теплоноситель от системы отопления и вода из ХВС (холодного водоснабжения) не смешиваются. Каналы, по которым они протекают, между собой никак не связаны. Поэтому при закачке на подогрев воды питьевого качества, такую же и получаем на выходе.
Пластинчатые
Пластинчатый теплообменник для горячей воды от отопления состоит из нескольких металлических пластин с выдавленными ходами. Собираются они в зеркальном отражении, так что получаются изолированные друг от друга каналы для циркуляции жидкостей. Пластины изготавливают методом штамповки из листового металла. Толщина — до 1 мм. Металл, как правило, нержавеющая антикоррозионная сталь, но есть и из титана, специальных сплавов.
Каналы на пластинах чаще всего делают в виде равносторонних треугольников с разными углами. Чем острее угол, тем быстрее движется жидкость, чем тупее, тем больше сопротивление и медленнее движение. По схеме движения сред по каналам, пластины бывают одноходовыми и многоходовыми. В первых направление движения сред не меняется от начала и до конца. Еще их отличительная особенность — среды движутся в противоток (для большей эффективности).
В многоходовых пластинчатых теплообменниках каналы расположены так, что среды меняют направление движения по нескольку раз. Строение у них более сложное, стоимость выше, но они способны отбирать максимум тепла (высокий КПД). В многоходовых теплообменниках можно добиться небольшой разницы в температурах обоих жидкостей.
По способу соединения бывают двух типов — разборными и паянными. Пластины разборных пластинчатых теплообменников соединяются при помощи специальных эластичных прокладок (из резины, фторопласта). Для обеспечения герметичности каналов, они стягиваются металлическими стержнями-стяжками. Для стабилизации в конструкции присутствуют две массивные плиты — неподвижная и подвижная. На неподвижной закреплены стержни, на них нанизываются пластины с ходами. Чем их больше, тем больше мощность, больше передаваемая теплота. Последней устанавливается подвижная пластина, на стяжки накручиваются гайки, зажимаются до герметичности каналов. Благодаря такой конструкции, эти теплообменники можно разобрать, прочистить, добавить или убрать пластины. И в этом достоинство этой конструкции. Недостаток — пластинчатый теплообменник для горячей воды от отопления имеет больший вес и размер (если сравнивать с паянными).
Два вида пластинчатых теплообменных устройств — паяный (слева) и разборной (справа)
Паянные пластинчатые теплообменники собираются на заводе. Нержавеющие пластины свариваются в аргонной среде, что позволяет избежать коррозии в местах сварки. Паянные пластинчатые теплообменники неразборные, в связи с чем могут возникнуть сложности с промывкой. Их преимущество — более компактные размеры и меньший вес, так как нет необходимости в стабилизирующих плитах.
У каждого теплообменника есть входы и выходы для подключения теплоносителя (от отопления) и воды. Эти выходы могут быть в виде фланца, трубы под сварку, резьбового соединения. Они позволяют подключить теплообменник для горячей воды от отопления к трубам любого типа.
Кожухотрубные
Кожухотрубные теплообменник для горячей воды от отопления проще по конструкции, но менее эффективны, из-за чего, для обеспечения необходимой температуры, должны иметь солидные размеры. Низкая эффективность, большие размеры и материалоемкость — это причины, по которым в быту они используются реже. Но их конструкция надежней — они выдерживают суровые условия эксплуатации. Так что в промышленности чаще применяется именно этот вид теплообменных агрегатов.
Кожухотрубные теплообменники представляют собой трубу-кожух, внутри которой уложены более мелкие трубки. Обычно это медные трубки, но могут быть и из другого материала, причем не только из металла.
Кожухотрубный теплообменник для ГВС — устройство и принцип работы
По тонким трубкам движется нагреваемая вода, которая подается затем в краны. Теплоноситель из системы отопления движется по пространству внутри кожуха, которое не занято трубками с подогреваемой водой. Направление движения — в противоток. Этим обеспечивается большая теплоотдача. Но стоит сказать, что общее КПД таких установок ниже, чем пластинчатых.
Схемы подключения
Кроме типа теплообменника, надо выбрать еще и способ его подключения. Есть несколько типовых схем. В любом случае, два выхода подключаются к отоплению, один — к холодному водоснабжению, один — к разводке горячей/подогретой воды.
Параллельная (стандартная)
В самом простом случае теплообменник для горячей воды от отопления подключают параллельно существующей системы. Такая схема проще всего в реализации, но для достаточного нагрева необходимо, чтобы теплоноситель двигался активно. То есть, обязательно в подаче теплоносителя наличие циркуляционного насоса. В системах с естественной циркуляцией такой тип установки малоэффективен.
Теплообменник для горячей воды от отопления: схема параллельного подключения
При монтаже, подача теплоносителя всегда подключается к верхнему патрубку, а обратка — к нижнему. При подключении воды ситуация противоположная — холодная вода подключается в нижний патрубок, гребенка горячей — к верхнему.
Схема обвязки теплообменника для ГВС от отопления
Простейшая схема обвязки содержит отсечные краны на всех четырех патрубках — для возможности отключения, чистки, технического обслуживания. Также на входе от отопления устанавливается грязевик — фильтр с мелкой сеткой. Так как зазоры в теплообменнике совсем небольшие, попадание окалины либо других загрязнений может вызвать закупорку каналов. Такой же фильтр желательно установить на вводе холодной воды — дольше будет работать оборудование.
Данную схему можно усовершенствовать, сделав рециркуляцию горячей воды в гребенке ГВС (закольцовывают после последней точки разбора). При таком построении, тепло неиспользуемой горячей воды не пропадает, а используется: вода из гребенки ГВС подмешивается к холодной воде из водопровода. На подогрев поступает уже не совсем холодная, а теплая. Теплообменник для горячей воды от отопления только доводит ее до требуемой температуры.
Обвязка с контуром рециркуляции ГВС
При разборе нагретой воды, на подогрев идет преимущественно вода из трубы холодного водоснабжения. Когда разбора нет, по кругу насос «гоняет» теплую, нагрузка на котел отопления совсем небольшая.
Управление температурой происходит при помощи датчика и регулирующего клапана, установленного на обратке (можно и на подачу поставить). Показания с датчика (температура воды в выходной ветке на ГВС) поступают на прибор управления. По результатам сравнения с выставленными данными, регулируется интенсивность потока теплоносителя, тем самым регулируется интенсивность нагрева.
Двухступенчатая
Всем хороши описанные выше схемы, кроме того, что для нагрева должен проходить большой поток теплоносителя. Иначе вода не успеет прогреться. Второй недостаток — приходится «заворачивать» поток теплоносителя из системы отопления. При большом расходе и недостаточной мощности отопительного котла, в холода могут быть заметны понижения температуры. Для более рационального использования тепла придумали двухступенчатую систему подключения теплообменников.
Один из вариантов двухступенчатого подключения теплообменников
В данном случае первичный нагрев идет от обратного трубопровода отопления. Тем самым более рационально используются энергоносители. Доводится температура до нормы при помощи повторного нагрева, но уже от теплоносителя, который идет на подачу. Подключить теплообменник для горячей воды от отопления можно параллельно — как на верхней схеме. Второй вариант представлен на нижней — в разрыв подающей трубы от системы отопления.
Вариант двухступенчатого нагрева
При использовании второй схемы, первичный нагрев происходит от обратки. Нагретая в этом теплообменнике вода подается на второй, установленный на подаче. Тут она доводится до нужной температуры и уходит потребителю.
Есть еще схема двуступенчатого нагрева с использованием тепла от рециркуляции горячей воды. В этом случае рационально используется тепло ранее нагретой воды.
Первичный нагрев — от рециркуляции горячей воды, окончательный — от системы отопления
При использовании любой из этих схем, нагрузка на котел значительно снижается. Утилизируется то тепло, которое раньше не использовалось. Тем самым эти схемы помогают экономить на энергоносителях.
Для нормальной работы теплообменника, подключенного по любой из схем, при монтаже необходимо соблюдать технологические требования. Обязательно соблюдение уклона труб ГВС в сторону точек разбора. Если трасса проходит над дверью, в высшей точке ставят воздухоотводчик. Кроме того, при длинной трассе, необходимы дополнительные автоматические или ручные устройства для сброса воздуха (воздухоотводчики). В противном случае могут быть проблемы с подачей воды.
Для чего нужен теплообменник в системе отопления
Теплообменник устройство, передающее тепло от одного источника теплоты другому, исключая при этом непосредственный контакт теплоносителей. Поэтому теоретически теплообменник можно установить в любой системе отопления, главное чтобы от этого была польза , поскольку стоимость самой системы отопления при этом возрастает прямо пропорционально нагрузке, или попросту стоимости самого устанавливаемого теплообменника с регулирующей измерительной и контрольной аппаратурой.
Главная область применения теплообменников в системе отопления это независимая система теплоснабжения. Чтобы понять, зачем нам это нужно необходимо совершить небольшой экскурс в природу имеющихся у нас в стране тепловых сетей.
Зависимая система теплоснабжения, работающая без теплообменника.
Индивидуальный тепловой пункт, спроектированный для работы в зависимой системе теплоснабжения без теплообменника
Существуют две схемы отопления или как правильно говорить теплоснабжения. Зависимая система отопления, с которой мы все хорошее знакомы, это когда котел, нагревая воду, подает ее по трубопроводам прямо в отопительные приборы – батареи отопления в квартире, минуя теплообменник. Конечно, в такой схеме есть тепловой пункт, регулирующие и измерительные приборы, иногда устанавливается погодозависимая автоматика. Только без теплообменника влиять на температуру в батареях, а значит, в целом в квартирах мы можем только в сторону уменьшения температуры.
Для котлов в котельной такая схема тоже не удобная, она требует больших насосов, котлы и трубы тепловой сети работают как гармошка, от того рвутся постоянно, а об утечках тепла и потерянных при этом потерях тепла лучше и не вспоминать. Зато на первичном этапе без установки теплообменника в системе отопления получается довольно дешево, но не эффективно, котельная не знает, сколько тепла нужно каждому, а потребитель не в силах влиять на выработку тепла для отопления, отсюда перетоп и низкая энергетическая эффективность такой системы отопления без разделительного теплообменника.
Независимая система теплоснабжения с теплообменником.
Индивидуальный тепловой пункт, спроектированный для работы в независимой системе теплоснабжения с теплообменником
Теплообменник в такой системе отопления главный прибор позволяющий экономить. Конечно, экономит не он, он только отделяет среды друг от друга, экономит автоматика. Как экономит? Вот пример независимой системы отопления – современная централизованная отопительная система, в ней имеется один главный тепловой пункт, распределяющий тепло и дополнительные теплообменники для каждого потребителя установленные уже в ИТП жилых домов.
От котельной к центральному тепловому пункту, где установлен главный теплообменник, тепло подается в жестком, фиксированном тепловом режиме – например 95 градусов на подаче и теоретически 70 градусов на обратке. В котельной не нужна автоматика и операторы, мощность насосов и диаметр труб тепловой сети могут быть гораздо меньше, утечек в контуре котлов нет по своей природе. Иногда теплообменник большой мощности устанавливают непосредственно в системе отопления котельной, тогда контур получается двойным и в котлах, из-за малого объема теплоносителя во внутреннем контуре, отсутствует накипь, котлы служат вечно.
Блочный тепловой пункт, спроектированный для работы в независимой системе теплоснабжения и горячего водоснабжения с теплообменниками
Установив теплообменник в системе отопления, потребитель получает возможность влиять на температуру в квартире, сколько нужно каждому столько и возьмет, конечно, если в квартире на батареях тоже установлены регулирующие приборы. Выгода для всех налицо.
Как подключить теплый пол к системе отопления через теплообменник.
Нужен теплообменник и для теплого пола. Если вы, например, захотите сделать теплый пол, врезав его в систему отопления без теплообменника вы оставите весь дом без тепла, тепла на полы пойдет немного, но вот вода – теплоноситель будет циркулировать только через ваш пол и не пойдет к соседям, она «лентяй» и идет по самому короткому пути.
Недостаток установки теплообменника в систему отопления только один, увеличение затрат на первоначальном этапе монтажа, но он с лихвой перекрывается всеми ее достоинствами.
Зависимую систему отопления легко модернизировать в независимую систему, путем установки дополнительного теплообменника с регулирующей аппаратурой. Правда, делать это придется одновременно во всем районе, подключенном к вашей котельной. Зато так вы сможете сэкономить до 40 процентов на оплату тепла, по сравнению с вашими сегодняшними затратами без установки такого нужного теплообменника в системе отопления.