- Теплоотдача 1 м. стальной трубы
- Для каких систем нужен расчёт?
- Как оптимизировать теплоотдачу стальной трубы?
- Производим расчёт
- Рассчитываем отдачу для 1 м. изделия
- Об этом стоит помнить
- Расчет теплоотдачи стальной трубы и способы ее увеличения
- В каких случаях необходим расчет?
- Методика расчета
- Пример расчета
- Как увеличить теплоотдачу?
- Утепление труб
- Теплоотдача 1 м стальной трубы – проводим расчет. Теплоотдача трубы медной
- Зачем считать теплоотдачу
- меди, латуни и алюминия, теплопередача
- Что такое теплопроводность
- Коэффициенты
- Сколько ватт отдаст медная труба отопления с внешним диаметром 22 мм длиной 1 метр ?
- Способы увеличения теплоотдачи
- Теплопотери сквозь трубы
- Регистры
- Применение теплоизоляционных материалов
- Полотенцесушители
- Теплый пол
- Полезные советы
Теплоотдача 1 м. стальной трубы
Расчёт теплоотдачи трубы требуется при проектировании отопления, и нужен, чтобы понять, какой объём тепла потребуется, чтобы прогреть помещения и, сколько времени на это уйдёт. Если монтаж производится не по типовым проектам, то такой расчёт необходим.
Для каких систем нужен расчёт?
Коэффициент теплоотдачи считается для тёплого пола. Всё реже эта система делается из стальных труб, но если в качестве теплоносителей выбраны изделия из этого материала, то произвести расчёт необходимо. Змеевик – ещё одна система, при монтаже которой необходимо учесть коэффициент отдачи тепла.
Радиатор из стальных труб
Регистры – представлены в виде толстых труб, соединённых перемычками. Теплоотдача 1 метра такой конструкции в среднем – 550 Вт. Диаметр же колеблется в пределах от 32 до 219 мм. Сваривается конструкция так, чтобы не было взаимного подогрева элементов. Тогда теплоотдача увеличивается. Если грамотно собрать регистры, то можно получить хороший прибор обогрева помещения – надёжный и долговечный.
Как оптимизировать теплоотдачу стальной трубы?
В процессе проектирования перед специалистами встаёт вопрос, как уменьшить или увеличить теплоотдачу 1 м. стальной трубы. Для увеличения требуется изменить инфракрасное излучение в большую сторону. Делается это посредством краски. Красный цвет повышает теплоотдачу. Лучше, если краска матовая.
Другой подход – установить оребрение. Оно монтируется снаружи. Это позволит увеличить площадь теплоотдачи.
В каких же случаях требуется параметр уменьшить? Необходимость возникает при оптимизации участка трубопровода, расположенного вне жилой зоны. Тогда специалисты рекомендуют утеплить участок – изолировать его от внешней среды. Делается это посредством пенопласта, специальных оболочек, которые производятся из особого вспененного полиэтилена. Нередко используется и минеральная вата.
Производим расчёт
Формула, по которой считается теплоотдача следующая:
- К – коэффициент теплопроводности стали;
- Q – коэффициент теплоотдачи, Вт;
- F – площадь участка трубы, для которого производится расчёт, м 2 dT – величина напора температуры (сумма первичной и конечной температур с учётом комнатной температуры), ° C.
Коэффициент теплопроводности K выбирается с учётом площади изделия. Зависит его величина и от количества ниток, проложенных в помещениях. В среднем величина коэффициента лежит в пределах 8-12,5.
dT называется также температурным напором. Чтобы параметр высчитать, нужно сложить температуру, которая была на выходе из котла, с температурой, которая зафиксирована на входе в котёл. Полученное значение умножается на 0,5 (или делится на 2). Из этого значения вычитается комнатная температура.
Если стальная труба изолирована, то полученное значение умножается на КПД теплоизоляционного материала. Он отражает процент тепла, который был отдан при прохождении теплоносителя.
Рассчитываем отдачу для 1 м. изделия
Посчитать теплоотдачу 1 м. трубы, выполненной из стали, просто. У нас есть формула, осталось подставить значения.
Q = 0,047*10*60 = 28 Вт.
- К = 0.047, коэффициент теплоотдачи;
- F = 10 м 2 , площадь трубы;
- dT = 60° С, температурный напор.
Об этом стоит помнить
Хотите сделать систему отопления грамотно? Не стоит подбирать трубы на глазок. Расчёты теплоотдачи помогут оптимизировать траты на строительство. При этом можно получить хорошую отопительную систему, которая прослужит долгие годы.
Расчет теплоотдачи стальной трубы и способы ее увеличения
Как известно, стальные трубы обладают высокой теплоотдачей, в некоторых случаях это дает положительный результат, но достаточно часто является и причиной возникновения многих трудностей. Поэтому, монтируя различные системы, приходится сталкиваться с необходимостью выполнить расчет теплоотдачи трубы.
В каких случаях необходим расчет?
Если быть точным, то расчет теплоотдачи выполняется только для одной цели, он позволяет определить, какое количество тепла выделяется с поверхности трубы.
Но необходимы такие данные в двух противоположных случаях:
- Расчет эффективности отопления. В данном случае определяется необходимый диаметр элементов отопительной системы для получения требуемой температуры в помещении.
- Расчет теплопотерь выполняется для выбора наиболее эффективных материалов для утепления коммуникаций.
Расчет теплоотдачи стальных труб в обоих случаях выполняется по одной методике.
Методика расчета
Формула определения теплоотдачи достаточно проста, но стоит учитывать то, что она дает приблизительные результаты. Существует множество нюансов, оказывающих свое влияние. Поэтому, если вам необходимы точные данные, какая теплоотдача именно при ваших условиях, лучше обратиться к специалисту.
Q=K x F x ∆t,
где: Q – теплоотдача, Ккал/ч
K – коэффициент теплопроводности стальной трубы, Ккал/(кв м х ч х 0 С)
F – площадь нагреваемой поверхности труб, кв м
∆t – тепловой напор, 0 С
Коэффициент теплопроводности зависит не только от материала, из которого изготовлены трубы.
Большую роль играют и следующие данные:
- Диаметр
- Количество ниток (линий) обогревательного устройства
- Тепловой напор изделия
Он, в свою очередь, определяется по целому ряду сложных формул, поэтому проще пользоваться специальными таблицами, в которых имеются средние данные.
Так для стальных труб он может варьироваться от 8 до 12,5.
Площадь поверхности определяется по простейшим формулам из школьного курса геометрии, так для трубы круглого сечения она равняется площади цилиндра:
F = П х d x l,
d – диаметр трубы
Тепловой напор определяется по следующей формуле:
где: tп – температура теплоносителя на входе, градусов
tо – температура теплоносителя на выходе, градусов
tв – температура в помещении, градусов
Если вас интересует теоретическая теплоотдача стальной трубы, то согласно СНиП применяются следующие значения теплового напора:
Следовательно, тепловой напор ∆t = 55 градусов.
Если вы будете выполнять расчет для трубы, которая имеет теплоизоляцию, то полученный результат необходимо будет умножить коэффициент полезного действия утеплителя.
Пример расчета
В качестве примера рассчитаем, сколько тепла отдает стальная труба с такими параметрами – диаметр 25 мм, длина 1 метр. Расчет делаем теоретический, следовательно, тепловой напор 55 градусов, труба не утеплена.
Определяем площадь поверхности:
F = 3,14 х 0,025 х 1 = 0,0785 кв м
Из таблицы выбираем значение коэффициента теплопроводности. Для регистра в одну нитку, с диаметром меньшим 40 мм, при тепловом напоре 55 градусов, имеем К = 11,5.
Q = 11,5 х 0,0785 х 55 = 49,65 Ккал/ч
Как видите, в теории все достаточно просто, но практика значительно отличается от теории. Поэтому самостоятельно выполнять подобные расчеты можно только в самых простых случаях.
Как увеличить теплоотдачу?
Благодаря имеющемуся соотношению объема трубы к площади ее поверхности, достаточно часто возникает необходимость увеличить ее способность отдавать тепло. Это требуется для наиболее эффективного отопления помещений.
О том, как увеличить теплоотдачу трубы, известно уже давно, на практике применяли и применяют следующие способы.
Пример эффективного увеличения теплоотдачи – конвектор, применявшийся в системах отопления еще в советские времена. Он представлял собой согнутую трубу (U-образная форма) с наваренными перпендикулярно ей пластинами. Данный метод называется оребрение, он применяется и в современных отопительных устройствах.
Неплохой результат дает и окраска излучающих тепло поверхностей матовой черной краской. Конечно это не слишком хороший вариант с точки зрения дизайнера, но он существенно повышает инфракрасное излучение прибора.
Обеспечить более высокую теплоотдачу системы отопления можно было путем увеличения площади поверхности нагревательных элементов.
Раньше это достигалось несколькими способами:
- Увеличение длины труб. Простой пример – обычный полотенцесушитель, коэффициент теплоотдачи трубы, конечно, не меняется, более эффективный обогрев получали именно за счет увеличения длины.
- Еще один способ повышения эффективности отопления — применение регистров. Они представляют собой несколько параллельных линий труб, отдача тепла и в этом случае достигалась за счет увеличения рабочей площади устройства. Конечно, сравнивать теплоотдачу регистра и современных отопительных приборов нельзя, но в недавнем прошлом подобная конструкция во многих случаях становилась единственно возможной.
Появление новых материалов дало возможность использовать другие способы повышения эффективности отопления. Самый популярный — теплый водяной пол, правда, в последнее время стальные трубы в этой сфере не применяются, появились более современные материалы, но принцип тот же.
Существенное увеличение длины греющих элементов позволяет получить эффективное отопление.
Сейчас для монтажа систем водяного теплого пола, в основном, применяют металлопластик и другие виды полимерных труб.
При использовании металлопластиковых труб не стоит забывать о том, что не следует замуровывать в стяжку фитинги, особенно компрессионные. Лучше всего, если вся линия будет проложена целой трубой.
В связи с тем, что теплоотдача трубы стальной все-таки ограничена, все чаще стали применяться другие материалы, например алюминий. Радиаторы из него обладают высоким коэффициентом теплоотдачи.
Утепление труб
Если в отапливаемых помещениях все делается для того, чтобы взять от трубы как можно больше тепла, то в магистральных линиях существует совершенно противоположная потребность — снизить теплоотдачу по максимуму.
Для этого применяется утепление труб.
Рынок материалов для этих целей достаточно обширен, поэтому проблем с выбором утеплителя не возникает никаких. Кроме наиболее дешевых стекловолоконных утеплителей, применяют базальтовую вату, пенополиуретан, пенополистирол.
Наиболее эффективно теплоотдача труб стальных может быть снижена в заводских условиях. Выпуск труб со слоем утеплителя и полиэтилена постоянно увеличивается, на сегодняшний день монтаж магистралей отопления из таких материалов является одним из лучших способов снижения теплопотерь.
Как видите, знание фактической теплоотдачи необходимо для решения многих технических проблем, связанных с сооружением систем горячего водоснабжения и отопления. Поэтому при проектировке данных систем обязательно выполняйте подобные расчеты, а еще лучше доверьте это специалисту.
Теплоотдача 1 м стальной трубы – проводим расчет. Теплоотдача трубы медной
Теплопроводность стали достаточно высока – это закон физики, и спорить с ним нельзя. Зато можно обратить это свойство металла на пользу. Именно такая теплоотдача позволяет использовать сталь в производстве различных приспособлений для обогрева помещений.
- LiveJournal
- Blogger
Стальная труба ВГП
- Зачем считать теплоотдачу
- Формула теплопроводности
- Коэффициенты
- Способы увеличения теплоотдачи
- Регистры
- Полотенцесушители
- Теплый пол
- Потери тепла
Зачем считать теплоотдачу
Расчет коэффициента теплопередачи для стальных труб и изделий из них поможет определить, сколько килокалорий или Джоулей от внутреннего теплоносителя они способны передать в атмосферу. При проектировании отопления после такого расчета легко вычислить требуемый диаметр стальной трубы. Если правильно все сделать, эффективность обогревателей будет максимальной.
Иногда точно такой же расчет теплоотдачи стальных труб нужен для обратного – подобрать изолирующий материал, который сможет препятствовать потерям. Все зависит от назначения и условий работы исследуемого трубопровода.
В упрощенном виде формула теплопроводности выглядит так:
Для тех, кто подзабыл курс физики за 7-й класс, напомним значения этих символов:
- k – коэффициент теплопередачи стали трубы. Он зависит от особенностей материала, толщины стенки и завязан на величину теплового напора.
- F – площадь поверхности трубы. Если подведено сразу несколько ниток трубопровода, то учитывается суммарная площадь поверхностей.
- Δt – тепловой напор, учитывающий разницу температур атмосферы и теплоносителя.
Говоря проще, теплоотдача стальной трубы напрямую зависит от ее размеров и степени нагрева по сравнению с внешней средой. Чем выше эти показатели, тем больше тепловой энергии она передаст.
Теплоотдача стальной трубы во многом зависит от ее толщины
Тепловой напор тоже рассчитывается для каждого конкретного случая. Здесь нужно дополнительно учитывать усредненную температуру горячей воды на входе и выходе из отопительного прибора (коэффициент теплоотдачи воды отличается от того же показателя для стали). Для предварительных расчетов Δt согласно СНиП принимают равным 55° С.
Удобнее производить расчет для одного условного метра трубы выбранного диаметра. Тогда готовый результат можно просто умножить на общую длину отопительного оборудования. Для разных типоразмеров труб теплопередача определяется отдельно.
меди, латуни и алюминия, теплопередача
Перед тем как работать с различными металлами и сплавами, следует изучить всю информацию, касающуюся их основных характеристик. Сталь является самым распространенным металлом и применяется в различных отраслях промышленности. Важным ее показателем можно назвать теплопроводность, которая варьируется в широком диапазоне, зависит от химического состава материала и многих других показателей.
Что такое теплопроводность
Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:
- Молекул.
- Атомов.
- Электронов и других частиц структуры металла.
Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.
Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.
Коэффициенты
Таблица теплоотдачи стальных труб
Тип соединения | Для труб с внутренним диаметром, мм | Δt, °С | |||
50 — 60 | 60 — 70 | 70 — 80 | 80 — 100 | ||
В одну нитку | до 40 | 11,5 | 12 | 12,5 | 12,5 |
50-100 | 10 | 10,5 | 11 | 11,5 | |
свыше 125 | 10 | 10,5 | 10,5 | 10,5 | |
В несколько ниток | до 40 | 10 | 11 | 11,5 | 11,5 |
свыше 50 | 8 | 9 | 9 | 9 |
Приведенные цифры даны для труб с толщиной стенок от 3 мм и выше.
Полотенцесушитель в ванную из нержавейки, хоть и относится к рассмотренным гладким трубам, придется рассчитывать через другой коэффициент из-за разницы между черной и нержавеющей сталью. При тепловом напоре Δt = 70-80 °С для труб разного диаметра принимают такие значения:
Ду, мм | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
k | 15 | 14,5 | 13,3 | 12 | 11 | 10 | 9 | 8 |
Следует учитывать, что сушка для полотенец в ванную, если это не старая часть отопительной системы, как правило, изготавливается из двух типоразмеров труб. Поэтому для змеевика и соединительных перемычек меньшего диаметра коэффициент k выбирается отдельно.
Какую систему вам бы ни пришлось обсчитывать, напольный водяной полотенцесушитель или регистры отопительного прибора, вам понадобится еще один коэффициент. Он позволит привести полученный результат в единицах Ккал/ч к привычному виду Вт/ч. Для этого Q умножают на 1,163.
СНиП 2.04.01-85 требует, чтобы стальной полотенцесушитель имел теплоотдачу не меньше 100 Вт на единицу площади помещения (1 м2) и минимум 40 Вт на 1 м3 ванной. Поэтому после перевода теплоотдачи в соответствующие единицы измерения, можно определить, для комнат каких размеров подходит выбранная конструкция сушки.
Сколько ватт отдаст медная труба отопления с внешним диаметром 22 мм длиной 1 метр ?
ИмхоДом › Форумы › коммуникации и отопление › Сколько ватт отдаст медная труба отопления с внешним диаметром 22 мм длиной 1 метр ?
- В этой теме 4 участника и 9 ответов.
Как посчитать (или где узнать) сколько ватт отдаст медная труба отопления с внешним диаметром 22 мм длиной 1 метр (одиночная, идущая горизонтально, ничем не загороженная от воздуха)? Например, для условий — воздух вокруг трубы с температурой 20 градусов, теплоноситель (и труба, соответственно, тоже) 70 градусов.
Глупость, это не недостаток ума, это такой ум. (А.И.Лебедь)
(0,022х пи) х 1м= 0,07 м2
У меня труба сталь вдоль стены 40мм длиной 38 метров. Получается площадь 4,77м2 стали в краске. Очень внушительная теплоотдача!
д — дополнительные потери теплоты, связанные с остыванием теплоносителя в подающих и обратных магистралях, проходящих в неотапливаемых помещениях, кВт. Величину
Q
д рекомендуется определять при коэффициенте эффективности, изоляции 0,75, по табл. 2.
температура теплоносителя на входе в систему отопления (для подающих трубопроводов) или на выходе из нее (для обратных трубопроводов), °С;
tв
— температура воздуха помещений, в которых проложены трубопроводы, °С; определя
… (0,022х пи) х 1м= 0,07 м2 очень мало.
У меня труба сталь вдоль стены 40мм длиной 38 метров. Получается площадь 4,77м2 стали в краске. Очень внушительная теплоотдача!
Очень мало для чего? Я же спрашиваю сколько “в граммах”, а Вы “мало”, “внушительно”. Поточнее можете, хотя бы дать примерную цифру? Буду благодарен.
Вот спасибо. Извините за дремучесть в этой области, но требуются (мне) уточнения. Я правильно понял таблицу: если температура теплоносителя 60 градусов, а в комнате 20 градусов, то для трубы 20 мм и эффективности теплоизоляции 75 % в водух уйдет 20 ватт с каждого погонного метра? Поясните, пожалуйста, термин “коэффициент теплоизоляции”. Если он 0.75, то в воздух уходит 25 % тепла, или наоборот — 75? Соответственно, уточняющий вопрос: если теплоизоляции совсем нет, то каждый метр такой трубы отдаст 27 ватт?
Глупость, это не недостаток ума, это такой ум. (А.И.Лебедь)
Вот ссылка со всеми выкладками и формулами:
А коэффициен изоляции 0,75, как понимаю это коэффициент учитывающий неэффективность теплосъёма с трубы, связанный с её положением, препятствующим нормальной конвекции, краски на трубе, и т.п. Т.е. при трубе, расположенной в центре помещения, без затруднений конвекции воздуха вокруг неё, без дополнительного покрытия, этот коэф. =1.(табличные значния надо умножить на 1,25).
Ваши значения в таблице не предусмотрены. При температуре теплоносителя 70, воздуха 20, диаметре трубы 20мм, с каждого метра трубы будет”расходоваться” 20Вт.
А вообще там, под таблицей формула есть, лучше посчитать по ней, для конкретных условий.
Кстати, диаметр труб не маловат ли.
Если в «граммах», то по известной формуле линейной плотности теплового потока для круглой трубы при этих исходных данных получается около 52 Вт с метра
Нет, не маловат. Два десятка лет эксплуатирую — нет нареканий. Более того, был такой случай. В начале эксплуатации был у меня только “корейский” твердотопливный коттел в качестве источника тепла (до сих пор стоит, зараза, не знаю как выкинуть — тяжелый, сволочь). Отопление разведено по двум этажам с петлей по подвалу (без радиаторов). Чтобы все грелось, конечно, установлен циркуляционный насос — и все грелось. А тут электричество отрубили на 3 дня (жуткий ветер был в феврале, кажется, все провода поотрывал). Ну, думаю, проблемы пришли. Затопил котел, а отопление, как выяснилось, и без насоса работает отлично. И это на трубах 22 мм (или 20 — уже не помню), про которые мне с самого начала говорили — мало, нужно не меньше, чем дюймовые. Вот тогда я и убедился, что вполне достаточно (и намного дешевле).
Глупость, это не недостаток ума, это такой ум. (А.И.Лебедь)
Данные, как это часто бывает, имеют расхождения (хорошо еще, что в 2 раза) — и оба варианта “по науке”. Мне сдается, что ближе к истине первый вариант.
И вот, что выходит. Например, в спальне у меня труба идет в 2.5 см от стены по трем стенам — в сумме это 16 метров. Если при температуре 80 градусов (не самы морозы) я снимаю с них по 30 ватт на метр, то это получается почти полкиловатта.
Практика показывает, что в самые морозы мне на 200 квадратов хватет мощности котла (паспортной) 12 кВт (температура теплоносителя 85 градусов), т.е. на 1 квадрат на этажах расходуется не более 55 ватт (в подвале, если труба отдает 30 ватт на метр, остается больше 1 квт).
Так вот, для спальни (эту комнату я взял для наглядности примера), где мне требуется, если брать среднюю величину, 1650 ватт в самый мороз (как нынче — почти неделя под 40), треть тепла дает простая труба по периметру комнаты (три стены).
Я и раньше полагал, что такой вариант дает мне сущестенную “помощь” в отоплении, но никак не думал, что так много. Сейчас планирую ремонт и, возможно, буду делать теплый пол (из-за этого и возник вопрос по трубе — нужна или нет), и уже ясно, что трубу тоже пущу по стене — железная гарантия того, что теплого пола с трубой по стене будет достаточно для отопления даже в самые лютые наши морозы.
Спасибо всем, кто конструктивно поучаствовал.
Глупость, это не недостаток ума, это такой ум. (А.И.Лебедь)
Способы увеличения теплоотдачи
Во всех отопительных и нагревательных системах нужно стремиться к тому, чтобы теплоотдача трубы была максимальной. Это будет означать, что энергию, затрачиваемую на нагрев носителя, мы используем наиболее эффективно. Для каждой конструкции, работающей в своих условиях, способ увеличить теплопередачу подбирается отдельно, с учетом всех нюансов. Но основой этих улучшений будут уже рассмотренные в теоретическом расчете исходные данные – площадь излучающей поверхности и разница температур.
Теплопотери сквозь трубы
В условиях квартир особого смысла рассчитывать теплоотдачу нержавеющей трубы нет, ведь в данном случае все тепло, отдаваемое стояком и отопительными контурами, будет рассеиваться внутри, обогревая помещение.
А вот если необходимо качественно обогреть подвальные или складские мощности, а теплоноситель к ним должен подаваться из другого места, то в данном случае расчет теплоотдачи трубы будет более чем целесообразен, чтобы можно было сориентироваться, сколько тепла теряется по пути. Тогда можно попробовать поискать способы сократить теплопотери труб с горячей водой.
Регистры
Самая простая конструкция радиаторов отопления – регистры. Это заваренные с торцов трубы среднего или большого диаметра, одиночные или соединенные в секции трубками-перемычками. Их можно увидеть в подъездах, на промышленных объектах или в частных домах с индивидуальным отоплением.
Стальные трубопроводы считаются традиционными для устройства систем водоснабжения, водоотведения и подземной подачи газа
Чтобы повысить их тепловую мощность используют метод увеличения площади – наваривают тонкие металлические пластины. Это улучшает теплоотдачу батареи почти в полтора раза. Примерно такой же теплопередачей обладают компактные радиаторы – ближайшие родственницы чугунных батарей-гармошек. Хотя до панельных биметаллических приборов им, конечно, далеко.
Чтобы теплоотдача радиаторов отопления была максимальной, используют простой и незатратный метод конвекции. Этот способ заключается в правильном навешивании прибора. Его устанавливают как можно ближе к полу, где скапливается холодный воздух, но оставляют необходимые для циркуляции зазоры, в том числе и у самой стены.
При таком монтаже секции батареи соприкасаются со средой, имеющей минимально возможную в данных условиях температуру, то есть увеличивается тепловой напор. А нагретый регистрами воздух благодаря оставленным зазорам беспрепятственно поднимается вверх, и помещение протапливается быстрее.
Отличный метод – увеличить площадь передающей тепло поверхности. Делают это разными способами:
- Наращиванием общей длины нагревательных труб путем формирования из них U-образных регистров.
- Оребрением – строго говоря, этот способ увеличивает не конкретно теплопроводность стальной трубы, а всего радиатора, но мощность возрастает на 50%.
- Увеличением количества секций.
Лучшей теплоотдачей обладают поверхности черного цвета, но далеко не в каждый интерьер впишется такая мрачная батарея, отчего этот способ и не нашел применения. Регистры традиционно продолжают окрашивать в белый цвет.
Применение теплоизоляционных материалов
Наверное, первое, что приходит в голову при необходимости сохранить максимум тепла внутри трубы – это обмотать ее теплоизоляционным материалом. В конце прошлого века для этих целей применяли утеплитель из стекловолокна с дополнительной обмоткой негорючей тканью (данный способ рекомендован нормативной базой). Еще чуть раньше активно использовались растворы гипса или цемента, то есть теплоизоляция получалась твердой. В действительности же нерадивые сантехники нередко просто обматывали трубы старой ветошью, в надежде, что никто не проконтролирует.
Обилие современных материалов, например накладки на трубы из пенопласта, разрезные полиэтиленовые оболочки, минеральная вата и прочие, позволяет выполнить теплоизоляцию отопительных труб намного более качественно. И в новостройках такие материалы с успехом применяются. Тем не менее, отсталость ЖЕКов зачастую приводит к тому, что трубы по старинке обматывают тряпьем.
Полотенцесушители
Полотенцесушитель для ванной сам является наглядным примером того, как можно улучшить теплоотдачу трубы. «Змеевик» прибора – не что иное, как искусственно увеличенная площадь теплового излучения. Поскольку раньше они были лишь частью общей ветки отопления, изменить диаметр стальной трубы не представлялось возможным. Поэтому площадь теплопередачи увеличивалась путем простого наращивания длины.
Кстати, как раз водяной полотенцесушитель из нержавеющей стали будет неплохо смотреться в черном цвете. Блестящие и хромированные изделия, хоть и выглядят красиво, препятствуют теплообмену между трубой и окружающей средой.
Для вертикально ориентированных систем, таких как радиаторы и полотенцесушители, имеет значение способ подключения входных и выходных труб. Теплоотдача одного прибора при разной установке может значительно измениться:
- 100% эффективности – диагональное подключение (вход горячей воды сверху, выход с обратной стороны внизу);
- 97% – одностороннее с верхним входом;
- 88% – нижнее двухстороннее подключение;
- 80% – диагональное обратное (с нижним входом);
- 78% – одностороннее с нижним входом и выходом отработанной воды.
Полиэтилен это самая простая гидроизоляция для теплого пола, так же он увеличивает теплоотдачу
Теплый пол
Не так давно теплый пол от полотенцесушителя или комнатного радиатора становился продолжением общей системы отопления в квартире, в разы увеличивая площадь обогревающей поверхности. Но вода в качестве теплоносителя именно в этой ситуации может создать немало проблем.
Как бы ни были надежны стальные трубы, они не вечны, а места соединений, особенно резьбовых, могут со временем дать течь. Только представьте, что это произошло внутри бетонной стяжки, которую так просто не снять. По этой причине теплый пол в водяном исполнении практически не применяется.
Если вы все-таки решили реализовать эту систему, вам придется подумать, как сделать ее максимально эффективной. Мощность теплого пола должна рассчитываться с предельной точностью. Но если цифры показывают, что теплопередача получается недостаточной, нужно в первую очередь озаботиться повышением эффективности стальных труб.
Поскольку эта конструкция контактирует не с воздухом в помещении, а нагревает материалы пола, сыграть можно только на увеличении протяженности труб. Поэтому их и укладывают компактной, но длинной «змейкой». Благодаря большой площади собственной поверхности она передает много тепла.
Нюанс: при плотной укладке нескольких погонных метров трубы теплоотдача теплого пола в целом возрастет, а каждого отдельного сегмента, не критично, но уменьшится.
Причина в том, что слишком близко расположенные трубы частично налаживают теплообмен друг с другом. Вокруг каждой создается нагретая зона, что приводит к некоторому снижению теплового напора.
Полезные советы
В строительстве желательно использовать современные материалы, которые имеют множество преимуществ. Но их применение также имеет свои особенности.
Так не стоит забывать о том, что теплоотдача металлопластиковой трубы будет выше, если она не вмурована в стяжку. Эффективность отдачи тепла возрастет, если вся магистраль представит собой цельную линию, без дополнительных фитингов.
Проектирование тепловой магистрали
Высоким коэффициентом теплоотдачи обладают трубы из алюминия. Эту особенность можно успешно использовать.
Достаточную теплоотдачу дает также медная труба. Однако у этого материала есть свои весомые недостатки – сложность в эксплуатации и высокая цена.
Увеличение теплоотдачи отопительных труб возможно в домах и строительных объектах любого назначения. Главное разобраться в особенностях магистралей, типах труб, учесть все особенности, просчитать финансовые вложения и сделать правильные выводы.