- Теплообменные аппараты: виды, устройство, принцип работы
- Введение
- Виды теплообменных аппаратов
- По типу взаимодействия сред
- Поверхностные
- Смесительные
- По типу передачи тепла
- Рекуперативные
- Регенеративные
- По типу конструкции
- По направлению движения сред
- Одноходовые теплообменники
- Многоходовые теплообменники
- Устройство теплообменника
- Принцип работы теплообменника
- Заключение
- Теплообменное оборудование. Теплообменник. Виды, характеристики устройство теплообменников.
- Общие сведения
- Виды и классификация теплообменных аппаратов
Теплообменные аппараты: виды, устройство, принцип работы
Введение
Теплообменник – техническое устройство, предназначенное для передачи тепла между нагретой средой и холодной. Чаще всего теплообмен осуществляется через элементы конструкции аппарата, хотя встречаются агрегаты, принцип действия которых основан на смешении двух сред.
Области применения теплообменных аппаратов:
- системы отопления;
- металлургия;
- энергетика;
- тепловые пункты;
- химическая и пищевая промышленности;
- системы кондиционирования и вентилирования воздуха;
- коммунальное хозяйство;
- атомная и холодильная отрасли.
Виды теплообменных аппаратов
Теплообменные аппараты подразделяются на несколько групп в зависимости от:
- типа взаимодействия сред (поверхностные и смесительные);
- типа передачи тепла (рекуперативные и регенеративные);
- типа конструкции;
- направления движения теплоносителя и теплопотребителя (одноходовые и многоходовые).
Наиболее наглядно классификация теплообменных аппаратов представлена на следующем изображении (если нужно увеличить картинку, то просто кликните по ней):
Рис. 1. Виды устройств теплообменников в зависимости от принципа работы
По типу взаимодействия сред
Поверхностные
Теплообменные аппараты данного вида подразумевают, что среды (теплоноситель и теплопотребитель) между собой не смешиваются, а теплопередача происходит через контактную поверхность – пластины в пластинчатых теплообменниках или трубки в кожухотрубных.
Смесительные
Кроме поверхностных теплообменников используются агрегаты, в основе эксплуатации которых лежит непосредственный контакт двух веществ.
Наиболее известным вариантом смесительных теплообменников являются градирни:
Рис. 2. Градирни – один из видов смесительных ТО
Градирни используются в промышленности для охлаждения больших объемов жидкости (воды) направленным потоком воздуха.
К смесительным теплообменникам относятся:
- паровые барботеры;
- сопловые подогреватели;
- градирни;
- барометрические конденсаторы.
По типу передачи тепла
Рекуперативные
В данном виде устройств теплопередача происходит непрерывно через контактную поверхность. Примером такого теплообменного аппарата является пластинчатый разборный теплообменник.
Регенеративные
Отличаются от рекуператоров тем, что движение теплоносителя и теплопотребителя имеют периодический характер. Основная область применения таких установок – охлаждение и нагрев воздушных масс.
Установки с подобным типом действия нужны в многоэтажных офисных зданиях, когда теплый отработанный воздух выходит из здания, но его энергию передают свежему входящему потоку.
Рис. 3. Регенеративный теплообменник
На изображении видно, как в теплообменник поступают 2 потока: горячий (I) и холодный (II). Проходя через коллектор 1, горячая среда нагревает гофрированную ленту, свернутую в спираль. В это время через коллектор 3, проходит холодный поток.
Спустя какое-то время (от нескольких минут до нескольких часов), когда коллектор 1, заберет достаточное количество тепла (точное время зависит от тех. процесса), крыльчатки 2 и 4 поворачиваются.
Таким образом изменяется направление потоков I и II. Теперь холодный поток идет через коллектор 1 и забирает тепло.
По типу конструкции
Вариаций конструкций теплообменных аппаратов очень много. Их выбор и подбор конкретной модели зависит от большого количества условий эксплуатации и технических характеристик:
- мощность теплообменника;
- давление в системе;
- тип сред (агрессивные или нет);
- рабочие температуры;
- прочие требования.
Подробную классификацию типов конструктивов теплообменных аппаратов можно посмотреть выше на Рис. 1.
По направлению движения сред
Одноходовые теплообменники
В данном виде агрегатов теплоноситель и теплопотребитель пересекают внутренний объем теплообменника однократно по кратчайшему пути. Наглядно это показано в следующем видео:
Подобная схема движения в ТО используется в простых случаях, когда не требуется повышать теплоотдачу от теплоносителя хладогенту. Кроме того, одноходовые теплообменники требуют более редкого обслуживания и промывки, так как на внутренних поверхностях скапливается меньше отложений и загрязнений.
Многоходовые теплообменники
Применяются, когда рабочие среды плохо отдают или принимают тепло, поэтому КПД теплообменного аппарата увеличивают за счет более длительного контакта теплоносителя с пластинами агрегата.
Пример работы двухходового пластинчатого теплообменника представлен в данном видео:
Устройство теплообменника
Как отмечалось выше, конструкции теплообменных аппаратов очень сильно отличаются между собой, поэтому подробно о каждой из них будет рассказано в следующих статьях.
В качестве примера можно рассмотреть пластинчатый разборный теплообменник, как наиболее современный и вытесняющий старые поколения теплообменных аппаратов: кожухотрубные (кожухотрубчатые), «труба в трубе» и другие виды.
Данный вид ТО состоит из двух главных пластин: подвижной и неподвижной прижимных плит. Обе плиты имеют несколько отверстий.
Отверстия, имеющие входящее и выходящее назначение потоков, надежно укрепляют специальной прокладкой и прочными кольцами спереди и сзади соответственно.
Рис. 4. Устройство РПТО
При монтаже к входным и выходным отверстиям через патрубки подключаются элементы трубопровода. Для соединения могут быть использованы трубы различного диаметра и с разным типом резьбы (современные требования предлагают использовать резьбу ГОСТа №12815 и ГОСТа №6357). Оба вида имеют прямую зависимость от устройства и его вида.
Посередине между прижимными плитами размещается множество пластин. Толщина пластин находится в пределах всего 0,5 мм, изготавливаются они, только из нержавеющей стали или титана с помощью метода холодной штамповки.
Все слои пластин перемежаются тонкой специальной уплотнительной резиной, которая устанавливается между всеми слоями пластин. Материал резины обладает заметной повышенной устойчивостью к высоким температурам, благодаря которой рабочие каналы становятся полностью герметичными.
Прямые направляющие снизу и сверху обеспечивают фиксацию пакета пластин, а также являются направляющими при сборке агрегата. Пластины сжимаются до необходимого размера при помощи затяжных гаек.
Внутреннее расположение пластин выбрано не случайно, каждая пластина через одну повернута на 180° относительно, рядом расположенных, соседних пластин. Благодаря данному устройству теплообменного аппарата входящее канальное отверстие имеет двойное уплотнение.
Наглядно устройство пластинчатого теплообменника, его сборку и принцип действия можно посмотреть в данном видео:
Принцип работы теплообменника
Передняя и задняя плита имеют отверстия, которые подключаются к трубопроводу. По ним теплоноситель и теплопотребитель поступают внутрь агрегата.
Рис. 5. Движение сред внутри пакета пластин
Пристенный слой гофрированного типа, в условиях потока, имеющего большую скорость, начинает постепенно набирать турбулентность. Каждая среда перемещается на встречу друг другу с разных сторон пластины, чтобы избежать смешения.
Параллельно расположенные пластины формируют рабочие каналы. Перемещаясь по всем каналам, каждая среда производит тепловой обмен и покидает внутренние пределы оборудования. Это означает, что все пластины являются самым важным элементом среди всех деталей теплообменника.
Потоки внутри пластинчатого теплообменника могут идти по одноходовым и многоходовым схемам в зависимости от технических характеристик и условий решаемой задачи:
Рис. 6. Схемы движения теплоносителей в пластинчатом разборном теплообменнике в зависимости от принципа работы
Заключение
В данной статье вы смогли ознакомиться с видами теплообменников, их назначением, сферами применения. В следующей статье мы подробно рассмотрим пластинчатые теплообменники — в чем их особенность, какие виды существуют и как они отличаются между собой, поэтому подписывайтесь на e-mail рассылку и новости в соцсетях, чтобы не пропустить их.
Стоит помнить, что в настоящее время кожухотрубные (кожухотрубчатые) теплообменники активно вытесняются пластинчатыми, поскольку последние более универсальны и просты в обслуживании.
Если вам нужно подобрать теплообменник под свою задачу, то вы можете посмотреть модели, которые поставляет наша компании в соответствующих разделах каталога.
Если же у вас возникают трудности, то свяжитесь с нашими инженерами или заполните форму:
Теплообменное оборудование. Теплообменник. Виды, характеристики устройство теплообменников.
Общие сведения
Теплообменный (или теплоиспользующий) аппарат является одним из наиболее распространенных и важных элементов энергетических, коммунально-бытовых и технологических установок. Любые преобразования энергии из одного вида в другой, а также передача энергии от одного аппарата либо машины к другому сопровождаются переходом некоторой части всех других видов энергии в тепловую. Поэтому практически во всех машинах и аппаратах теплообмен имеет важное значение.
На теплоиспользующие аппараты приходится значительная доля капиталовложений в энергетические, коммунально-бытовые и технологические установки. При строительстве тепловых электростанций (если учесть, что паровые котлы также являются теплообменниками) капиталовложения в теплообменные аппараты составляют до 70 % капиталовложений на оборудование станций. На современных нефтеперерабатывающих заводах капиталовложения в теплообменные аппараты достигают 40—50 %, на газобензиновых заводах — 40 %.
Теплообменные аппараты, как и другие элементы энергетических, коммунально-бытовых и технологических установок, работают в условиях переменного режима. Однако эксплуатационные, статические и динамические характеристики теплообменных аппаратов зависят не только от изменения расходных режимов и технологических параметров потоков, но и от таких факторов, как накопление загрязнений, накипи, сажи, смол на стенках труб, появление коррозии и др.
Высокая тепловая производительность теплоиспользующего аппарата определяется многими факторами, в первую очередь интенсивным теплообменом, высокой теплопроводностью материала, малым заносом поверхностей теплообмена, своевременной продувкой и промывкой внутренних полостей аппарата, поддержанием оптимального режима работы. Экономичность работы аппарата может быть достигнута малыми затратами энергии на прокачивание теплоносителей, минимальным уносом технологического продукта с продувочными газами и промывочными водами, увеличением межремонтных периодов, максимальной механизацией и автоматизацией обслуживания. Заданные технологические условия процесса (температура, давление, химический состав и концентрация среды, время технологической обработки) и высокое качество продукции обеспечиваются выбором оптимальных температур теплоносителей, правильным расчетом поверхности теплообмена, подбором надлежащих конструкционных материалов, не вступающих в химическое взаимодействие со средой, выбором наивыгоднейших скоростей теплоносителей, строгой цикличностью или непрерывностью процесса и удобством его регулирования.
Виды и классификация теплообменных аппаратов
Теплообменными аппаратами (теплообменниками) называются устройства, предназначенные для обмена теплотой между греющей и обогреваемой рабочими средами. Последние принято называть теплоносителями.
Необходимость передачи теплоты от одного теплоносителя к другому возникает во многих отраслях техники: энергетике, химической, металлургической, нефтяной, пищевой и других отраслях промышленности.
В котельном агрегате теплота, выделяющаяся при горении топлива, передается воде и пару, т.е. котельный агрегат представляет собой совокупность теплообменных аппаратов. В атомной силовой установке выделяемая ядерным реактором теплота воспринимается первичным теплоносителем, который сам становится радиоактивным. В двигателе используется вторичный теплоноситель, который получает тепло от первичного в теплообменном аппарате. Процесс регенерации в газотурбинной установке осуществляется путем передачи теплоты в теплообменнике от отработанных продуктов сгорания сжатому воздуху.
Широкое распространение теплообменных аппаратов обусловило многообразие их конструктивного оформления.
Теплообменные аппараты классифицируются следующим образом:
по назначению — подогреватели, конденсаторы, охладители, испарители, паропреобразователи и т. п.;
по принципу действия — рекуперативные, регенеративные и смешивающие.
Рекуперативными называются такие теплообменные аппараты, в которых теплообмен между теплоносителями происходит через разделительную стенку. При теплообмене в аппаратах такого типа тепловой поток в каждой точке поверхности разделительной стенки сохраняет постоянное направление.
Температура нагрева теплоносителя составляет 400—500 °С для конструкций из углеродистой стали и 700—800 °С для конструкций из легированных сталей.
В рекуперативных теплообменниках теплоносители омывают стенку с двух сторон и обмениваются при этом теплотой. Процесс теплообмена протекает непрерывно и имеет обычно стационарный характер. На рис. 1 показан пример рекуперативного теплообменника, в котором один из теплоносителей протекает внутри труб, а второй омывает их наружные поверхности.
Стенка, которая омывается с обеих сторон теплоносителями, называется рабочей поверхностью теплообменника.
Регенеративными называются такие теплообменные аппараты, в которых два теплоносителя или более попеременно соприкасаются с одной и той же поверхностью нагрева.
Рис. 1. Простейший рекуперативный теплообменник: I, II — теплоносители
Во время соприкосновения с разными теплоносителями поверхность нагрева или получает и аккумулирует теплоту, а затем отдает ее, или, наоборот, сначала отдает аккумулированную теплоту и охлаждается, а затем нагревается. В разные периоды времени теплообмена (нагрев или охлаждение поверхности нагрева) направление теплового потока в каждой точке поверхности нагрева изменяется на противоположное.
В качестве примера на рис. 2 представлена схема регенеративного воздухоподогревателя котельного агрегата с медленно вращающимся (2—5 мин –1 ) ротором — аккумулятором теплоты. Ротор имеет набивку из тонких гофрированных стальных листов (рис. 2,б), заключенных в закрытый кожух 3. К кожуху присоединяются воздушный и газовый короба. Во время работы теплообменника ротор его вращается, поэтому нагретые элементы набивки непрерывно переходят из полости горячего газа в полость холодного воздуха, а охладившиеся элементы — наоборот.
Рис. 2. Регенеративный воздухоподогреватель:
а — общий вид; б — отдельные пластины различной формы; в — секция с пластинами; 1 — газовые патрубки; 2, — радиальное и периферийное уплотнения; 3 — неподвижный наружный кожух; 4 — набивка; 6 — вал ротора; 7 — верхний и нижний подшипники; 8 — воздушные патрубки; 9 — электродвигатель
Смешивающими называют такие теплообменные аппараты, в которых теплои массообмен происходят при непосредственном контакте и смешивании теплоносителей. Поэтому смешивающие теплообменники иногда называют контактными. Наиболее важным фактором в рабочем процессе смешивающего теплообменного аппарата является поверхность соприкосновения теплоносителей. В качестве примера на рис. 3 показана схема смешивающего теплообменника (деаэратора) для подогрева воды паром при термическом удалении растворенных газов (воздуха).
В качестве теплоносителей в зависимости от назначения производственных процессов могут применяться самые разнообразные газообразные, жидкие и твердые вещества.
В производственных аппаратах и системах отопления и горячего водоснабжения наиболее широкое распространение получили водяной пар, горячая вода, дымовые и топочные газы.
Водяной пар как греющий теплоноситель
имеет следующие достоинства:
1) высокие коэффициенты теплоотдачи при конденсации водяного пара позволяют получать относительно небольшие поверхности теплообмена;
2) большое изменение энтальпии при конденсации водяного пара позволяет расходовать малое массовое количество его для передачи сравнительно большого количества теплоты;
3) постоянная температура конденсации при заданном давлении дает возможность наиболее просто поддерживать постоянный режим и регулировать процесс в аппаратах.
Рис. 3. Смешивающий теплообменник для подогрева воды паром при термическом удалении растворенных газов
Наиболее часто употребляемое давление греющего пара в теплообменниках составляет от 0,2 до 1,2 МПа.
Горячаявода применяется как греющий теплоноситель, в основном, в отопительных и вентиляционных установках. Подогрев воды осуществляется в специальных водогрейных котлах, производственных технологических агрегатах (например, печах) или водонагревательных установках ТЭЦ и котельных. Горячую воду как теплоноситель можно транспортировать по трубопроводам на значительные расстояния (на несколько километров). При этом понижение температуры воды в хорошо изолированных трубопроводах составляет не более 1 °С на 1 км. Достоинством воды как теплоносителя является сравнительно высокий коэффициент теплоотдачи. Как правило, в системах производственного и коммунального отопления используется горячая вода с температурой 70—150 (200) °С.
Дымовые и топочные газы как греющая среда применяются обычно на месте их получения для непосредственного нагрева промышленных изделий и материалов, если физико-химические характеристики последних не изменяются при загрязнении сажей и золой. Если по условиям эксплуатации загрязнение обрабатываемого материала недопустимо, дымовые газы направляются в рекуперативный теплообменник, где отдают свою теплоту воздуху, а последний нагревает обрабатываемый материал.
Достоинством топочных газов является возможность нагрева ими материала до весьма высоких температур, которые требуются иногда по технологическим условиям производства.
Однако дымовые и топочные газы как греющая среда имеют ряд недостатков:
1) малая плотность газов влечет за собой необходимость получения больших объемов для обеспечения достаточной теплопроизводительности, а последнее приводит к созданию громоздких трубопроводов;
2) вследствие малой удельной теплоемкости газов их необходимо подавать в аппараты в большом количестве с высокой температурой. Последнее обстоятельство вынуждает применять огнеупорные материалы для трубопроводов;
3) из-за низкого коэффициента теплоотдачи со стороны газов теплоиспользующая аппаратура должна иметь большие поверхности нагрева и поэтому получается весьма громоздкой.
В настоящее время в промышленности для высокотемпературного обогрева кроме дымовых газов применяют минеральные масла, органические соединения, расплавленные металлы и соли. Характеристика некоторых высокотемпературных теплоносителей приведена в табл. 1.
Таблица 1. Характеристики некоторых высокотемпературных теплоносителей