Труба рех evoh для отопления

Полимерные многослойные трубы PEXa/EVOH

Доступные размеры:

Артикул

Описание

Тип упаковки

16,0 х 2,2 бухта 200 м.

бухта в гофрокоробе

20,0 х 2,8 бухта 100 м.

бухта в гофрокоробе

25,0 х 3,5 бухта 50 м.

бухта в гофрокоробе

32,0 х 4,4 бухта 50 м.

бухта в гофрокоробе

Скачать:

Свидетельство о государственной регистрации

Труба напорная из сшитого полиэтилена с барьерным (антидиффузионным) слоем из этиленвинилового спирта (EVOH) предназначена для строительства и ремонта внутренних сетей холодного, горячего водоснабжения и радиаторного отопления зданий, в том числе напольного отопления (классы эксплуатации 2, 4, 5 по ГОСТ Р 52134-2003).

Допускается применение трубы для некатегорийных технологических трубопроводов, транспортирующих неагрессивные к материалу труб жидкие среды. Таблица химической стойкости PEX

Трубы COMPIPE TM PEXа/EVOH состоят из 3 слоев (см. рис.1):

Рис. 1. Конструкция полимерной трубы Compipe ТМ PEXа/EVOH

1 – внутренний полимерный слой PEXa;

2 – адгезивный слой;

3 – барьерный слой сополимера этилена и винилового спирта EVOH;

Трубы COMPIPE TM PEXа/EVOH специально разработаны для применения не только в системах горячего и холодного напорного водоснабжения, но и систем центрального отопления, так как отвечают требованиям СНиП 41-01-2003, который предписывает применять в системах отопления полимерные трубы с показателем кислородопроницаемости не более 0,1 г/м 3 в сутки (также требования ГОСТ Р 52134-2003, DIN 4726). Кислород обладает коррозионным действием на системы отопления. Проникая через стенку трубы, кислород вызывает коррозию металлических элементов системы отопления (бойлеры, теплообменники, запорная арматура, терморегуляторы и т.п.).

Характеристики полимерных труб COMPIPE TM PEXа/EVOH

Таблица 1 Характеристики полимерных труб COMPIPE TM PEXа/EVOH

Наименование показателя

Compipe ТМ PEXа/EVOH

Наружный диаметр, мм

16

20

25

32

Внутренний диаметр, мм

Толщина стенки трубы, мм

Масса 1 п.м. трубы, г

Объем жидкости в 1 п.м. трубы, л

Аварийная температура (не менее 100 ч)

Аварийная температура (не менее 4 ч)

Максимальное рабочее давление при

Коэффициент теплового линейного расширения

Изменение длины трубы после прогрева при температуре 120ºС в течение 60 мин

Коэффициент эквивалентной равномерно-зернистой шероховатости

Менее 0,1 г/м 3 в сутки

Способ сшивки полиэтилена

Степень сшивки, не менее

Срок службы при соблюдении правил монтажа и эксплуатации

Трубы Compipe ТМ PEXa получают в процессе экструзии сшивкой полиэтилена при течении полимера в формующем инструменте. Данный способ сшивки ПЭ был открыт Томасом Энгелем в 1965 г.

Сшивка представляет собой свободно-радикальный процесс, приводящий к образованию углерод-углеродных связей между полимерными цепочками (Рис. 2):

Рис. 2. Образование связей между молекулами полиэтилена.

Для получения сшитого полимера полиэтилен перед экструдированием расплавляется вместе с антиокислителями и пероксидами. С повышением температуры пероксиды распадаются, образуя радикалы. Пероксидные радикалы отрывают у звеньев полиэтилена по одному атому водорода (Рис.3):

Рис. 3. Механизм реакции радикального присоединения, инициированный органопероксидом.

Область применения

Область применения труб Compipe ТМ PEXb/EVOH 2, 4, 5, ХВ классы эксплуатации по ГОСТ 32415-2013:

  1. Горячее и холодное водоснабжение в жилых, промышленных и административных зданиях;
  2. Системы радиаторного и напольного отопления (“теплые полы”);
  3. Водяное настенное, безрадиаторное отопление (“теплые стены”);
  4. Технологические трубопроводы и системы водоподготовки;
  5. Отопление открытых площадок и лестничных сходов, стадионов, бассейнов и т.д.;
  6. Подогрев почвы в теплицах, парниках, зимних садах и оранжереях.

Таблица 2. Таблица характеристик классов эксплуатации согласно ГОСТ 32415-2013

Горячее водоснабжение (60 о С)

Горячее водоснабжение (70 о С)

Высокотемпературное напольное
отопление.
Низкотемпературное отопление
отопительными приборами

Высокотемпературное отопление
отопительными приборами

В таблице приняты следующие обозначения:

Tраб — рабочая температура или комбинация температур транспортируемой воды, определяемая областью применения;

Tмакс — максимальная рабочая температура, действие которой ограничено по времени;

Tавар — аварийная температура, возникающая в аварийных ситуациях при нарушении систем регулирования.

КАК ПОЛЬЗОВАТЬСЯ ТАБЛИЦЕЙ
Максимальный срок службы трубопровода для каждого класса эксплуатации определяется суммарным временем работы трубопровода при температурах Траб, Тмакс, Тавар и составляет 50 лет.
Например, для класса 4 расчет следующий: 2,5 года (при 20 о С) + 20 лет (при 40 о С) + 25 лет (при 60 о С) + 2,5 года (при 100 о С) = 50 лет

Таблица 3. Характеристики упаковки труб COMPIPE TM PEXа/EVOH

Размер короба, мм (ДхШхВ)

Количество коробов на палете, шт

Особенности монтажа полимерных труб COMPIPE TM PEXа/EVOH

Главной особенностью монтажа полимерных труб COMPIPE TM PEXа/EVOH является применение фитингов с надвижной гильзой. Также данная система носит название — система трубопроводов с аксиальной запрессовкой. Отличительной чертой данной системы являются:

  • наличие специального латунного надвижного кольца, которое обеспечивает герметизацию соединения;
  • отсутствие каких-либо уплотнительных колец в фитингах, что безусловно, повышает надежность системы;
  • увеличенный внутренний проход фитингов, по сравнению с прессовыми и компрессионными фитингами для металлополимерных труб равных диаметров;
  • чрезвычайно прочное, надежное и долговечное соединение;
  • монтаж осуществляется специальным инструментом для аксиальной запрессовки.
Читайте также:  Отопление дома электричеством 2014

Внешний вид фитинга и гильзы приведен на рис.4

Рисунок 4. Муфта с натяжной гильзой аксиальной запрессовки

Внешний вид соединения приведен на рис.5

Рисунок 5. Внешний вид соединения

Этапы монтажа

1. Отрезать трубу строго под прямым углом;

2. Надеть гильзу на трубу и отодвинуть ее от края;

3. Специальным расширителем расширить край трубы, куда будет вставляться штуцер фитинга;

! Фитинг не может быть вставлен в нерасширенную трубу, т.к. диаметр штуцера фитинга больше внутреннего диаметра трубы.

4. Вставить фитинг в расширенную трубу;

5. Специальным инструментом выполнить запрессовку: надвинуть гильзу на фитинг до юбки на фитинге, не допуская перекосов.

Труба имеет сертификаты соответствия в системе Ростест по ГОСТ 52134-2003 и по ГОСТ 32415-2013.

Для монтажа мы рекомендуем фитинги с надвижной гильзой Comtek.

Трубы из полиэтилена PEX-A, PEX-B, PEX-C, PE-RT. | Особенности строения материалов.

Итак, сшитый полиэтилен (PEX) – это полиэтилен с большим молекулярным весом, получаемый из обычного полиэтилена низкого давления (ПНД) методом сшивания его линейных молекул с помощью ионизирующего излучения, органсилоксанов, пероксидов или азотных радикалов при высоком давлении, которое вызывает образование поперечных дополнительных связей. Эти связи усиливают сцепляющую связь молекулярных кластеров (ячеек) трубы.

В результате, такой молекулярной обработки получают сшитый полиэтилен (PEX) — специальный вид полиэтилена, который сохраняя все преимущества полиэтилена, имеет усиленную прочность, теплостойкость, не течет при нагреве. Применяется PEX для систем водоснабжения, трубопроводов, отопления. При эксплуатации в этих сферах PEX лучше своих конкурентов из полиэтилена.

Обычный полиэтилен начинает плавиться при температуре +110-130 градусов Цельсия. Но его использование необходимо и при более высоких температурах (для систем отопления и горячего водоснабжения). Поэтому были найдены способы получения полиэтилена с большим молекулярным весом.
В зависимости от используемого вида воздействия на ПНД материал — сшивка может быть физическая или химическая.

Физическая сшивка методом рентгеновского облучения.

При физической сшивке получают сшитый полиэтилен PEX-C, такая труба обрабатывается облучением жесткими рентгеновскими лучами. Полученный таким образом сшитый полиэтилен обозначается PEX-C. Средний процент такой сшивки 78%. В результате этого способа сшивка материала по толщине трубы проходит неравномерно: у наружной поверхности самый большой процент сшивки молекул, а у внутренней — маленький. Заломы можно исправить только с помощью соединительных муфт. При изготовлении не используются дополнительные химические присадки улучшающие характеристики трубы. Повышенный риск возникновения микротрещин.

Химическая сшивка методом погружения в раствор.

При химической сшивке под воздействием химических веществ в молекулах полиэтилена идет замещение атомов водорода. В качестве одного из таких химических веществ применяют силан (так называемая силановая сшивка). Полиэтиленовая труба, выходя из экструдера, «принимает» силановую ванну, при этом сшивка идет от наружной и внутренней поверхностей вглубь стенки трубы. В результате процент сшивки у обеих поверхностей получается высокий, а в середине толщины трубы — низкий. Средний процент сшивки составляет приблизительно 75%. Такой материал принято обозначать РEХ-B. По свойствам гибкости такая труба менее гибкая, чем PEX-A. Заломы можно исправить только с помощью соединительных муфт. Высокий показатель давления трубы.

Химическая сшивка под высоким давлением с обработкой лазером.

К химическим способам сшивки относится также сшивка пероксидами, при которой полиэтилен предварительно равномерно смешивают с пероксидом. Сшивка происходит в экструдере в расплавленном состоянии посредством воздействия лазерного света под высоким давлением. Этот способ дает 85% сшивки. И самое главное – свойства материала одинаковы в любом месте, независимо от его толщины. Такой полиэтилен обозначают РEХ-A. Заломы у такой трубы можно с легкостью восстановить строительным феном, но показатель выдерживаемого давления чуть ниже чем PEX-B. По свойствам труба PEX-A самая эластичная и гибкая.

PEX трубы с усиленной прочностью и теплостойкостью.

РEХ-C и РEХ-B трубы применяются для отопления и водоснабжения, но поскольку материал имеет неоднородную структуру, есть некоторые ограничения, связанные с пластичностью и прочностью материала.

А вот трубы из РEХ-A при кратковременной пиковой температуре от -100 до +100 градусов Цельсия сохраняют свои теплофизические и прочностные свойства. Кроме того, сшитый полиэтилен РEХ-A обладает памятью формы. Это обозначает то, что испытав ту или иную нагрузку, материал восстанавливает свою первоначальную форму. Обычный полиэтилен не термостоек и представляет собой совокупность длинных углеводородных молекул, которые никак не связаны друг с другом. Чтобы материал выдерживал высокие температуры, его необходимо сшить. Сшивка это образование между цепочками полиэтилена продольно-поперечных связей – за счет взаимодействия атомов углерода и водорода соседних молекул . Относительное количество образующихся поперечных связей в единице объема полиэтилена определяется показателем «степени сшивки».

PEX-A это один из самых старых способов сшивки полиэтилена. Выпуск пероксидно-сшитого полиэтилена достаточно сложный и дорогой, но контролируем. Непростое производство таких труб по методу Энгеля , так называемую RAM — экструзию в 80-90 годах освоили такие известные фирмы как Rehau, Uponor. Позже исследовательские центры занялись разработкой труб из PEX-bи PEX-c. Мотивация подобных попыток была очевидна — технология производства, по крайней мере, труб из РЕХ-b намного проще и основана на использовании обычных экструзионных линий. Все эти попытки оказались либо совсем неудачными, либо полученные трубы не удовлетворяли по своим характеристикам требованиям нормативных документов. Кроме того, несмотря на кажущуюся простоту производства труб из РЕХ-Ь, для достижения необходимой степени сшивки требуются громоздкие и дорогостоящие пропарочные камеры, что значительно усложняет и удорожает процесс производства. Несмотря на это, в последнее время участилось производство труб из РЕХ-b. Подобная активность вызвана большим успехом применения гибких полимерных труб. С этим и связанны попытки недобросовестных производителей поставки потребителю «недосшитых» труб с предложением завершения сшивки в процессе эксплуатации. Напомним, сшивка РЕХ-b происходит под действием воды и/или водяного пара. Она начинается уже в процессе производства трубы — в охлаждающих ваннах — и продолжается во время ее хранения и транспортировки (при этом скорость процесса сшивки зависит от температуры и влажности воздуха, иными словами, от погоды). В этот момент происходит образование поперечных связей между линейными молекулами полиэтилена, полимер структурируется и приобретает новые свойства. Принимая во внимание, что целый ряд потенциальных производителей труб из РЕХ-b вообще не предусматривает никакого контроля за коэффициентом сшивки (предполагается, что труба должна сшиваться теплоносителем в начале эксплуатации), реальное значение рабочего давления труб в этом случае может оказаться значительно ниже расчетного.Понимая, что применение недостаточно надежных труб из РЕХ-b с неполной степенью сшивки может стать в недалеком будущем миной замедленного действия. Немецкий орган стандартизации (DIN) направил письмо в Европейский Комитет по Стандартизации (CEN/TC 107) по поводу недопущения применения труб РЕХ-b в тепловых распределительных сетях в странах Европейского Союза. И еще немаловажная деталь: в трубах PEX-b процесс сшивки никогда не прекращается. Это означает, что трубы постоянно меняют свои характеристики, со временем труба теряет эластичность, стенки трубы постепенно усаживаются, теряется герметичность механических соединений именно с этим процессом связано то, что фитинги требуется время от времени » подтягивать».

Читайте также:  Насосная установка для системы отопления

PERT класс полиэтиленовых труб

В последние годы наблюдается активный рост применения труб из PE-RT(Polyethylene of Raised Temperature resistance) . В конце 2010 года концерн Dow Chemical представил последние разработки в области материалов для горячего водоснабжения и отопления позволяющие расширить сферу применения PE-RT тип II для производства труб используемых при строительстве высотных зданий.

PE-RT создавался в качестве замены сшитого полиэтилена PEX, который несмотря на свои свойства, имеет некоторые неудобства для производителей и потребителей труб: его нельзя сваривать, он не допускает вторичной переработки, требует сшивки. Тогда как PE-RT – обычный термопласт, (как например, полипропилен PPRC), он обладает близкими к PEX свойствам, но при переработке данный материал не требует сшивки, что позволяет увеличить производительность линии за счет исключения из технологического процесса стадии сшивания ПЭ. Стандартный температурный профиль экструзии позволяет перерабатывать сырье на стандартном оборудовании, прекрасно сваривается с использованием обычных сварочных аппаратов. Поэтому все больше производителей труб предпочитают его сшитому полиэтилену.

Из Европы трубы PE-RT начали поставлять в Россию еще с середины 90-х годов прошлого века. Сегодня темпы развития внутреннего производства из этого материала закономерны для нынешней стадии развития. Хотя для российского рынка материал все еще считается достаточно новым, интерес к нему у монтажных организаций растет с каждым годом. Учитывая свойства материала и наращивание выпуска PE-RT труб российскими производителями, тенденция замещения стальных, полипропиленовых и труб pex с каждым годом будет все очевидней.

Разработки в области катализаторов и производственных технологий привели к созданию нового высоко дифференцированного семейства продуктов на основе сополимеров этилен-a-олефинов. Эти полимеры составляют основу нового класса полиэтиленовых материалов — PERT ( Polyethylene of Raised Temperature resistance — полиэтилены повышенной термостойкости) для производства труб горячего водоснабжения и отопления.

PE-RT рекомендуется для изготовления абсолютно любых труб для систем отопления и горячего и холодного водоснабжения.
Уникальность данных материалов заключается в том, что для получения хорошей долгосрочной гидростатической прочности при высоких температурах их не требуется сшивать. Это дает существенные преимущества при обработке в сравнении с системами из сшитого полиэтилена (PEX).

Основные успехи были достигнуты в понимании взаимосвязи структура-свойства полимеров полиэтилена. Благодаря разработке улучшенной технологии и применению катализаторов можно контролировать внедрение и размещение со-мономера в основной цепочке полимера. Такая более высокая точность определения микрокристалличности полимера позволяет создавать новые комбинации рабочих характеристик. Теперь возможно получение полимеров полиэтилена, сочетающих высокотемпературные рабочие характеристики с гибкостью или лучшей длительной текучестью для той или иной жесткости.

Ключевую роль в определении характеристик долгосрочной пластической ползучести играют поперечные (связующие) цепочки. Полимерная цепочка складывается и образует слоистую кристаллическую структуру. При введении со-мономеров в структуре полимера создаются несовершенства из-за внедрения коротких боковых цепочек. Гексиловая боковая группа из со-мономера октена слишком большая для внедрения в слоистую кристаллическую структуру, и полимерная цепочка выталкивается из кристалла. Теперь, когда эта цепочка внедряется в другой кристалл, образуется боковая цепочка. Слоистые кристаллические структуры соединены через аморфные сегменты полимера, т.е. поперечные цепочки. Вероятность образования поперечных цепочек повышается с увеличением длины полимерной цепочки.

Читайте также:  Теплые полы сколько киловат

Известно, что молекулы поперечных. цепочек повышают жесткость материала и улучшают его сопротивление растрескиванию под воздействием изгиба (ESCR) или длительные свойства ползучести путем «связывания» множества кристаллов вместе. Боковые цепочки демонстрируют способность к растяжению и мобильность и как таковые могут абсорбировать и рассеивать энергию.

Тип внедряемого со-мономера также оказывает влияние на концентрацию поперечных цепочек. С повышением длины цепочки со-мономера а-олефина способность к образованию поперечных цепочек также повышается. Причина этого заключается в том, что боковые цепочки октена длиннее и поэтому им сложнее внедриться в растущий кристалл. Это ведет к более высокой вероятности образования поперечной цепочки при той же концентрации со-мономера.

Проще говоря, благодаря структуре и молекулярных связей полимеров при точном контроле с помощью со-мономеров и а-олефина можно получить необходимые свойства полимера.

Эти разработки составляют основу для создания нового класса полиэтиленовых материалов для высокотемпературных областей применения. Эти компаунды определяются в стандарте ISO-1043-1® как PE-RT или полиэтилен с повышенной термостойкостью.

PERT демонстрирует отличную длительную гидростатическую прочность без необходимости сшивки. Это позволяет изготовителям труб получить существенные преимущества при обработке в сравнении со сшитым PEX-полиэтиленом. Как определено в стандарте ISO 10508, PERT можно использовать в производстве любых труб горячей воды.

Для труб подачи питьевой воды важно соответствовать национальным требованиям к продуктам, предназначенным для контакта с водой. Эти требования включают характеристики вкуса и запаха, подавление роста микроорганизмов для гарантии того, что все добавки, используемые в производстве данного материала, включены в «позитивный список». Благодаря хорошей длительной гидростатической прочности при высоких температурах, в сочетании с превосходной гибкостью, PE-RT полиэтилены являются наилучшим решением для труб отопления и водоснабжения. Однако ввиду своей нестабильности при длительном воздействии высоких температур в системах отопления быстро выходят из строя.

Классы эксплуатации PEX труб, сроки службы и температурные режимы работы.

Говоря о характеристиках труб PEX всегда подразумеваются классы эксплуатации труб из данного материала полимеров. Помимо прочностных характеристик, которые изменяются от вида производства трубы. Существуют еще классы эксплуатации труб описанные в стандарте ISO 10508. Практически у всех производителей материалы одни, но ввиду широкого спектра применения PEX и PERT материалов и применяемых катализаторов классы эксплуатации труб делятся на 6 подвидов. Все эти классы на качество трубы не влияют, а указывают только на режимы эксплуатации трубы и ее рабочие температурные режимы относительно срока службы материала. В таблице ниже Вы можете ознакомиться с этими классами.

Таблица классов эксплуатации полимерных трубопроводов PEX и PERT:

Если говорить кратко, то в стандарте ISO 10508 области применения труб различных классов определены следующим образом:

· Класс 1 [A]* (распределительные системы ГВС 60°C, срок службы 50 лет)
· Класс 2 [B]* (распределительные системы ГВС 70°C, срок службы 50 лет)
· Класс 3 [C]* (только тёплые полы 35°C, срок службы 22 года)
· Класс 4 [D]* (теплые полы с температурой до 20°C — 2,5 года и низкотемпературные радиаторы [KERMI] 50°C, срок службы 22 года)
Эксплуатация класса предполагает, что при среднесуточной температуре 40°C [от 20 до 60] системы отопления труба прослужит минимум 15 лет.
· Класс 5 [E]* (высокотемпературные радиаторы и системы отопления 53°C, срок службы 16 лет)

* Все температуры классов рассмотрены исходя из среднесуточных значений температуры теплоносителя в трубе.

Для каждого материала и каждой серии S рассчитана величина максимального рабочего давления (4, 6, 8, 10 бар) для конкретного класса эксплуатации.

Например, для трубы PP-RCT- S3,2 информация на трубе будет представлена в следующем виде:

Class 1/10bar, 2/10bar, 4/10bar, 5/8bar — это означает, что труба может быть использована:

для систем распределения горячей воды при температуре 60°C, рабочем давлении 10 бар и сроке эксплуатации до 50 лет (класс 1/10);
для систем распределения горячей воды при температуре 70°C, рабочем давлении 10 бар и сроке эксплуатации до 50 лет (класс 2/10);
для напольного отопления и низкотемпературных радиаторов при рабочем давлением 10 бар и сроке эксплуатации до 15 лет (класс 4/10);
для высокотемпературных радиаторов при рабочем давлении 8 бар и сроке эксплуатации до 16 лет (класс 5/8)

Эпилог.

Путем отработанной молекулярной архитектуры и улучшенного процесса контроля возможно производство полиэтиленов с превосходной длительной гидростатической прочностью при высоких температурах. PERT полимеры, составляют основу нового класса полиэтиленовых материалов, рекомендуемых для производства труб для систем отопления и горячего, холодного водоснабжения.

Уникальность данных материалов заключается в том, что для получения желаемой длительной гидростатической прочности при высоких температурах они не требуют сшивки. В сравнении с системами из сшитого полиэтилена это дает существенные преимущества при обработке и сборке. PERT рекомендуется для производства абсолютно любых труб для горячей воды. Однако благодаря многолетнему практическому опыту применения труб PEX-A, даже новый вид полимеров на сегодняшний день проигрывает ввиду ограниченности характеристик в области применения.

Теперь зная преимущества и недостатки конструкционных свойств материалов, из которых выпускаются полимерные трубы отопления и водоснабжения, Вы сможете подобрать наилучший вариант трубы, как в ценовой категории, так и в категории необходимых характеристик трубы.

Оцените статью