- OtoplenieCalc.ru — онлайн калькуляторы расчета отопления
- Калькуляторы отопления онлайн
- Бесплатные онлайн калькуляторы расчета отопления
- Расчет мощности котла и теплопотерь
- Расчет количества секций радиаторов отопления
- Посчитать расходы и сравнить
- Проектирование отопления дома
- Оборудовать котельную
- Рассчитать мощность и типа котла
- Рассчитать количество радиаторов и секций в них
- Выбрать схему подключения радиаторов
- Монтаж котла, обвязка, подключение радиаторов
- Заполнение системы теплоносителем и запуск
- Расчет мощности котла и теплопотерь.
- Таблица 1. Теплозащитные свойства стен
- Таблица 2. Тепловые расходы окон
- Расчёт радиаторов отопления на квадратный метр
- Расчет затрат на отопление
- Расчет отопления по площади: теплотехнический расчет системы отопительных приборов по нормативу площади помещения, детали на фото и видео
- Теплотехнический расчет системы отопления – Система отопления
- На досуге
- Теплотехнический расчет систем отопления
- Правила расчета радиаторов отопления
- Расчет радиаторов отопления
- Расчет радиаторов отопления и конвекторов в Excel
- Исходные данные:
- Результаты расчетов:
- Выводы
- Эффективные методы расчета радиаторов отопления
- Расчет отопительных радиаторов по площади
- Расчет секций приборов по объему помещения
- Корректировка результатов расчета отопительных радиаторов
- Расчет в зависимости от типа батареи
- Расчет количества отопительных батарей для однотрубных систем
- Итоги
- Расчет отопления по площади помещения
OtoplenieCalc.ru — онлайн калькуляторы расчета отопления
Калькуляторы отопления онлайн
Наш калькулятор поможет вам быстро и максимально точно рассчитать мощность отопительных приборов для дома на основе нескольких параметров, подсчитать количество секций в радиаторах и узнать о расходах на отопление.
Правильный расчёт отопительной системы – важнейший этап на стадии строительства дома. От того, насколько правильно вы подберете котел и количество радиаторов зависит эффективность отопления и расходы на него. Ведь если, например, установить котел меньшей мощности, чем нужно, или недостаточное количество радиаторов, то в холодное время года вам придется пользоваться дополнительными источниками тепла – а это значит, что затраты на обогрев помещения вырастут в разы.
Чтобы облегчить вам расчет системы отопления, мы создали простые, удобные и максимально точные калькуляторы, которые позволят не допустить критичных ошибок при расчетах.
Бесплатные онлайн калькуляторы расчета отопления
Расчет мощности котла и теплопотерь
Просто введите и выберите готовые значения и нажмите на кнопку «Рассчитать». Вы получите нужные вам данные: мощность котла и теплопотери дома
Расчет количества секций радиаторов отопления
Калькулятор позволяет правильно рассчитать количество секций в радиаторах отопления для максимальной эффективности.
Посчитать расходы и сравнить
После расчета вы сможете узнать, сколько вы тратите на отопление и сравнить затраты с тем или иным источником тепла.
Проектирование отопления дома
Оборудовать котельную
Котельная должна быть оборудована в соответствии с требованиями, так что к этому вопросу нужно подойти серьезно.
Рассчитать мощность и типа котла
От мощности котла зависит эффективность всей отопительной системы. Если вы выбрали слабый котел, то готовьтесь к дополнительным тратам.
Рассчитать количество радиаторов и секций в них
Это тоже важный параметр, недостаточное количество радиаторов снижает эффективность отопительной системы.
Выбрать схему подключения радиаторов
Система подключения радиаторов отопления может быть однотрубной, двухтрубной, лучевой или выполнена по схеме Тихельмана
Монтаж котла, обвязка, подключение радиаторов
На этом этапе следует тщательно продумать схему обвязки котла, подключения радиаторов, циркуляционного насоса, расширительного бака и других элементов
Заполнение системы теплоносителем и запуск
На последнем шаге остается только наполнить систему водой или антифризом, а потом запустить и протестировать систему отопления.
Для обеспечения комфортного проживания в холодное время года еще на этапе проецирования частного дома нужно позаботиться о расчете и монтаже отопления. Правильно произведенные тепловые калькуляции позволят определить оптимальную и экономически выгодную отопительную систему. Любая погрешность может привести к тому, что вы будете мерзнуть либо в здание будет жарко и душно.
Самостоятельные расчеты не окажутся проблемой для людей с техническим образованием. Однако не каждый обладает физико-математическими навыками, поэтому хорошим путеводителем в подсчетах будет онлайн калькулятор. Он поможет выявить тепловые потери дома и вычислить мощность, которой должен обладать котел. Так же определит количество необходимых радиаторов и сколько должно быть в нем секций. Сделает за вас расчет затрат на отопление, что пригодится для выбора подходящего источника тепла. Соберите нужные данные для вычисления.
Определите тепловые потери. Для этого, необходимо знать, из какого материала построены внешние стены и напольные покрытия, чем утеплены и их толщину. Измерьте площадь дома, окон и наружных дверей. Высокая интенсивность потери тепла у вентиляции и канализации. Их тоже нужно учитывать в расчетах.
Климатические условия местонахождения дома играют важную роль в выборе отопительной системы. Узнайте среднегодовую и минимальную температуру в вашем регионе, а также среднюю скорость ветра.
Расчет мощности котла и теплопотерь.
Собрав все необходимые показатели, приступайте к калькуляции. Конечный результат укажет количество расходуемого тепла и сориентирует вас на выбор котла. При расчете теплопотерь за основу берутся 2 величины:
- Разница температуры снаружи и внутри здания (ΔT);
- Теплозащитные свойства объектов дома (R);
Для выявления расхода тепла ознакомимся с показателями сопротивления теплопередачи некоторых материалов
Таблица 1. Теплозащитные свойства стен
Материал и толщина стены | Сопротивление теплопередаче |
толщина в 3 кирпича (79 сантиметров)
толщина в 2.5 кирпича (67 сантиметров)
толщина в 2 кирпича (54 сантиметров)
толщина в 1 кирпича (25 сантиметров)
0.187
0.440
Толщина 10см.
0.353
(доска +минвата + доска) 20 см.
0.703
0.709
Данные в таблице указаны с температурной разницей 50 °(на улице -30°,а в помещение +20°)
Таблица 2. Тепловые расходы окон
Тип окна | RT | q. Вт/ | Q. Вт |
Обычное окно с двойными рамами | 0.37 | 135 | 216 |
Стеклопакет (толщина стекла 4 мм) |
136
4-Ar16-4-Ar16-4К
RT — сопротивление теплопередачи;
- Вт/м^2 – количество тепла, которое расходуется на один кв. м. окна;
четные цифры указывают на воздушное пространство в мм;
Ar — зазор в стеклопакете заполнен аргоном;
К – окно имеет наружное тепловое покрытие.
Имея в наличии стандартные данные о теплозащитных свойствах материалов, и определив перепад температур легко рассчитать тепловые потери. На пример:
Снаружи — 20°С., а внутри +20°С. Стены построены из бревна диаметром 25см. В этом случае
R = 0.550 °С· м2/ Вт. Тепловой расход будет равен 40/0.550=73 Вт/ м2
Теперь можно приступить к выбору источника тепла. Существуют несколько видов котлов:
- Электрические котлы;
- Газовые котлы
- Нагреватели на твердом и жидком топливе
- Гибридные (электрические и на твердом топливе)
Перед тем как приобрести котел, вы должны знать, какая мощность потребуется для поддержания благоприятной температуры в доме. Для этого существуют два способа определения:
- Расчет мощности по площади помещений.
По статистике принято считать, что для нагрева 10 м2 требуется 1 кВт теплоэнергии. Формула применима в случае, когда высота потолка не более 2,8 м и дом средне утеплен. Суммируем площадь всех комнат.
Получаем, что W=S×Wуд/10, где W- мощность теплогенератора, S-общая площадь здания, а Wуд является удельной мощность, которая в каждом климатическом поясе своя. В южных регионах она 0,7-0,9 кВт, в центральных 1-1,5 кВт, а на севере от 1,5 кВт до 2 кВт. Допустим, котел в доме площадью 150 кв.м, который находится в средних широтах должен обладать мощностью 18-20кВт. Если потолки выше стандартных 2,7м, например, 3м, в этом случае 3÷2,7×20=23 (округляем)
- Расчет мощности по объему помещений.
Этот тип вычислений можно произвести, придерживаясь строительных норм и правил. В СНиП прописан расчет мощности отопления в квартире. Для кирпичного дома на 1 м3 приходится 34 Вт, а в панельном – 41 Вт. Объем жилья определяется умножением площади на высоту потолка. Например, площадь апартаментов 72 кв.м., а высота потолков 2,8 м. Объем будет равен 201,6 м3. Так, для квартиры в кирпичном доме мощность котла будет равна 6,85 кВт и 8,26 кВт в панельном. Правка возможна в следующих случаях:
- На 0.7, когда этажом выше или ниже находится неотапливаемая квартира;
- На 0.9, если ваша квартира на первом или последнем этаже;
- Коррекция производится при наличии одной внешней стены на 1,1, две – на 1,2.
Расчёт радиаторов отопления на квадратный метр
Несмотря на разнообразие рынка отопительных систем, радиаторы всегда остаются в тренде. Однако владельцы отопительного оборудования часто допускают ошибки в его эксплуатации. Самая распространенная является несоответствие теплоотдачи батареи с площадью помещения. Самым простым способом расчёта батареи является 100 Вт на 1 м2. Зная площадь комнаты, умножьте ее на 100.
Если радиатор многосекционный, то воспользуйтесь формулой: N = Q/ Qус, где N это количества секции, а Qус – мощность каждой секции по отдельности. В случае, когда высота потолков превышает 2,7 м., воспользуйтесь расчетом по объему. Для более точной информации теплоотдачи можно воспользоваться коэффициентами:
- Количество внешних стен (Кф. 1.1, 1.2);
- Направленность комнаты на стороны света (Кф. 1.1, если на север и восток);
- Коэффициент утепления стен (0.85, 1, 1.27);
- Климатические условия (-35° — Кф. 1.5, -25°- Кф. 1.3, -15°- Кф. 1.1, -10° — Кф 0.7);
- Высота потолков (Кф. От 1 до 1.2);
- Этаж квартиры (Кф. От 1 до 0.8);
Тип оконной рамы (из дерева -1.27, однослойный стеклопакет – 1, двойной стеклопакет – 0.85);
Q = S × 100 ×… (значение коэффициента)
Расчет затрат на отопление
Хорошая отопительная система требует достаточно больших финансовых вложений. Основные расходы связаны с:
- Оборудование отопительной системы. В него входят котел, насос, радиаторы и материал для разводки.
- Установка обогревательной системы.
- Затраты на топливо. Количество потраченных денег зависит от выбранного вами топлива.
- Поддержка оборудования в рабочем состояние.
При расчете затрат нужно учитывать удельную теплоту сгорания. Рассчитайте путем деления теплопотери за сезон на теплотворность сырьевого продукта и получите количество использованного топлива. Умножьте на стоимость за единицу измерения.
Еще один метод подсчета — это расход кВт в час. На дом, площадью 120 м2 потребляется 12 кВт теплоэнергии. В месяц выходит 8640 кВт. Способ подходит для пользователей газа и электричества
Расчет отопления по площади: теплотехнический расчет системы отопительных приборов по нормативу площади помещения, детали на фото и видео
Теплотехнический расчет системы отопления – Система отопления
» Расчеты отопления
Система обогрева включает, систему соединения, батареи, коллекторы котел, бак для расширения, крепежи, увеличивающие давление насосы терморегуляторы, трубы, развоздушки.
На открытой странице web проекта мы попбробуем выбрать для коттеджа необходимые компоненты монтажа. Перечисленные узлы монтажа очень важны. Вот почему подбор перечисленных частей монтажа необходимо делать технически правильно.
Сборка отопления квартиры насчитывает разные комплектующие.
Чтобы определить теплопотери помещения специалистами проводится расчет системы отопления. При этой работе опираться приходится на знания особенностей конструкции помещения.
Так, теплотехнический расчет системы отопления учитывает следующие характеристики: габариты помещения, толщину и тип наружных стен, остекление помещения, его теплоизоляцию, площадь оконных проемов и т.д. Теплотехнический расчет поможет наиболее оптимально использовать соответствующее оборудование.
Расчет системы центрального отопления поможет определиться с выбором нужного оборудования (котлы, радиаторы, горелки, насосы и т.п.), определить требуемые мощности и общую тепловую схему работы.
Расчет системы отопления проводится в несколько этапов.
На первом составляется проект отопительной схемы с учетом тепловых и гидравлических параметров. На предварительном этапе следует определиться, какой вид отопления требуется: напольное, радиаторное или комбинированное. Обычно предварительные расчеты занимают не так много времени, в среднем не более четырех дней.
Здесь же обозначается требуемое оборудование и монтажный план. Оборудование должно органично вписываться в дизайн и общий интерьер дома.
Кроме того, отопительная система обязана отвечать ряду требований – пожарной безопасности, санитарно-гигиеническим, нормативно-техническим регламентам, а также общей функциональности.
Далее подбирается оборудование по подходящим параметрам и стоимости. Это второй этап работ.
На третьем этапе происходит комплектация объекта всем уже приобретенным оборудованием. Затем происходит монтаж отопительной системы – монтаж узлов распределения, стояков и т.д.
Завершающим этапом становится монтаж и пуско-наладка отопительного котла.
Расчет системы отопления выполняется либо по методике СниПа либо по методике академика Панфилова. Расчет по СниПу учитывает тепловые потери здания и каждого его помещения.
Наша компания проводит полный расчет системы отопления. Работа начинается с подбора котла и труб и завершается монтажом радиатора отопления. В случае если подобный вид работ требуется в загородном доме, его следует проводить до этапа внутренней отделки помещений. По окончании монтажа проводятся пуско-наладочные работы.
На досуге
Теплотехнический расчет систем отопления
Необходимость теплотехнического расчета систем отопления (а также других элементов и конструкций) возникает в случае проведения капитального ремонта и модернизации зданий.
Актуальность проведения таких работ на объектах повысилась последние годы в связи с большим износом зданий, построенных ещё в советские годы. Системы отопления, которыми здания оснащались еще десять лет назад, и оснащаются до сих пор, устроены таким образом, что не позволяют эффективно распределять объем тепла между этажами и отдельными элементами систем внутри здания.
Простыми словами, на некоторых участках системы отопления может отдаваться чрезмерно много тепла, а на других недостаточно. В итоге часть квартир получает переизбыток, который позволяет жильцам жить с открытыми форточками даже зимой. И наоборот — некоторые квартиры замерзают, потому что им приходит недостаточно тепла.
Устранить эти недостатки позволит теплотехническая и тепловизионная съемка конструкций зданий и сооружений http://www.disso.spb.ru/?item=9 .
На первом этапе производятся замеры — выполняется съемка и специалисты-инженеры получают примерно вот такую карту. Она показывает участки с разным тепловым режимом зданий по позволяет зафиксировать имеющиеся дефекты.
Следующий шаг проведение теплотехнического расчета, позволяющего решить вопрос с равномерными распределением тепла в доме. На каждом объекте эта задача решается по-разному. В ряде случаев необходимо утеплять дом — проводить обшивку с изоляцией. В других случаях необходима балансировка систем отопления, модернизация действующих инженерных систем от ИТП.
Теплотехническая съемка позволит выявить дефекты отопления и указать инженерам и проектировщикам, какие именно конструктивные элементы требуют перерасчета. В дальнейшем производится модернизация с использованием современных технологий и современного отопительного оборудования.
Правила расчета радиаторов отопления
Комфорт проживания в доме или квартире тесно связан с оптимально сбалансированной системой отопления. Создание такой системы – наиболее важный вопрос, который невозможно решить без знания современных проверенных схем подключения радиаторов отопления. Прежде чем переходить к решению задачи с подключением отопления, важно учесть правила расчета радиаторов отопления.
Расчет радиаторов отопления производится в соответствии с теплопотерями конкретного помещения, а также в зависимости от площади этого помещения.
Казалось бы, ничего сложного в создании проверенной схемы отопления с контурами труб и циркулирующим по ним носителю нет, однако правильные теплотехнические расчеты основываются на требованиях СНиП. Такие расчеты выполняются специалистами, а сама процедура считается чрезвычайно сложной.
Однако с допустимым упрощением выполнить процедуры можно и самостоятельно. Кроме площади обогреваемого помещения, в расчетах учитываются некоторые нюансы.
Не зря для расчета радиаторов специалисты применяют различные методики. Основная их особенность – учет максимальных теплопотерь помещения. Затем уже рассчитывается нужное количество отопительных приборов, которые компенсируют эти потери.
Понятно, что чем проще будет используемый метод, тем более точными будут итоговые результаты. К тому же для нестандартных помещений специалисты применяют специальные коэффициенты.
Специалисты в своих проектах нередко используют специальные приборы. Например, с точным определением фактических теплопотерь справится тепловизор. На основании данных, полученных по прибору, рассчитывается количество радиаторов, которые с точностью компенсируют потери.
Такой метод расчета покажет наиболее холодные точки квартиры, места, где тепло будет уходить активнее всего. Такие точки часто возникают из-за строительного брака, например, допущенного рабочими, или из-за некачественных строительных материалов.
Результаты проводимых расчетов тесно связаны с существующими видами радиаторов отопления. Для получения наилучшего результата в расчетах необходимо знание параметров планируемых к использованию устройств.
Современный ассортимент включает такие виды радиаторов:
Для проведения расчетов нужны такие параметры устройств, как мощность и форма радиатора, материал изготовления. Самая простая схема подразумевает размещение радиаторов под каждым окном, имеющимся в комнате. Поэтому рассчитываемое количество радиаторов обычно равно числу оконных проемов.
Точность расчетов зависит также и от того, как они сделаны: для всей квартиры или на одну комнату. Специалисты советуют выбрать расчет для одной комнаты. Пусть на работу уйдет немного больше времени, но полученные данные будут наиболее точными.
При этом, приобретая оборудование, нужно учесть около 20 процентов запаса. Этоп запас пригодится, если в работе центральной системы отопления случаются перебои или если стены панельные.
Также эта мера спасет при недостаточно эффективном отопительном котле, используемом в частном доме.
Взаимосвязь системы отопления с видом используемого радиатора нужно учесть в первую очередь.
Например, стальные устройства бывают весьма элегантной формы, но модели не особо популярны среди покупателей. Считается, что главный недостаток таких приборов – в некачественном теплообмене.
Основное достоинство – в недорогой цене, а также небольшом весе, что упрощает работы, связанные с установкой устройства.
Стальные радиаторы обычно имеют тонкие стенки, которые быстро нагреваются, но столь же быстро и охлаждаются. При гидравлических ударах сварные стыки стальных листов дают течь. Недорогие варианты без специального покрытия подвергаются коррозии. Гарантийные обязательства производителей обычно имеют короткий срок. Поэтому, несмотря на относительную дешевизну, потратиться придется много.
Чугунные радиаторы знакомы многим из-за ребристого внешнего вида. Такие «гармошки» устанавливались как в квартирах, так и в зданиях общественного назначения повсеместно.
Особым изяществом чугунные батареи не отличаются, но зато служат долго и качественно. В некоторых частных домах они есть и сейчас.
Положительной характеристикой данного типа радиаторов является не только качество, но и возможность дополнить количество секций.
Современные чугунные батареи немного видоизменили внешний облик. Они более элегантные, гладкие, выпускают и эксклюзивные варианты с рисунком чугунного литья.
Современные модели имеют свойства предыдущих версий:
- длительно сохраняют тепло;
- не боятся гидроударов и температурных перепадов;
- не подвергаются коррозии;
- подходят для любых видов теплоносителей.
Кроме неприглядного внешнего вида, чугунные батареи имеют еще один существенный недостаток – хрупкость. Батареи из чугуна практически невозможно установить одному, так как они очень массивны. Не все стеновые перегородки могут выдержать вес чугунной батареи.
Алюминиевые радиаторы появились на рынке недавно. Популярности этого вида способствует невысокая цена. Алюминиевые батареи отличаются отменной теплоотдачей. При этом эти радиаторы имеют небольшой вес, обычно не требуют большого объема теплоносителя.
В продаже можно встретить варианты алюминиевых батарей как секциями, так и цельными элементами. Это дает возможность рассчитать точное количество изделий в соответствии с нужной мощностью.
Как и любой другой продукт, алюминиевые батареи имеют недостатки, например, подверженность к коррозии. При этом присутствует риск газообразования. Качество теплоносителя для алюминиевых батарей должно быть очень высоким.
Если алюминиевые радиаторы секционного типа, то в местах соединений они часто дают течь. При этом отремонтировать батарею просто невозможно. Самые качественные алюминиевые батареи делаются способом анодного оксидирования металла.
Однако внешних отличий эти конструкции не имеют.
Биметаллические радиаторы отопления имеют особую конструкцию, из-за которой у них повышенная теплоотдача, а надежность сравнима с чугунными вариантами.
Биметаллическая радиаторная батарея состоит из секций, соединенных вертикальным каналом. Наружная алюминиевая оболочка батареи обеспечивает высокую теплоотдачу.
Гидравлических ударов такие батареи не боятся, а внутри них может циркулировать любой теплоноситель. Единственным недостатком биметаллических батарей является высокая цена.
Технические параметры радиаторов батарей, изготовленных из разных материалов, отличаются. Специалисты советуют устанавливать чугунные радиаторы в частном доме. В квартире лучше ставить биметаллические или алюминиевые батареи. Подбор количества батарей ведется из расчета квадратов площади помещения. Подсчет размера секций производится из возможных тепловых потерь.
Учет тепловых потерь удобнее произвести на примере частного дома. Тепло будет теряться через оконные, дверные проемы, перекрытия и стены, вентиляционные системы. Для каждой потери имеется классический коэффициент. Он в профессиональных формулах обозначается литерой Q.
В расчеты включаются такие компоненты, как:
- площадь окна, двери или других конструкций – S;
- температурная разница внутри и снаружи – DT;
- толщина стен –V;
- теплопроводность стен –Y.
Формула выглядит следующим образом: Q = S*DT /R слоя, R = v /Y.
Все рассчитанные Q суммируются, а к ним добавляются 10-40 процентов потерь, которые могут присутствовать из-за наличия вентиляционных шахт. Число нужно поделить на общую площадь дома и суммировать с предполагаемой мощностью радиаторных батарей.
Для упрощения расчетов специалисты используют профессиональную таблицу, которая включает такие колонки:
- наименование помещения;
- объем в куб. м;
- площадь в кв. м;
- теплопотери в кВт.
Например, комната, площадью 20 м2 будет соответствовать объему 7,8. Теплопотери помещения составят 0,65. В расчетах стоит учесть, что значение будет иметь и ориентация стен.
Добавки для вертикалей, ориентированных на север, северо-восток, северо-запад составят 10 процентов. Для стен, ориентированных на юго-восток и запад – 5 процентов. Добавочного коэффициента для южной стороны нет.
Если помещение высотой более 4 метров, добавочный коэффициент – 2 процента. Если рассматриваемое помещение угловое, то добавка составит 5 процентов.
Кроме теплопотерь, в расчет нужно принимать и другие факторы. Подобрать количество батарей для комнаты можно по квадратуре. Например, известно, что на обогрев 1 м2 нужно не менее 100 Вт.
То есть на комнаты в 10 м2 нужен радиатор по мощности не менее 1 кВт. Это примерно 8 секций стандартной чугунной батареи. Расчет актуален и для комнат со стандартными потолками высотой до трех метров.
Если нужно произвести более точный расчет по квадратному метру, то стоит учесть все теплопотери. Формула предполагает умножение 100 (ватт/м2) на соответствующие квадратные метры и на все коэффициенты Q.
Значение, найденное по объему, дает такие же цифры, как и формула расчета по площади, показатели СНиП потерь тепла в помещении панельного дома с деревянными рамами 41 Вт на метр3. Меньший показатель нужен, если установлены современные пластиковые окна – 34 Вт на м3.
Для расчета числа секций батарей и предполагаемой мощности существуют следующие формулы:
- N=S*100|P (без учтенных теплопотерь);
- N=V*41Bt*1,2|P 9 (с учтенными теплопотерями), где:
- N –число секций;
- P- мощность единицы секции;
- S- площадь;
- V- объем помещения;
- 1,2 – стандартный коэффициент.
Теплоотдачу секций конкретных видов радиаторов можно найти на ребре изделий. Производители обычно стандартно указывают показатели.
Средние значения следующие:
- алюминий – 170-200 Вт;
- биметалл – 150 Вт;
- чугун – 120 Вт.
Для упрощения расчетов можно внести корректировки и дробные цифры округлить в большую сторону. Лучше иметь запас мощности, а температурный уровень поможет отрегулировать термостат.
Если в помещении несколько окон, нужно разделить высчитанное число секций, чтобы установить их под каждым окном. Таким образом, для холодного воздуха, проникающего через стеклопакеты, будет создаваться оптимальная тепловая завеса.
Если несколько стен одной комнаты уличные, количество секций нужно добавлять. Это же правило действует при высоте потолка более трех метров.
В качестве дополнения не помешает учесть особенности системы отопления. Например, индивидуальная или автономная система обычно эффективнее централизованной системы, которая присутствует в многоквартирных домах.
Индивидуальная системаЦентрализованная система
Теплоотдача радиаторов будет изменяться в зависимости от типа подключения.
Оптимальное подключение – диагональное, с подачей носителя сверху. В этом случае нетепловая мощность радиатора не уменьшится.
При боковом подключении обычно наблюдаются самые большие тепловые потери. У всех остальных видов подключений средняя эффективность.
Фактическая мощность устройства уменьшится и при наличии заграждающих вещей. Например, при нависающем подоконнике сверху радиатора теплоотдача упадет на 7-8 процентов.
Если подоконник перекрывает не весь радиатор, то потери составят примерно 3-5 процентов. При установке экрана на радиатор также будут наблюдаться потери тепла – примерно 7-8 процентов.
Если экран размещен на весь отопительный прибор, то теплоотдача радиатора уменьшится на 25 процентов.
Точность расчетов позволит собрать максимально комфортную систему для вашего жилья. При правильном подходе можно сделать любую комнату достаточно теплой. Грамотный подход влечет за собой и финансовые преимущества. Вы точно сэкономите, не переплачивая за лишнее оборудование. Еще больше можно сэкономить при условии грамотного монтажа оборудования.
Особой сложностью отличается однотрубная система отопления. Здесь в каждый последующий отопительный прибор носитель поступает все более холодный. Для расчета мощности однотрубной системы для каждого радиатора в отдельности нужно пересчитывать температуру.
Чтобы последняя в ветке батарея не получилась огромной, на практике проблема решается установкой температуры через байпас. Это поможет отрегулировать теплоотдачу, что в итоге компенсирует температуру теплоносителя.
Если стоит задача приблизительно подсчитать количество секций радиаторов, то сделать это несложно и быстро. Куда больше внимания и времени уйдет на корректировку, связанную с особенностями помещения, выбором способа подключения и расположения устройств.
Например, специалисты при подсчетах вносят корректировки в зависимости от средних температурных показателей.
Стандартные коэффициенты выглядят следующим образом:
- -10 градусов – 0,7;
- -15 градусов – 0,9;
- -20 градусов – 1,1;
- -25 градусов – 1,3;
- -30 градусов – 1,5.
На мощность теплового излучения будет влиять и режим отопительной системы. При выборе радиатора по паспортным показателям стоит понимать, что производители обычно указывают максимальную мощность.
Высокотемпературный режим системы отопления предполагает, что в ней курсирует носитель, нагретый до 90 градусов. При таком режиме в помещении с точно высчитанным количеством радиаторов будет около 20 градусов тепла.
Однако в таком режиме системы отопления работают редко. Режимы современных систем обычно средние или низкие. Для внесения корректировки нужно определить температурный напор системы. Здесь учитывается разница между температурой в помещении и отопительных приборов.
Сколько чугунных радиаторов отопления нужно при высокотемпературном и низкотемпературном режимах, высчитаем на примере: размер стандартной секции – 50 см, помещение – 16 кв. м.
Одна секция из чугуна, работающая в высокотемпературном режиме (90/70/20), обогреет 1,5 м2. Для обеспечения тепла потребуется 16/1,5 – 10,6 секций, то есть 11 штук. В системе с низкотемпературным режимом (55/45/20) понадобится вдвое больше секций – 22.
Расчет будет выглядеть следующим образом:
(55+45) /2-20=30 градусов;
(90+70) /2-20=60 градусов.
Батарея из 22 секций получается очень большой, поэтому чугунный вариант точно не подойдет. Это одна из причин, почему чугунные радиаторы не рекомендуют использовать в низкотемпературных системах.
О том, как произвести расчет радиаторов отопления, смотрите далее.
Расчет радиаторов отопления
Опубликовано 09 Мар 2014
Рубрика: Теплотехника | 22 комментария
«У вас теплые батареи?» или «У вас горячие радиаторы отопления?» — такие вопросы мы задаем соседям, если у нас прохладно в квартире, в кабинете, в производственном помещении. Все разнообразные приборы отопления в народе, обычно, называют батареями или радиаторами отопления.
Под эти термины попадают панельные и секционные радиаторы, ребристые трубы, регистры из гладких труб, разнообразные конвекторы и даже иногда относительно экзотические потолочные излучатели.
В статье, которую вы читаете, будет представлена небольшая программа в MS Excel, позволяющая выполнить тепловой расчет радиаторов отопления и конвекторов.
Радиатор отопления – это прибор, который нагревает воздух и предметы в помещении посредством радиационного излучения и конвективного теплообмена, передавая при этом тепловую энергию от горячего теплоносителя (чаще всего от воды) через свои стенки.
Конвектор передает тепловую энергию в окружающее его пространство исключительно (на 95%) путем конвективного теплообмена – нагрева горячими стенками воздушных струй.
Доля тепла, передаваемая конвекцией (оставшаяся часть, соответственно, — инфракрасным излучением) для некоторых типов приборов отопления приведена ниже:
Чугунные радиаторы (батареи) – 25…35%
Алюминиевые секционные радиаторы – 50…60%
Панельные стальные радиаторы – 65…75%
Какой тип приборов отопления лучше однозначно сказать нельзя. У всех есть недостатки. Однако возросшее качество проектирования и изготовления конвекторов позволяет этому типу приборов в последнее время постоянно увеличивать свою долю рынка.
За последние лет пять мне довелось участвовать в выборе и проектировании систем отопления для большого торгового комплекса (4 этажа, более 30 тысяч квадратных метров) и для производственного цеха (500 квадратных метров).
И там и там, в качестве приборов отопления по критерию «цена / качество / эффективность» были применены конвекторы, которые существенно «переиграли» конкурентные варианты (в том числе и вариант воздушного отопления).
Практика последующей эксплуатации подтвердила правильность выбранного решения – конвекторы прекрасно отапливают объекты!
Как и большинство расчетов в теплотехнике предлагаемый расчет радиаторов отопления будет приблизительным. «Приблизительность» заключается в том, что на фактическую теплоотдачу приборов влияют десяток факторов, часть из которых в «точных» расчетах учитываются коэффициентами, определенными в практических опытах, а часть факторов из-за малой значимости и вовсе игнорируются.
Предложенный ниже расчет радиаторов отопления учитывает 90…95% факторов при выполнении ряда условий:
1. Атмосферное давление в месте эксплуатации приборов должно быть около 760 миллиметров ртутного столба. Для высокогорных местностей необходимо вводить дополнительную поправку при «точных» расчетах.
2. Подача воды в прибор не должна быть «снизу – вверх»! Подача может быть любой, предпочтительнее — «сверху – вниз». В противном случае около 15…20% тепла не дополучите.
3. Монтаж радиатора должен обеспечивать свободное движение воздуха вдоль его поверхностей в вертикальном направлении. Расстояние от пола до низа прибора и от верха прибора до подоконника или верха установочной ниши стены желательно должны быть не менее 100 миллиметров.
Предлагаемый далее расчет в Excel, можно выполнить и в программе OOo Calc из пакета Open Office.
О цветах ячеек листа Excel, которые применены в статьях этого блога, следует прочесть на странице«О блоге».
Расчет радиаторов отопления и конвекторов в Excel
Исходные данные:
1. Тип выбранного отопительного прибора записываем
в объединенные ячейки C3D3E3: Радиатор МС-140-108
2. Количество последовательно включенных приборов (секций) Nв шт. вводим
Следующие 5 параметров берем из технических характеристик завода изготовителя приборов.
3. Номинальный тепловой поток прибора (секции) Qн в Вт заносим
в ячейку D5: 185
4. Номинальный температурный напор прибора (секции) dtн в °C заносим
5. Номинальный расход воды через прибор (секцию) Gн в кг/час вписываем
в ячейку D7: 360
6. Показатель нелинейности теплоотдачи от температуры nзаписываем
в ячейку D8: 0,30
7. Показатель нелинейности теплоотдачи от расхода pзаписываем
в ячейку D9: 0,02
Следующие 3 параметра задаем исходя из предполагаемой реальности последующей эксплуатации. Они зависят от источника теплоснабжения и типа помещения.
8. Температуру воды на «подаче» tпв °C заносим
в ячейку D10: 85
9. Температуру воды на «обратке» tов °C заносим
в ячейку D11: 60
10. Температуру воздуха в помещении tвв °C вписываем
в ячейку D12: 18
Результаты расчетов:
11.Номинальный тепловой поток N приборов (секций) ΣQн в КВт вычисляем
в ячейке D14: =D4*D5/1000 =1,850
12.Температурный напор dt в °C определяем
в ячейке D15: =(D10+D11)/2-D12 =54,5
13.Расчетный оптимальный расход воды G в кг/час рассчитываем
в ячейке D16: =((0,86*D14*1000*((D15/D6)^(D8+1))*(1/D7)^D9)/(D10-D11))^(1/(1-D9)) =44
14.Расчетную теплоотдачу N приборов (секций) отопления Q в КВт вычисляем
в ячейке D17: =D14*((D15/D6)^(D8+1))*(D16/D7)^D9 =1,281
и делаем проверку
в ячейке D18: =D16/0,86*(D10-D11)/1000 =1,281
15.Долю реальной теплоотдачи N приборов от номинального теплового потока ∆ в % определяем
в ячейке D19: =D17/D14*100 =69
На этом расчет в Excel радиатора отопления МС 140-108, стоящего из 10 секций завершен.
Выполним аналогичный расчет в Excel конвектора КСК 20-2,083ПС.
Выводы
При температурном графике теплоносителя 85/60 °C теплоотдача регистров отопления и конвекторов составляет лишь 60…70% от номинальной мощности — то есть от той, про которую вам скажет продавец. Это важно понимать и учитывать при покупке приборов отопления.
Расчет радиаторов отопления МС-140-108 из 10 секций и конвекторов КСК 20-2,083ПС показал близость их тепловых мощностей при равных расходах теплоносителя и при одинаковых температурных условиях. Но цена конвектора сегодня около 2100 рублей, а нового радиатора — более 3800 рублей.
При сопоставимых размерах (длина: 1076/1080 мм; высота: 400/588 мм; глубина: 156/140 мм) конвектор весит 25…27 кг, а радиатор – около 76 кг. Объем конвектора – 1,5 л. Объем чугунного радиатора – около 15 л.
Чугунные радиаторы – более инерционные приборы.
Но у конвекторов тепловая мощность падает более резко при низких температурах теплоносителя (обратите внимание в расчетах на долю реальной теплоотдачи ∆ у радиатора и конвектора).
Выбор остается всегда за нами в зависимости от условий применения, предыдущего опыта и в силу привычек и приверженностей.
Уважаемые читатели, пишите комментарии! Ваши мысли, замечания и предложения всегда интересны коллегам и автору.
Прошу уважающих труд автора скачивать файл после подписки на анонсы статей!
Не забывайте подтверждать подписку кликом по ссылке в письме, которое тут же придет к вам на указанную почту (может прийти в папку «Спам»).
Ссылка на скачивание файла: raschet-radiatorov-otopleniya (xls 25,0KB).
Другие статьи автора блога
Эффективные методы расчета радиаторов отопления
Чтобы рассчитать, какое число радиаторов понадобится установить в помещении, используют различные методики, суть которых состоит в следующем: требуется определить максимальные тепловые потери, характерные для помещения, после чего рассчитать число приборов отопления, способное компенсировать эти теплопотери. Используются различные методы расчета отопительных радиаторов.
При использовании самых простых методов можно получить лишь приблизительные данные, но простые расчеты вполне применимы, когда нужно подобрать радиаторы для обогрева стандартного помещения.
При выполнении расчетов можно применять и специальные коэффициенты, учитывающие нестандартные параметры помещения (к примеру, выход на лоджию, угловая комната, большое окно и др.).
Можно использовать и более подробные методики расчетов с применением формул.
Еще один способ расчета радиаторов – определение фактических потерь при помощи тепловизора и расчет числа радиаторов, способных компенсировать эти потери. У данного метода есть важное достоинство: тепловизор четко фиксирует, в каких местах помещения происходят наиболее активные тепловые потери, и дает возможность определить, чем они вызваны (наличием трещины, огрехами ремонта и др.).
В ходе расчета батарей учитываются следующие факторы:
- теплопотери, характерные для помещения;
- мощность излучения секциями радиатора в номинальном выражении.
Расчет отопительных радиаторов по площади
Расчет отопительных радиаторов по площади
Это наиболее доступная методика, позволяющая определить мощность излучения тепла для полноценного обогрева помещения заданного размера. Зная площадь конкретного помещения, можно легко определить тепловую потребность по следующим строительным нормам СНиП:
- на обогрев 1 кв. метр жилого помещения в средней климатической зоне требуется от 60 до 100 Вт энергии;
- для регионов, расположенных выше 600, необходимо от 150 до 200 Вт энергии.
Принимая во внимание данные нормы, можно рассчитать, сколько тепла понадобится на обогрев помещения определенной площади, и с учетом этого выполнить расчет радиаторов, при этом, для областей с более теплым климатом берутся значения, близкие к нижней границе нормы, а для регионов с холодным или непостоянным климатом, соответственно, близкие к верхней границе.
Для качественного отопления комнаты требуется небольшой запас по мощности обогрева: чем большая мощность нужна для обогрева комнаты, тем большее количество радиаторов понадобится установить.
В свою очередь, чем больше установлено радиаторов, тем большее количество теплоносителя циркулирует в системе.
Это не имеет особого значения в случаях, когда квартира подсоединена к центральной отопительной системе, а вот при наличии индивидуальной отопительной системы большого объема требуется намного больше затрат на поддержание необходимой температуры теплоносителя.
После расчета тепловой потребности комнаты, можно рассчитать число секций батареи, учитывая, что каждый радиатор обеспечивает определенный объем тепла, о чем заявлено в паспорте.
Показатель потребности в тепле делится на мощность батареи.
При этом, для кухни полученное в итоге значение можно округлить до меньшего значения, а для торцевых/угловых помещений или комнат с большим окном/балконом – до большего.
Данная система расчета очень проста, однако, не лишена недостатков: при выполнении расчетов не учитываются материалы стен, высота потолков, наличие утепления, размер и тип окон, а также ряд других факторов. По этой причине расчет по СНиП можно считать ориентировочным, а для более точного результата требуется внести некоторые корректировки.
Расчет секций приборов по объему помещения
Расчет секций приборов
При данном типе расчета учитываются показатели площади и высоты потолков, что позволяет определить, какое количество тепла понадобится для нагрева всего воздуха внутри помещения. Для расчета отопительных батарей по этому методу нужно рассчитать объем помещения и затем определить оптимальное количество тепла для обогрева этого помещения по нормам СНиП:
- на отопление 1 кубического метра воздуха в панельных домах требуется 41 Вт;
- в кирпичных домах – 34 Вт.
Корректировка результатов расчета отопительных радиаторов
Корректировка результатов расчета
Для получения максимально точного результата необходимо учитывать все факторы, способствующие увеличению/уменьшению теплопотерь, включая материал стен, их утепление, размер окон, тип остекления, количество торцевых стен и т.
д. Значения тепловых потерь помещения умножаются на определенные коэффициенты.
В частности, за счет окон происходит потеря 15-35% тепловой энергии. Точное значение зависит от габаритов и качества утепления окна.
В связи с этим, предусмотрено два коэффициента:
- остекление: стандартные двойные рамы – 1,27, стандартные двухкамерные стеклопакеты – 1,0, трехкамерные стеклопакеты/двухкамерные стеклопакеты с аргоном – 0,85;
- соотношение площади окна и площади пола: 50% – 1,2, 40% – 1,1, 30% – 1, 20% – 0,9, 10% – 0,8.Что касается стен помещения, то для определения тепловых потерь с учетом этого фактора следует учитывать степень теплоизоляции и материал стен, а также число внешних стен, применяя следующие коэффициенты:
- степень тепловой изоляции: хорошая – 0,8, недостаточная (отсутствующая) – 1,27, норма (кирпичная стена толщиной в 2 кирпича);
- наличие внешних стен: три – 1,3, две – 1,2, одна – 1,1, внутреннее помещение (отсутствие потерь) – 1.
Кроме того, на тепловые потери влияет и то, какое помещение располагается сверху – отапливаемое или неотапливаемое. В данном случае используются следующие коэффициенты:
- неотапливаемый чердак – 1;
- отапливаемый чердак – 0,9;
- отапливаемое помещение (квартира) – 0,7.
При расчете секций батарей также можно учитывать специфические параметры помещения и климатические особенности региона.
Если выполнять расчет по площади комнаты при наличии потолков, имеющих нестандартную высоту, то следует применять пропорциональное увеличение или уменьшение с помощью коэффициента, который рассчитывается следующим образом: реальная (фактическая) высота потолков делится на стандартную высоту (2,7 м).
Все перечисленные коэффициенты предназначены для расчета батарей в квартирах.
Чтобы рассчитать тепловые потери здания через фундамент или подвал и кровлю, полученный результат необходимо увеличить на 50%.
Кроме того, результат расчета можно скорректировать с учетом средних температур в зимний период:
- -30 градусов – 1,5;
- -25 градусов – 1,3;
- -20 градусов – 1,1;
- -15 градусов – 0,9;
- -10 градусов и выше – 0,7.
Учитывая все корректировки, можно максимально точно определить число батарей, способных обеспечить обогрев помещения с заданными параметрами. Однако, существуют и другие факторы, влияющие на интенсивность теплового излучения.
Корректировка полученных результатов с учетом режима отопительной системы
В паспортах радиаторов указывается максимальная мощность приборов при функционировании в разных режимах:
- режим высоких температур – 90/70/20, где 90 градусов – температура на подаче, 70 градусов – температура в обратке, 20 градусов – температура воздуха в помещении;
- средний режим – 75/65/20;
- режим низких температур – 55/45/20.
Таким образом, результат расчета можно скорректировать с учетом рабочего режима системы. Для этого определяют температурный напор внутри системы, то есть разницу между степенью нагрева батарей и воздуха, учитывая, что температура приборов отопления является средним арифметическим между показателями подачи и обратки.
Расчет в зависимости от типа батареи
Расчет в зависимости от типа батареи
Если планируется установка секционных батарей стандартного типа, то определение их числа не доставит проблем, так как известны все технические параметры таких батарей, включая тепловую мощность. В случае, если вместо мощности производителем указано значение расхода жидкости-теплоносителя, то рассчитать мощность достаточно легко: расход 1 литра теплоносителя в минуту приблизительно равен 1 кВт мощности.
Если же радиаторы отопления пока не выбраны, необходимо учесть, что батареи, имеющие одинаковые габариты, но произведенные из разных материалов, обладают разной тепловой мощностью, при этом, метод расчета секций чугунных батарей отопления аналогичен расчету радиаторов, выполненных из других материалов (алюминия, стали). Различаться может лишь мощность излучения одной секции.
Существуют усредненные значения мощностей, которые можно учитывать при расчете батарей из разных материалов. Так, одна секция батареи с осевым расстоянием 50 см излучает следующее количество тепла:
- чугунный радиатор – 145 Вт;
- биметаллический радиатор – 185 Вт;
- алюминиевый радиатор – 190 Вт.
Однако, в продаже можно найти радиаторы другой высоты (примерно от 20 до 60 см), мощность которых может отличаться от стандарта, поэтому при расчете нестандартных радиаторов отопления понадобится внести коррективы.
В частности, следует учесть, что тепловая отдача радиатора зависит от площади его поверхности. Чем меньше высота отопительного радиатора, тем меньше его площадь и, соответственно, ниже мощность теплового излучения.
Определив соотношение между высотой прибора отопления и стандартом, можно скорректировать результат расчета с помощью полученного коэффициента.
Зависимость мощности приборов отопления от местоположения и подключения
Помимо остальных параметров, теплоотдача радиаторов отопления варьируется в зависимости от такого фактора, как тип подключения.
Так, наиболее оптимальным можно считать диагональное подключение, при котором теплоноситель подается сверху – в данном случае отсутствуют потери тепловой мощности, а наибольшие потери тепловой мощности характерны для бокового подключения и достигают отметки 22%.
При всех остальных типах подключения наблюдаются средние потери.
Реальная мощность радиатора отопления снижается и в случае присутствия каких-либо заграждающих конструкций, к примеру, подоконника (при нависании – 7-8% потерь, при частичном нависании – 3-5% потерь) или сетчатого экрана (20-25%, если экран перекрывает радиатор полностью, и 7-8% потерь, если экран не достигает пола).
Расчет количества отопительных батарей для однотрубных систем
Батареи с однотрубными системами
Все вышеперечисленное применимо к расчету радиаторов, подключенных к двухтрубной отопительной системе, где на вход каждого прибора подается теплоноситель, имеющий одинаковую степень нагрева.
В однотрубной же системе в каждую последующую батарею поступает все более охлажденная вода.
В таком случае наиболее оптимальным методом расчета отопительных батарей является определение мощности приборов по той же схеме, что и для двухтрубных систем, а затем добавление секций пропорционально уменьшению тепловой мощности с целью повышения тепловой отдачи радиатора в целом.
Обычно при расчете мощности котла, применяемого для нагрева теплоносителя в однотрубной системе, предусматривают определенный запас, подсоединяют батареи через устройство байпас и устанавливают запорную арматуру для регулирования теплоотдачи и компенсации снижения температуры жидкости-теплоносителя.
В целом, можно сделать вывод, что размеры и число батарей в однотрубных системах необходимо увеличивать, устанавливая все больше секций по мере отдаления от места входа теплоносителя в систему.
Итоги
Ориентировочный расчет отопительных радиаторов выполняется достаточно быстро и легко, в отличие от расчета батарей с учетом вида подключения, габаритов, специфических характеристик помещения и ряда других факторов. Зато подробный расчет позволяет максимально точно рассчитать нужное число приборов отопления для создания максимально комфортной и уютной атмосферы в помещении в холодное время года.
Расчет отопления по площади помещения
Расчет отопления по площади помещения
Создавать систему отопления в собственном доме или даже в городской квартире – чрезвычайно ответственное занятие. Будет совершенно неразумным при этом приобретать котельное оборудование, как говорится, «на глазок», то есть без учета всех особенностей жилья.
В этом вполне не исключено попадание в две крайности: или мощности котла будет недостаточно – оборудование станет работать «на полную катушку», без пауз, но так и не давать ожидаемого результата, либо, наоборот, будет приобретен излишне дорогой прибор, возможности которого останутся совершенно невостребованными.
Но и это еще не все. Мало правильно приобрести необходимый котел отопления – очень важно оптимально подобрать и грамотно расположить по помещениям приборы теплообмена – радиаторы, конвекторы или «теплые полы». И опять, полагаться только лишь на свою интуицию или «добрые советы» соседей – не самый разумный вариант.
Одним словом, без определенных расчетов – не обойтись.
Конечно, в идеале, подобные теплотехнические вычисления должны проводить соответствующие специалисты, но это часто стоит немалых денег.
А неужели неинтересно попытаться выполнить это самостоятельно? В настоящей публикации будет подробно показано, как выполняется расчет отопления по площади помещения, с учетом многих важных нюансов.
Методику нельзя назвать совершенно «безгрешной», однако, она все же позволяет получить результат с вполне приемлемой степенью точности.
Простейшие приемы расчета Для того чтобы система отопления создавала в холодное время года комфортные условия проживания, она должна справляться с двумя основными задачами. Эти функции тесно связаны между собой, и разделение их – весьма условно.
Первое – это поддержание оптимального уровня температуры воздуха во всем объеме отапливаемого помещения. Безусловно, по высоте уровень температуры может несколько изменяться, но этот перепад не должен быть значительным.
Вполне комфортными условиями считается усредненный показатель в +20 °С – именно такая температура, как правило, принимается за исходную в теплотехнических расчетах. Иными словами, система отопления должна быть способной прогреть определенный объем воздуха.
Увы, теплопотери – это самый серьезный «соперник» любой системы отопления. Их можно свести к определенному минимуму, но даже при самой качественной термоизоляции полностью избавиться от них пока не получается.
Естественно, чтобы справиться с такими задачами, система отопления должна обладать определенной тепловой мощностью, причем этот потенциал не только должен соответствовать общим потребностям здания (квартиры), но и быть правильно распределенным по помещениям, в соответствии с их площадью и целым рядом других важных факторов.
Обычно расчет и ведется в направлении «от малого к большому».
Проще говоря, просчитывается потребное количество тепловой энергии для каждого отапливаемого помещения, полученные значения суммируются, добавляется примерно 10% запаса (чтобы оборудование не работало на пределе своих возможностей) – и результат покажет, какой мощности необходим котел отопления. А значения по каждой комнате станут отправной точкой для подсчета необходимого количества радиаторов.
Самый упрощённый и наиболее часто применяемый в непрофессиональной среде метод – принять норму 100 Вт тепловой энергии на каждый квадратный метр площади (рис 3): Q = S × 100 Q – необходимая тепловая мощность для помещения; S – площадь помещения (м²); 100 — удельная мощность на единицу площади (Вт/м²). Например, комната 3.2 × 5,5 м S = 3,2 × 5,5 = 17,6 м²
Q = 17,6 × 100 = 1760 Вт ≈ 1,8 кВт
Способ, очевидно, очень простой, но весьма несовершенный. Стоит сразу оговориться, что он условно применим только при стандартной высоте потолков – примерно 2.7 м (допустимо – в диапазоне от 2.5 до 3.0 м).
С этой точки зрения, более точным станет расчет не от площади, а от объема помещения.
Понятно, что в этом случае значение удельной мощности рассчитано на кубический метр.
Его принимают равным 41 Вт/м³ для железобетонного панельного дома, или 34 Вт/м³ — в кирпичном или выполненном из других материалов (рис 4).
Q = S × h × 41 (или 34) h – высота потолков (м); 41 или 34 – удельная мощность на единицу объема (Вт/м³). Например, та же комната, в панельном доме, с высотой потолков в 3.2 м: Q = 17,6 × 3,2 × 41 = 2309 Вт ≈ 2,3 кВт Результат получается более точным, так как уже учитывает не только все линейные размеры помещения, но даже, в определенной степени, и особенности стен.
Но все же до настоящей точности он еще далек – многие нюансы оказываются «за скобками». Как выполнить более приближенные к реальным условиям расчеты – в следующем разделе публикации.
Проведение расчетов необходимой тепловой мощности с учетом особенностей помещений Рассмотренные выше алгоритмы расчетов бывают полезны для первоначальной «прикидки», но вот полагаться на них полностью все же следует с очень большой осторожностью.
Даже человеку, который ничего не понимает в строительной теплотехнике, наверняка могут показаться сомнительными указанные усредненные значения – не могут же они быть равными, скажем, для Краснодарского края и для Архангельской области.
Кроме того, комната — комнате рознь: одна расположена на углу дома, то есть имеет две внешних стенки, а другая с трех сторон защищена от теплопотерь другими помещениями. Кроме того, в комнате может быть одно или несколько окон, как маленьких, так и весьма габаритных, порой – даже панорамного типа.
Да и сами окна могут отличаться материалом изготовления и другими особенностями конструкции. И это далеко не полный перечень – просто такие особенности видны даже «невооруженным глазом». Одним словом, нюансов, влияющих на теплопотери каждого конкретного помещения – достаточно много, и лучше не полениться, а провести более тщательный расчет.